Homework 1

11 Suppose we want a one-sided approximation to $\frac{du}{dx}$ with second order accuracy:

$$rac{ru(x) + su(x - \Delta x) + tu(x - 2\Delta x)}{\Delta x} = rac{du}{dx}$$
 for $u = 1, x, x^2$.

Substitute $u = 1, x, x^2$ to find and solve three equations for r, s, t. The corresponding difference matrix will be lower triangular. The formula is "causal."

Sale for any age of the the true solution.

19 Construct a *centered* difference approximation using K/h^2 and $\Delta_0/2h$ to

$$-rac{d^2 u}{dx^2}+rac{d u}{dx}=1 \quad ext{with } u(0)=0 ext{ and } u(1)=0 \,.$$

Separately use a forward difference $\Delta_+ U/h$ for du/dx. Notice $\Delta_0 = (\Delta_+ + \Delta_-)/2$. Solve for the centered u and uncentered U with h = 1/5. The true u(x) is the particular solution u = x plus any $A + Be^x$. Which A and B satisfy the boundary conditions? How close are u and U to u(x)?