SOLUTIONS FOR PSET 3

(2.1.1) Note that $\operatorname{det}(K)=c_{1} c_{2} c_{3}+c_{1} c_{2} c_{4}+c_{1} c_{2} c_{4}+c_{2} c_{3} c_{4}$. In fixed-free case we set $c_{4}=0$ and get $\operatorname{det}(K)=c_{1} c_{2} c_{3}$. In free-free case we set $c_{1}=c_{4}=0$ and get $\operatorname{det}(K)=0$ so singular.
(2.1.4) In fixed-free case,

$$
A^{T} C A=\left(\begin{array}{ccc}
c_{2} & -c_{2} & 0 \\
-c_{2} & c_{2}+c_{3} & -c_{3} \\
0 & -c_{3} & c_{3}
\end{array}\right)
$$

Adding three rows (or equivalently, multiplying ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right)$ on the left), we get zeroes everywhere, so $f_{1}+f_{2}+f_{3}=0$.

Note that $\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ is a homogeneous solution, which is a solution of $A^{T} C A u=0$. Also, $\left(\begin{array}{lll}1 / c_{2} & 0 & -1 / c_{3}\end{array}\right)^{T}$ is a particular solution. Hence all solutions are $\left(t+1 / c_{2} \quad t \quad t-1 / c_{3}\right)^{T}$ where t ranges over all real numbers.
(2.1.7) Set $c_{1}=c_{3}=c_{4}=1$ and $c_{2}=0$. Then

$$
K=\left(\begin{array}{ccc}
c_{1} & 0 & 0 \\
0 & c_{3} & -c_{3} \\
0 & -c_{2} & c_{3}+c_{4}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

which is invertible since $\operatorname{det}(K)=1$. Solving $K u=f=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ we get $u=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)^{T}$.

Note that matrix K is in the block-diagonal form, which means that mass 1 and mass 2,3 are now in independent system (imagine the situation that we remove spring 2). So it is equivalent to solve each system independently.
(2.3.1) By calculus, one may want to find a solution of $E^{\prime}(u)=0$ which is a candidate for minimum. In fact $E^{\prime \prime}(u)=2 \sum_{i=1}^{m} a_{i}^{2} \geq 0$ for any u, any solution of $E^{\prime}(u)=0$ gives a minimum. $E^{\prime}(u)=2\left(\sum_{i=1}^{m} a_{i}^{2}\right) u-2 \sum_{i=1}^{m} a_{i} b_{i}=2 A^{T} A u-$ $2 A^{T} b$ so $\hat{u}=\frac{A^{T} b}{A^{T} A}$ which is exactly the solution of $A^{T} A u=A^{T} b$.
(2.3.7) If the points were on a line, they will satisfy the equation $C+D x=b$. So, we may set an equation

$$
A u=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right) \underset{1}{\binom{C}{D}} \underset{1}{\left(\begin{array}{l}
4 \\
1 \\
0 \\
1
\end{array}\right), ~}
$$

which is not solvable. Instead, we find a solution for $A^{T} A u=A^{T} b . A^{T} A=$ $\left(\begin{array}{cc}4 & 6 \\ 6 & 14\end{array}\right)$ and $A^{T} b=\binom{6}{4}$ so $C=3$ and $D=-1$.
(2.3.8) $p=\left(\begin{array}{llll}3 & 2 & 1 & 0\end{array}\right)^{T}, e=b-p=\left(\begin{array}{llll}1 & -1 & -1 & 1\end{array}\right)^{T}$. Check $A^{T} e=(0,0)$.
(2.3.18) $\frac{9}{10}$, since $b_{1}+\ldots+b_{9}=9 \hat{u}_{9}$.
(2.3.24) Using the same technique as in (2.3.7), set

$$
A=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right)
$$

and solve $A^{T} A u=A^{T} b$. We get $A^{T} A=\left(\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ and $A^{T} b=(8,-3,-3)$ so $(C, D, E)=(2,-3 / 2,-3 / 2)$. Check that (average of b 's $)=2=C+0 \cdot D+0 \cdot E$.

