Name: Mohammad AlAdwani
18.085: Homework 7

Section 3.3 (Problem 6):

For $v=\left(y^{2}, x^{2}\right), \operatorname{curl} v=\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}=2 x-2 y \neq 0$; therefore, v is not a gradient of any function u.
For $v=\left(y^{2}, 2 x y\right), \operatorname{curl} v=\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}=2 y-2 y=0$; therefore, v is a gradient of some u which is $u=x y^{2}+C$

Section 3.3 (Problem 7):

For $w=\left(x^{2}, y^{2}\right)$, $\operatorname{div} w=2 x+2 y \neq 0$; therefore, w does not have the form $(\partial s / \partial y,-\partial s / \partial x)$ for any function s.
For $w=\left(y^{2}, x^{2}\right)$, $\operatorname{div} w=0+0=0$; therefore, w has the form $(\partial s / \partial y,-\partial s / \partial x)$ for some function s which is $\left(-x^{3}+y^{3}\right) / 3+C$

Section 3.3 (Problem 8):
If $u=x^{2}$ in the square $S=\{-1<x, y<1\}$, then $w=\operatorname{grad} u=(2 x, 0)$ and

$$
\begin{aligned}
\int_{C} n \cdot \operatorname{grad} u d s & =\int_{\text {Left }} n \cdot \operatorname{grad} u d s++\int_{\text {Top }} n \cdot \operatorname{grad} u d s+\int_{\text {Right }} n \cdot \operatorname{grad} u d s+\int_{\text {Bottom }} n \cdot \operatorname{grad} u d s \\
& =\int_{-1}^{1}(-i) \cdot(2 x i) d y+\int_{-1}^{1}(j) \cdot(2 x i) d x+\int_{-1}^{1}(i) \cdot(2 x i) d y+\int_{-1}^{1}(-j) \cdot(2 x i) d x \\
& =\int_{-1}^{1}(-1)(2(-1)) d y+0+\int_{-1}^{1}(1)(2(1)) d y+0=2(2)+2(2)=8
\end{aligned}
$$

$$
\iint_{S} \operatorname{div} \operatorname{grad} u d x d y=\int_{-1}^{1} \int_{-1}^{1} 2 d x d y=2(2)(2)=8
$$

Section 3.3 (Problem 27):

For the following saddle point matrix

$$
M=\left[\begin{array}{cc}
C^{-1} & A \\
A^{T} & 0
\end{array}\right]=\left[\begin{array}{cc}
\text { curl } & \operatorname{grad} \\
-\operatorname{div} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & -\partial / \partial \mathrm{z} & \partial / \partial \mathrm{y} & \partial / \partial \mathrm{x} \\
\partial / \partial \mathrm{z} & 0 & -\partial / \partial \mathrm{x} & \partial / \partial \mathrm{y} \\
-\partial / \partial \mathrm{y} & \partial / \partial \mathrm{x} & 0 & \partial / \partial \mathrm{z} \\
-\partial / \partial \mathrm{x} & -\partial / \partial \mathrm{y} & -\partial / \partial \mathrm{z} & 0
\end{array}\right]
$$

Note that

$$
\left.\begin{array}{l}
M^{2}=\left[\begin{array}{cccc}
0 & -\partial / \partial \mathrm{z} & \partial / \partial \mathrm{y} & \partial / \partial \mathrm{x} \\
\partial / \partial \mathrm{z} & 0 & -\partial / \partial \mathrm{x} & \partial / \partial \mathrm{y} \\
-\partial / \partial \mathrm{y} & \partial / \partial \mathrm{x} & 0 & \partial / \partial \mathrm{z} \\
-\partial / \partial \mathrm{x} & -\partial / \partial \mathrm{y} & -\partial / \partial \mathrm{z} & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -\partial / \partial \mathrm{z} & \partial / \partial \mathrm{y} \\
\partial / \partial \mathrm{z} & 0 & \partial \mathrm{x} \\
-\partial / \partial \mathrm{y} & \partial / \partial \mathrm{x} & -\partial / \partial \mathrm{x} \\
\partial / \partial \mathrm{y} \\
-\partial / \partial \mathrm{x} & -\partial / \partial \mathrm{y} & -\partial / \partial \mathrm{z}
\end{array}\right. \\
0
\end{array}\right]
$$

Hence,

$$
M^{2}=\left[\begin{array}{cc}
\text { curl } & \text { grad } \\
- \text { div } & 0
\end{array}\right]\left[\begin{array}{cc}
\text { curl } & \text { grad } \\
- \text { div } & 0
\end{array}\right]=\left[\begin{array}{cc}
\text { curl curl - grad div } & \text { curl grad } \\
\text {-div curl } & \text {-div grad }
\end{array}\right]=\left[\begin{array}{cc}
-\Delta^{2} I_{2} & 0 \\
0 & -\Delta^{2} I_{2}
\end{array}\right]
$$

and the following identities curl curl $-\operatorname{grad} \operatorname{div}=-\Delta^{2}$, curl grad $=0$ and div curl $=0$ are verified.

Section 3.4 (Problem 6):
With $|z|=R$ note that $2 X=\left(R+R^{-1}\right) \cos \theta$ and $2 Y=\left(R-R^{-1}\right) \sin \theta$. By setting $r=R$ in the formula below, we get

$$
\frac{4 X^{2}}{\left(r+r^{-1}\right)^{2}}+\frac{4 Y^{2}}{\left(r-r^{-1}\right)^{2}}=\frac{4 X^{2}}{\left(R+R^{-1}\right)^{2}}+\frac{4 Y^{2}}{\left(R-R^{-1}\right)^{2}}=1
$$

With $|z|=R^{-1}$ note that $2 X=\left(R^{-1}+R\right) \cos \theta$ and $2 Y=\left(R^{-1}-R\right) \sin \theta$. By setting $r=R^{-1}$, in the formula below, we get

$$
\frac{4 X^{2}}{\left(r+r^{-1}\right)^{2}}+\frac{4 Y^{2}}{\left(r-r^{-1}\right)^{2}}=\frac{4 X^{2}}{\left(R^{-1}+R\right)^{2}}+\frac{4 Y^{2}}{\left(R^{-1}-R\right)^{2}}=\frac{4 X^{2}}{\left(R+R^{-1}\right)^{2}}+\frac{4 Y^{2}}{\left(R-R^{-1}\right)^{2}}=1
$$

Hence, $|z|=r$ and $|z|=r^{-1}$ produce the same ellipse as that indicated in the problem.

Section 3.4 (Problem 18):

If $u_{0}=\sum B_{k} \sin \pi k x$, along the edge $y=0$ of a square and zero on the other three edges, then

$$
u(x, y)=\sum B_{k} u_{k}(x, y) \quad \text { where } u_{k}(x, y)=\frac{(\sin \pi k x)(\sinh \pi k(1-y))}{\sinh \pi k}
$$

Section 3.4 (Problem 20):

The eigenvalues of $H u=-u_{x x}-u_{y y}-k^{2} u$ are $\left(m^{2}+n^{2}\right) \pi^{2}-k^{2}$ as

$$
\begin{gathered}
H[(\sin \pi k x)(\sin \pi k y)]=m^{2} \pi^{2}(\sin \pi k x)(\sin \pi k y)+n^{2} \pi^{2}(\sin \pi k x)(\sin \pi k y)-k^{2}(\sin \pi k x)(\sin \pi k y) \\
=\left[\left(m^{2}+n^{2}\right) \pi^{2}-k^{2}\right](\sin \pi k x)(\sin \pi k y)
\end{gathered}
$$

The code to solve $H u=1$ is shown below and the output of the code is shown in the following page.

```
function P = poisson(x,y)
N=39; u=zeros(size(x)); k=0; M=1;
while k < sqrt(2*pi)
        u=0;
    for i=1:2:N
        for j=1:2:N
            u=u+2^4/pi^2/(i*j)/(pi^2* (i^2+j^2)-k^2)*sin(i*pi*x)*sin(j*pi*y);
        end;
    end;
    W(M)=k; Solution (M)=u; M=M+1; k=k+0.1;
end;
Solution
plot(W,Solution,'-')
xlabel('Value of k') ; grid on;
ylabel('Solution to Hu=1')
title('Plot of the solution of Hu=1 as k changes')
```

```
EDU>> poisson(1/2,1/2)
Solution =
    Columns 1 through 10
\begin{tabular}{llllllllll}
0.0737 & 0.0737 & 0.0738 & 0.0740 & 0.0743 & 0.0747 & 0.0752 & 0.0757 & 0.0764 & 0.0771
\end{tabular}
    Columns }11\mathrm{ through 20
\begin{tabular}{llllllllll}
0.0780 & 0.0789 & 0.0800 & 0.0812 & 0.0825 & 0.0840 & 0.0856 & 0.0875 & 0.0895 & 0.0917
\end{tabular}
    Columns 21 through 26
\begin{tabular}{llllll}
0.0941 & 0.0968 & 0.0998 & 0.1032 & 0.1069 & 0.1111
\end{tabular}
```


Section 3.5 (Problem 1):

$$
\mathrm{K} 3 \mathrm{D}=\operatorname{kron}(\mathrm{K} 2 \mathrm{D}, \mathrm{I})+\operatorname{kron}(\mathrm{I} 2 \mathrm{D}, \mathrm{~K})
$$

Section 3.5 (Problem 5):

The 9-points molecule with coefficients $20,-4$ and -1 is shown below. The bandwidth of K2D9 is $N+1$ where N is shown in the figure below (Here we have defined w as the $\#$ of total elements starting from the -4 east of 20 to the -1 north east of 20 including those -4 and -1). If we define the bandwidth to be the number of meshes between 20 and -1 north east of 20 , then bandwidth is N.

Section 3.6 (Problem 5):

With $h=1 / 2$, we have a mesh containing 8 triangles and 9 nodes (8 of them are boundary nodes) which are shown below along with p, t and b
$\mathrm{p}=$
$t=$
$\mathrm{b}=$

0	0	1	2	4	1
0.5000	0	2	4	5	2
1.0000	0	2	3	5	3
0	0.5000	3	5	6	4
0.5000	0.5000	4	5	7	6
1.0000	0.5000	5	7	8	7
0	1.0000	5	8	6	8
0.5000	1.0000	6	8	9	9
1.0000	1.0000				

The 9 by 9 singular matrix K and load vector F (before setting the boundary as 0) for $f(x)=1$ are shown below

								$\mathrm{F}=$	
1.0000	-0.5000	0	-0.5000	0	0	0	0	0	0.0417
-0.5000	2.0000	-0.5000	0	-1.0000	0	0	0	0	0.1250
0	-0.5000	1.0000	0	0	-0.5000	0	0	0	0.0833
-0.5000	0	0	2.0000	-1.0000	0	-0.5000	0	0	0.1250
0	-1.0000	0	-1.0000	4.0000	-1.0000	0	-1.0000	0	0.2500
0	0	-0.5000	0	-1.0000	2.0000	0	0	-0.5000	0.1250
0	0	0	-0.5000	0	0	1.0000	-0.5000	0	0.0833
0	0	0	0	-1.0000	0	-0.5000	2.0000	-0.5000	0.1250
0	0	0	0	0	-0.5000	0	-0.5000	1.0000	0.0417

The 8 boundary nodes in b are shown above. When K is reduced to $K b=4$ and we get $4 U=0.25 \Rightarrow U=0.0625$

Section 3.6 (Problem 6):

With $h=1 / 4$, we have a mesh containing 16 triangles and 15 nodes (12 of them are boundary nodes) which are shown below along with p, t and b

The output $K b, F b$ and U is shown below

$\mathrm{Kb}=$	$\mathrm{Fb}=$		
$(1,1)$	1	0	0
$(2,2)$	1	0	0
$(3,3)$	1	0	0
$(4,4)$	1	0	0
$(5,5)$	1	0	0
$(6,6)$	1	0.0625	0
$(7,7)$	4	0.0625	0.0268
$(8,7)$	-1	0	0.0223
$(11,7)$	-1	0	0
$(7,8)$	-1	0	0
$(8,8)$	4	0	0
$(9,9)$	1	0	0
$(10,10)$	1	0	0
$(7,11)$	-1		0
$(11,11)$	4		0
$(12,12)$	1		0

Section 3.6 (Problem 9):

For $U=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2}+a_{7} x^{2} y+a_{8} x y^{2}, \phi(x, y)$ which equals 1 at $x=y=0$ and zero at all other nodes can be found by solving the following system

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.5 & 0 & 0 & 0.25 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0.5 & 0 & 0.25 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0.5 & 1 & 0.5 & 0.25 & 0.5 & 0.25 \\
1 & 0.5 & 1 & 0.25 & 0.5 & 1 & 0.25 & 0.5 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6} \\
a_{7} \\
a_{8}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Using MATLAB's code shown below, the output of the code is shown below

$$
\begin{aligned}
& \mathrm{F}=[1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0] ; \\
& \mathrm{Ph}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 ; \\
1 & 0 & .5 & 0 & 0 & .25 & 0 & 0 ; \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 ; \\
1 & .5 & 0 & .25 & 0 & 0 & 0 & 0 ; \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 ; \\
1 & 1 & .5 & 1 & .5 & .25 & .5 & .25 ; \\
1 & .5 & 1 & .25 & .5 & 1 & .25 & .5 ; \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1] ;
\end{array}\right. \\
& \begin{array}{lll}
\\
\text { a= } \\
\text { inv }(\mathrm{Ph}) * F
\end{array}
\end{aligned}
$$

Section 3.6 (Problem 11):
(a) If $v_{1}=(1,1), v_{2}=(-1,1), v_{3}=(-1,-1), v_{4}=(1,-1)$ and $U\left(v_{i}\right)=U_{i}$ where $U=a+b x+c y+d x y$, then

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
U_{1}+U_{2}+U_{3}+U_{4} \\
U_{1}-U_{2}-U_{3}+U_{4} \\
U_{1}+U_{2}-U_{3}-U_{4} \\
U_{1}-U_{2}+U_{3}-U_{4}
\end{array}\right]
$$

The inverse of the 4 by 4 matrix is obtained from MATLAB which is shown blow

```
EDU>> A=[11 1 1 1; 1 -1 1 -1; 1 -1 -1 1; 1 1 -1 -1]
A =
\begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{tabular}
EDU>> inv(A)
ans =
\begin{tabular}{rrrr}
0.2500 & 0.2500 & 0.2500 & 0.2500 \\
0.2500 & -0.2500 & -0.2500 & 0.2500 \\
0.2500 & 0.2500 & -0.2500 & -0.2500 \\
0.2500 & -0.2500 & 0.2500 & -0.2500
\end{tabular}
EDU>> 4*inv(A)
ans =
\begin{tabular}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1
\end{tabular}
```

$(b+c)$ From part (a) we can deduce that

$$
\left[\begin{array}{l}
b \\
c
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=G\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right] \quad \Rightarrow \quad G\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { and } G\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Therefore, $[1 ; 1 ; 1 ; 1]$ and $[1 ;-1 ; 1 ;-1]$ are in the null space of G

Section 3.6 (Problem 18):

For two hat functions on the unit interval, with $U(0)=U(1)=0$ and step size $h=1 / 3$, the matrices K and M are

$$
K=\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right] \quad \text { and } \quad M=\frac{1}{18}\left[\begin{array}{ll}
4 & 1 \\
1 & 4
\end{array}\right]
$$

$K U=\lambda M U \Rightarrow M^{-1} K U=\lambda U$, where $M^{-1} K$ is shown below

$$
M^{-1} K=\frac{18}{15}\left[\begin{array}{cc}
4 & -1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right]=\frac{6}{5}\left[\begin{array}{cc}
27 & -18 \\
-18 & 27
\end{array}\right]=\frac{54}{5}\left[\begin{array}{cc}
3 & -2 \\
-2 & 3
\end{array}\right]=\frac{54}{5} N
$$

The characteristic polynomial of the matrix N is $t^{2}-6 t+5$ whose roots are at $t=1$ and $t=5$. Therefore, lowest $\lambda=54 / 5=10.8$ which is 'fairly' close to $\pi^{2} \approx 9.87$.

