Name: Mohammad AlAdwani
18.085: Homework 9

Section 4.3 (Problem 16):

If the equation $\operatorname{det}(P-\lambda I)=0$ reduces to $\lambda^{4}=1$, then the eigenvalues of P are $\pm 1, \pm i$. The permutation matrix which has eigenvalues $=$ cube roots of 1 is

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Section 4.3 (Problem 17):

Note that

$$
\begin{aligned}
& {\left[\begin{array}{llll}
c_{0} & \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3} \\
c_{3} & \mathrm{c}_{0} & \mathrm{c}_{1} & \mathrm{c}_{2} \\
c_{2} & \mathrm{c}_{3} & \mathrm{c}_{0} & \mathrm{c}_{1} \\
c_{1} & \mathrm{c}_{2} & c_{3} & \mathrm{c}_{4}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left(\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}\right)\left[\begin{array}{l}
1
\end{array}\right] \quad \Rightarrow \lambda_{0}=\mathrm{c}_{0}+\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}} \\
& {\left[\begin{array}{lll}
c_{0} & \mathrm{c}_{1} & \mathrm{c}_{2} \\
c_{3} & c_{3} \\
c_{2} & c_{1} & c_{2} \\
c_{1} & c_{2} & c_{0} \\
c_{2} & c_{3} & c_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
i \\
i^{2} \\
i^{3}
\end{array}\right]=\left[\begin{array}{c}
c_{0}+i c_{1}-c_{2}-i c_{3} \\
i c_{0}-c_{1}-i c_{2}+c_{3} \\
-c_{0}-i c_{1}+c_{2}+i c_{3} \\
-i c_{0}+c_{1}+i c_{2}-c_{3}
\end{array}\right]=\left(c_{0}+i c_{1}-c_{2}-i c_{3}\right)\left[\begin{array}{l}
i \\
i^{2} \\
i^{3}
\end{array}\right] \Rightarrow \lambda_{1}=c_{0}+i c_{1}+i^{2} c_{2}+i^{3} c_{3}}
\end{aligned}
$$

Since $=c_{0} I+c_{1} P+c_{2} P^{2}+c_{3} P^{3}$, where P is the cyclic permutation, then $C=F\left(c_{0} I+c_{1} \Lambda+c_{2} \Lambda^{2}+c_{3} \Lambda^{3}\right) F^{-1}$ and the matrix in parenthesis is diagonal and contains the eigenvalues of C.

Section 4.3 (Problem 18):

If C is the matrix shown below

$$
C=\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] \quad \Rightarrow \quad 2 I-\Lambda-\Lambda^{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

then its eigenvalues are the diagonal entries of $2 I-\Lambda-\Lambda^{3}$ which are $0,2,2$ and 4 .

Section 4.3 (Problem 20):

If $C=F E F^{-1}$ and we'd like to perform the multiplication $C x$ as $F\left(E\left(F^{-1} x\right)\right)$, then $\frac{n}{2} \log _{2} n$ multiplications will come from $F^{-1}, \frac{n}{2} \log _{2} n$ multiplications will come from F and n multiplications will come from E.

Section 4.4 (Problem 2):

Note that $F(c \otimes d)=F(c) . * F(d)$ as

$$
\begin{aligned}
& F(c \otimes d)=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{0} d_{0}+c_{1} d_{1} \\
c_{0} d_{1}+c_{1} d_{0}
\end{array}\right]=\left[\begin{array}{l}
c_{0} d_{0}+c_{1} d_{1}+c_{0} d_{1}+c_{1} d_{0} \\
c_{0} d_{0}+c_{1} d_{1}-c_{0} d_{1}-c_{1} d_{0}
\end{array}\right]=\left[\begin{array}{l}
\left(c_{0}+c_{1}\right)\left(d_{0}+d_{1}\right) \\
\left(c_{0}-c_{1}\right)\left(d_{0}-d_{1}\right)
\end{array}\right] \\
& F(c) . * F(d)=\left[\begin{array}{l}
c_{0}+c_{1} \\
c_{0}-c_{1}
\end{array}\right] \cdot *\left[\begin{array}{l}
d_{0}+d_{1} \\
d_{0}-d_{1}
\end{array}\right]=\left[\begin{array}{l}
\left(c_{0}+c_{1}\right)\left(d_{0}+d_{1}\right) \\
\left(c_{0}-c_{1}\right)\left(d_{0}-d_{1}\right)
\end{array}\right]
\end{aligned}
$$

Section 4.4 (Problem 8):
(a) If $f=(0,0,0,1,0,0)$ is represented by w^{3} then $f \otimes f=(1,0,0,0,0,0)$ as it represents $w^{3} \cdot w^{3}=w^{6}=1$.
(b) $c=F^{-1} f=\frac{1}{6}\left(1, w^{-3}, w^{-6}, w^{-9}, w^{-12}, w^{-15}\right)^{T}=\frac{1}{6}(1,-1,1,-1,1,-1)^{T}$
(c) To obtain $f \otimes f$, note that

$$
f \otimes f=6 F(c . * c)=\frac{1}{6}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & \mathrm{w} & \mathrm{w}^{2} & \mathrm{w}^{3} & \mathrm{w}^{4} & \mathrm{w}^{5} \\
1 & \mathrm{w}^{2} & \mathrm{w}^{4} & \mathrm{w}^{6} & \mathrm{w}^{8} & \mathrm{w}^{10} \\
1 & \mathrm{w}^{3} & \mathrm{w}^{6} & \mathrm{w}^{9} & \mathrm{w}^{12} & \mathrm{w}^{15} \\
1 & \mathrm{w}^{4} & \mathrm{w}^{8} & \mathrm{w}^{12} & \mathrm{w}^{16} & \mathrm{w}^{20} \\
1 & \mathrm{w}^{5} & \mathrm{w}^{10} & \mathrm{w}^{15} & \mathrm{w}^{20} & \mathrm{w}^{25}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Section 4.4 (Problem 9):
From the entries of $C C^{T}=C^{T} C$ which are shown below, we can see that $(1,3,4) *(4,3,1)=(4,15,26,15,4)$ and $(1,2,4) *(4,2,1)=(4,15,26,15,4)$

$$
\begin{aligned}
& C=\left[\begin{array}{ccccc}
\cdot & \cdot & 0 & \cdot & \cdot \\
\cdot & 1 & 0 & 0 & \cdot \\
4 & 3 & 1 & 0 & 0 \\
\cdot & 4 & 3 & 1 & \cdot \\
. & \cdot & 4 & \cdot & \cdot
\end{array}\right] \Rightarrow C C^{T}=\left[\begin{array}{ccccc}
\cdot & \cdot & 0 & \cdot & \cdot \\
\cdot & 1 & 0 & 0 & \cdot \\
4 & 3 & 1 & 0 & 0 \\
\cdot & 4 & 3 & 1 & \cdot \\
. & \cdot & 4 & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ccccc}
\cdot & \cdot & 4 & \cdot & \cdot \\
\cdot & 1 & 3 & 4 & \cdot \\
0 & 0 & 1 & 3 & 4 \\
\cdot & 0 & 0 & 1 & \cdot \\
. & \cdot & 0 & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{cccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & . \\
. & 26 & 15 & 4 & 0 & 0 & \cdot \\
\cdot & 15 & 26 & 15 & 4 & 0 & \cdot \\
\cdot & 4 & 15 & 26 & 15 & 4 & \cdot \\
\cdot & 0 & 4 & 15 & 26 & 15 & \cdot \\
\cdot & 0 & 0 & 4 & 15 & 26 & \cdot \\
. & \cdot & \cdot & . & \cdot & \cdot & .
\end{array}\right] \\
& C^{T} C=\left[\begin{array}{ccccc}
\cdot & \cdot & 4 & \cdot & \cdot \\
\cdot & 1 & 3 & 4 & \cdot \\
0 & 0 & 1 & 3 & 4 \\
\cdot & 0 & 0 & 1 & \cdot \\
. & \cdot & 0 & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ccccc}
\cdot & \cdot & 0 & \cdot & \cdot \\
\cdot & 1 & 0 & 0 & \cdot \\
4 & 3 & 1 & 0 & 0 \\
\cdot & 4 & 3 & 1 & \cdot \\
. & \cdot & 4 & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{ccccccc}
\cdot & \cdot & \cdot & . & \cdot & \cdot & \cdot \\
. & 26 & 15 & 4 & 0 & 0 & \cdot \\
\cdot & 15 & 26 & 15 & 4 & 0 & \cdot \\
\cdot & 4 & 15 & 26 & 15 & 4 & \cdot \\
\cdot & 0 & 4 & 15 & 26 & 15 & \cdot \\
\cdot & 0 & 0 & 4 & 15 & 26 & \cdot \\
. & \cdot & \cdot & . & . & . & .
\end{array}\right] \\
& C=\left[\begin{array}{ccccc}
\cdot & \cdot & 0 & \cdot & \cdot \\
\cdot & 1 & 0 & 0 & \cdot \\
4 & 2 & 1 & 0 & 0 \\
\cdot & 4 & 2 & 1 & \cdot \\
. & \cdot & 4 & \cdot & \cdot
\end{array}\right] \Rightarrow C C^{T}=\left[\begin{array}{ccccc}
\cdot & \cdot & 0 & \cdot & \cdot \\
\cdot & 1 & 0 & 0 & \cdot \\
4 & 2 & 1 & 0 & 0 \\
\cdot & 4 & 2 & 1 & \cdot \\
. & \cdot & 4 & \cdot & \cdot
\end{array}\right]\left[\begin{array}{ccccc}
\cdot & \cdot & 4 & \cdot & \cdot \\
\cdot & 1 & 2 & 4 & \cdot \\
0 & 0 & 1 & 2 & 4 \\
\cdot & 0 & 0 & 1 & \cdot \\
. & \cdot & 0 & \cdot & \cdot
\end{array}\right]=\left[\begin{array}{cccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
. & 21 & 10 & 4 & 0 & 0 & \cdot \\
\cdot & 10 & 21 & 10 & 4 & 0 & \cdot \\
\cdot & 4 & 10 & 21 & 10 & 4 & \cdot \\
\cdot & 0 & 4 & 10 & 21 & 10 & \cdot \\
\cdot & 0 & 0 & 4 & 10 & 21 & \cdot \\
. & \cdot & \cdot & \cdot & \cdot & \cdot & .
\end{array}\right]
\end{aligned}
$$

Section 4.5 (Problem 1):

$$
\begin{gathered}
\hat{g}(k)=\int_{-\infty}^{\infty} g(x) e^{-i k x} d x=\int_{-\infty}^{0}-e^{a x} e^{-i k x} d x+\int_{0}^{\infty} e^{-a x} e^{-i k x} d x=\int_{-\infty}^{0}-e^{(a-i k) x} d x+\int_{0}^{\infty} e^{-(a+i k) x} d x \\
=\frac{-1}{a-i k}+\frac{1}{a+i k}=\frac{-2 i k}{a^{2}+k^{2}}
\end{gathered}
$$

The decay rate of $\hat{g}(k)$ is $1 / k$ and there is a jump (discontinuity) in $g(x)$.

Section 4.5 (Problem 2):
(a) $\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\int_{0}^{L} e^{-i k x} d x=\frac{e^{-i k L}-1}{-i k}=\frac{1-e^{-i k L}}{i k}$
(b) $\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\int_{-\infty}^{0}-e^{-i k x} d x+\int_{0}^{\infty} e^{-i k x} d x=\frac{2}{i k}=\frac{-2 i}{k}$
(c) $f(x)=\int_{0}^{1} e^{i k x} d k=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k$ where $\hat{f}(k)=\left\{\begin{array}{cc}2 \pi & 0 \leq k \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$
(d) $\hat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x=\int_{0}^{4 \pi} \sin x e^{-i k x} d x=\frac{e^{-4 i \pi k}-1}{k^{2}-1}$

Section 4.5 (Problem 10):

Since $f^{\prime}(x)=-a e^{-a x}+\delta(x)$, then the transform of $f^{\prime}(x)$ is not just $-a \hat{f}(k)$ but $i k \hat{f}(k)=\frac{i k}{a+i k}$

Section 4.5 (Problem 11):

For $d u / d x+a u=\delta(x-d)$, we have $i k \hat{u}(k)+a \hat{u}(k)=e^{-i k d}$ and

$$
\hat{u}(k)=\frac{e^{-i k d}}{a+i k} \quad \Rightarrow \quad u(x)= \begin{cases}e^{-a(x-d)} d \leq x \\ 0 & \text { otherwise }\end{cases}
$$

Section 4.5 (Problem 12):

For $\int u(x) d x-u^{\prime}(x)=\delta(x)$, we have $\hat{u}(k) / i k-i k \hat{u}(k)=1$ and

$$
\hat{u}(k)=\frac{i k}{1+k^{2}} \Rightarrow u(x)= \begin{cases}-e^{-x} / 2 & 0<x \\ e^{x} / 2 & 0>x\end{cases}
$$

Section 4.5 (Problem 14):

Since $S(x)=$ Hat $*$ Hat $=($ Box $*$ Box $) *($ Box $*$ Box $)$, then

$$
\begin{gathered}
\hat{S}(k)=\frac{4(1-\cos k)^{2}}{k^{4}}=\frac{4\left(1+\cos ^{2} k-2 \cos k\right)}{k^{4}}=\frac{4\left(1+\frac{1}{4}\left(e^{k i}+e^{-k i}\right)^{2}-e^{i k}-e^{-i k}\right)}{k^{4}} \\
=\frac{4\left(\frac{3}{2}+\frac{1}{4} e^{2 k i}+\frac{1}{4} e^{-2 k i}-e^{i k}-e^{-i k}\right)}{k^{4}}
\end{gathered}
$$

Since $(i k)^{4} \hat{S}(k)$ is the transform of $S^{\prime \prime \prime \prime}(x)$, then $S^{\prime \prime \prime \prime}(x)=6 \delta(x)+\delta(x+2)+\delta(x-2)-4 \delta(x+1)-4 \delta(x-1)$ which has spikes at $x=-2,-1,0,1,2$.

Section 4.5 (Problem 21):

Since $g(x) * 1=\left(\int_{-\infty}^{\infty} g(t) d t\right)(1)$ then $\int_{-\infty}^{\infty} g(t) d t$ is the eigenvalue associated with the eigenfunction $u(x)=1$
Section 4.5 (Problem 23):

$$
\delta(x) * \delta(x)=\delta(x)
$$

