Areg Hayrapetian (#53) Problem Set #5 18.085

3.1: 1, 3, 5, 9, 10, 12, 14, 18

1) We want to solve —-L [¢(z) 9] = f(z) with c(z) = ¢ = constant and f(z) = 1 — for different boundary
conditions to get w(z) and u(x).

dw
-1
dz '
1 1
d
) %dx:‘/m (z — 1)dx

(a) Boundary conditions: u(0) = 0 and w(1) = 0.

u(e) —wioy = "o 2[00 4 1] w(w) = wt) — 5(2 —1)”
u(e) = & [(1-2)° ~ 1] w(z) = 51— 2y
(b) Boundary conditions: u(0) = 0 and u(1) = 0.
u(e) iy = "W - L@ 1) +1]
u=0="0_ 2 =2 w(z) = w(1) — L~ 17
ww:ém—m%ﬂe@] w(z) =g~ 2 (1)’
3) Looking at the case of a bar free at both ends, —2% = f(z) with w(0) = w(1) = 0, we want to know

under which conditions a solution exists. Integrating both sides of the differential equation from 0 to 1 gives

—d;v = / f(z
0
—%&+%@=/f@w
0
So, for there to be a solution to this problem, f(x) must satisfy the condition fol f(x)dx = 0. Physically,

this means that the net force on the bar must be zero.

5) Again we have —%% = f(z) and c(z)%* = w, with boundary conditions u(0) = 0 and w(1) = 0. This

time, f(x) = f = constant and c(z) jumps from ¢ =1 for # < 1 to c =2 for z > 1. So, ¢(z) =14 S(z — 3).

/—da:—/ fdx

—wh) +w(e) = (1-2)f
’wx :(1—$)f‘

10/27/10 Page 1 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

dfuiw(x)if 11—z
B 1+ Sz —3)
Jo (1= z)dx for0<az <3

[z — 12?] for0<az <3
L4 flo-12-3 forh<s<l

9) The solution to —cu” 4+’ = 1is u(z) = dy+da exp(Z)+x. With the boundary conditions 1(0) = u(1) = 0,
dy and ds can be found as follows.

U(O):d1+d2:0—> dgz—dl

1

1 1
u(l) =dy +doexp(-)=—-1—— d; (1 — exp()> =—1—— |—di=dy= —
c 1—exp(z)

C

Now, we can find the limit of dy, d2, and u(x) as ¢ — 0 from the positive side.

1 -1 0
lim —dy = lim dy = lim = PO ~0
c—0t c—0t c—0t 1 — exp(g) c—0+ exp(—;) -1 0—-1
lim u(z) = o + ber—grdr + lim dyexp(©) = 2+ i exp(—5") _ fi4gly fora=1
1m u\r) = = 1m exXpl—) = m ———— =
0+ ot P2PLL c—0+ exp(—1) —1 T4+ 5 for0<z <1
0 forz=1
lim wu(z) = o
c—07t r for0<zr«1

When z is away from x = 1 the limit of u(z) as ¢ — 07 clearly goes to z. However, near z = 1 the limit
rapidly diverges from z and heads to 0. And if x — 1 much faster than ¢ — 0, then the limit of u(z) will go
to 0. The boundary condition u(0) = 0 is always satisfied but the end = 1 has a boundary layer.

10) We want to solve —u” = 2 with «(0) = u(1) = 0 using finite elements with three hat functions (¢;(z))

and h = . So, ¢(x) = 1 and f(z) = 2, and we need to calculate the components of the matrix K and vector
F in the equation KU = F where U = (U1, Us, Us) and

Ky = /O m%fm F; = /0 f(@)i(x)da U(z) = Ur¢r(z) + Uagha () + Uss(x)

The test functions v;(x) are taken to be the trial functions ¢;(z), or v;(z) = ¢;(x). This makes the K matrix
symmetric. The components of K and F' are given below.

1 1
Fi=F=F=2=; KH:KQQ:Kggzzh(hQ>:8 Ki3=Ks =0

Now, we can solve the matrix equation KU = F to get the vector U and the finite element solution U(x).

8 -4 07][nn] [t o] 3
KU=F—— |-4 8 4| |U| =5 1| —— |U; = |4
0 -4 8| |Us 1 Us 3

10/27/10 Page 2 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

Finally, we can compare to the finite element solution to the exact solution u(z) = z — 2. Clearly U (x)

cannot equal u(x) since u(x) is quadratic and U(x) is piecewise linear. However, we can compare the value
at the mesh points: z = 1, and = 3. Tt is shown below that the values of U(x) and u(x) are

1
identical at the meshpoints.

u(h)zu(1> S v u(2h):u<;):4:Uz\/ u(3h):u<i>:3:U3\/

1)~ 16 16 16

l':i,

12) The mass matrix M is defined as M;; = [V;V;dz. We would like to know the mass matrix for the three
hat functions. So V;(z) would be a hat function centered about x = hi, where h is the spacing between mesh
points. It is clear that M is symmetric, so M;; = Mj;. Also, the integral of the product of two hat functions
is non-zero only if the two hat functions are the same or are adjacent; in other words, M;; = 0 if |z — j| > 1.
So, M is a tri-diagonal, symmetric matrix when hat functions are used. Furthermore, since the integral of
the square of a hat function is identical regardless of the which hat function is used, the values along the
main diagonal are all equal to the same value (calculated to be %) Also, since the integral of the product
of two adjacent hat functions is identical regardless of which two adjacent pairs of hat functions is selected,
the values along the diagonal adjacent to the main diagonal are all equal to the same value (calculated to be
%). For the specific case of three hat functions dividing the interval 0 to 1 with h = %, we get the following
3 x 3 matrix for M:

1 4 1 0
0 1 4

14) We can use Simpson’s %, %, % rule to integrate and find the area underneath the bubble function ¢s(z).

o h 4h h 2h

os(x)dr = %¢5(h) + %%(%) + %%(Qh) = 6(0) + g(l) + 6(0) =173

h

18) To find the finite element solution to a fixed-free hanging bar with ¢(z) = 1 (boundary conditions
u(0) = 0 and «/(1) = 0), we must add an additional half-hat function, ¢n1(x) at the end in addition to
the N interior hat functions ¢;(x). The spacing between meshpoints is h = ﬁ and the test functions are
taken to be equal to the trial functions (V;(x) = ¢;(x)).

(a) The stiffness matrix K would now be (N + 1) x (N + 1) instead of N x N as in the fixed-fixed case.
The extra row and column mostly have zero entries except near the lower right corner. The entry in row N,
column (N + 1) (which is identical to the entry in row (N + 1), column N because K is symmetric) would
be equal to —%. The entry in row (N + 1), column (N + 1) would be equal to % So multiplying the column
vector U with the (N 4 1) row of K gives the expression

Unvy1—Un
h

which is a first difference of U; specifically, it is a backward difference of U at the point x = 1, which is
analogous to u/(1). This last row of the stiffness matrix is representing the boundary condition /(1) = 0.

(b) With a constant load f(z) = fo, the new last component of the column vector F would be Fy11 = 3hfo.
The 3 x 3 matrix K and 3 x 1 column vector F' from problem 10 can be generalized for the N x N case.
But in addition to that, we must add the extra row and column to get the larger (N + 1) x (N + 1) stiffness
matrix K and the (N +1) x 1 column vector F for this fixed-free case. The form for K and F (for a fixed-free
hanging bar with ¢(z) =1 and f(z) = fo) are given by

2 -1 1
. -1 2 -1 1
K=+ F=hfy|:
-1 2 -1 1

-1 1 1

10/27/10 Page 3 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

Now, we can solve KU = F to get the column vector U and the finite element solution U (x) = ngr 1)Ui¢i(a:),
and then compare it with the true solution of u(z) = fo(z — %zz) Particularly, we would like to compare
the values evaluated at the mesh points: for the finite element solution this is simply given by U;; for the

true solution it is given by u(hi) = $h?fo(3 — i)(i) = $h2 fo[2(N + 1) — 4](i).

11 1 1 1
U1 1 2 2 2 1

U=K'F—— | © |=np : :
U[zjvil L2 N N 1
1 2 N (N+1)] |3

Through some careful counting we can see that for i = 1,..., (N + 1):
Ui = B2fo (N 41—)i — 2it i
i =h"fo [(N + —2)1—52"' j=1J
1 (e + 1
= h2fo [(N +1)i — 4 — BRIy
2 2
1
= 5h*fo [2AN + 1)i = 2% — i+ i® +]
1
Ui = 2h2fo[2(N +1) —i] (i)
This equation is identical to the equation for u(hi), so u(hi) = U;.

3.2: 1,3,5,6

1) We want to solve the equation for a cantilevered beam with a unit force at the midpoint, u””(z) = §(z—3)

with boundary conditions u(0) = «/(0) = 0 and M (1) = M’(1) = 0. The differential equation can be split
into M"(z) = §(z — §) and u”(z) = M(x), and then solved as follows.

/M”(m)dx:/ 6(x—%)dx
AA’—’Q—}—M'(:E):l—S(x—l)

2
/:M’(x)dm:/: (S(x—é—l) dx
M) = M) = (5~ 1) — (R 3) —2)

(x) ~ w40y = Qe —) + 32>+ ga
/Ox o (x)dx = /O”” {Q(- %)dx + %(ﬁ + x)} de

10/27/10 Page 4 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

3) We want to solve «"'(x) = §(x) with boundary conditions u(—1) = «/(—=1) = 0 and u(1) = «/(1) = 0.
The general solution to v (z) = 6(x) is given by

() A+B;c+Ca:2+Dx3—%x3 forz <0
u(x) =
A+ Bx + Cx? + Dx3 forx >0

We can use the boundary conditions to get four equations that can be used to solve for the four unknowns
A, B, C, and D.

1
u(-1)=A=B+C-D+ =0 u(l)=A+B+C+D=0
1
u’(—l):B—20+3D—§:O uw'(1)=B+2C+3D=0
1 1 1 1][A 0 A =
1 -1 1 -1| |B| _|-% Bl |0
01 2 3||C| |0 Cl |3
0 1 -2 3||D 1 D =

w)=4% T, T4
51 — 5T° T 13T forz >0

1 1.2 1.3
{24 3T so° forz <0

5) Which of the 8 cubic finite elements, ¢g(z), ¢§(2), ..., 94(z), ¢5(z) based at the meshpoints z =0, %, 2,1
are dropped because of the essential boundary conditions below for —u” = f?

(a) Fixed-fixed: u(0) = u(1) = 0.
#3(x) and ¢¢(z) would be dropped.
(b) Fixed-free: u(0) = /(1) =0.
Only u(0) = 0 is an essential boundary condition. Thus, ¢d(x) would be dropped.

6) Which of the 8 cubic finite elements, ¢d(z), ¢5(2), ..., 83 (), ¢5(z) based at the meshpoints z = 0, %7 %, 1,
are dropped because of the essential boundary conditions below for v"” = f?

(a) Built-in beam: v = v’ = 0 at both ends.
#d(x), ¢5(), ¢3(x), and ¢§(z) would be dropped.

(b) Simply supported beam: v =« = 0 at both ends.

Only u(0) = u(1) = 0 are the essential boundary conditions. Thus, ¢g¢(z) and ¢%(z) would be dropped.
(c¢) Cantilevered beam: u(0) = «/(0) = v”(1) = «"'(1) = 0.

Only u(0) = /(0) = 0 are the essential boundary conditions. ¢d(x) and ¢§(x) would be dropped.

10/27/10 Page 5 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

MATLAB Assignment

We want to convert between a geocentric rectangular coordinate system and a geodetic coordinate system.
This conversion is useful in GPS applications. The conversion from geodetic coordinates (latitude ¢, longitude
A, altitude h) to geocentric rectangular coordinates (X, Y, Z) is straightforward and is given by

X = (N + h)cos¢pcos A

Y = (N + h) cos ¢psin A

Z=1[(1-f)?N +h]sin¢

1

where N:a[l—f(Q—f)sinQQﬂ 2
and a = 6378388 m is the length of the semi-major axis of the Earth and f = - is the polar flattening of
the Earth. The conversion from geocentric rectangular coordinates to geodetic coordinates is more difficult
because it requires solving a system of non-linear equations.

The number of equations to solve can be reduced from three to two by solving for A analytically. By
substituting equations 1 and 2 into the quotient X we get

Y
tan \ = Y (5)

By squaring both sides of equations 1 and 2, adding the two resulting equations, and finally taking the square
root of both sides of the summed equation, we get

VX2 4Y2= (N + h)cos p/ cos? A +sin® A = (N + h) cos ¢

The above equation is used to define the function g1 (¢, k), and equation 3 is used to define the function
g2(¢v h)
gi(@,h) = (N +h)cosp — /X2 +Y2=0 (6)
2(6,h) = [(1— f)’N + B sing — Z = 0 (7)

where N is given in equation 4.
Now, we need to calculate the Jacobian,

991 991
_ |0 Oh
7 02 99
0¢p Oh
The partial derivatives with respect to altitude h are easy to calculate. They are simply B = cosgb and

%qh? = sin ¢. To simplify calculating the partial derivatives with respect to ¢, we will first calculate ¥ ¢ .

ON _3 NS
s = —%a [1 —f(2—f)sin2¢] 2 (=2f(2— f)singcos) = ?f(2—f)sin¢cos¢>
%Zbl:?;;ICOS(b—(N—i—h)sin(b:]z;f(Q—f)sinqbc052¢—Nsin¢—hsin¢
N3 2 2 .
= ?sm¢ f(2—=f)cos ¢—N2} — hsin¢

3

%Sin¢ [f(Z—f)cosQ(b— 1+ f(2— f)sin? ¢] — hsing

3

= %sineb [—1+2f— f?] —hsing = — [](\;(1 —f)2+h} sin ¢

10/27/10 Page 6 of 9

Areg Hayrapetian (#53) Problem Set #5 18.085

% =(1 —f)Q% sing + [(1 — f)°N + h] cos ¢
=(1-f)? {Jgf(Q—f)siHQQScosqb} + (1 = f)® N cos ¢ + hcos ¢
3 2
= (1 —f)z%cosqb [f(2—f)sin2¢+ ;\Lﬂ} + hcos ¢

=(1 —f)zjj—;cosd) [f(2—f)sin2¢+1 —f(2—f)sin2¢] + hcos ¢
=(1 —f)QN—300s</)+hcos¢: [Ns(l - f)? +h} cos ¢
a? a?

If we define D = g—;(l — f)? + h, then the Jacobian can be simply written as

J— —Dsing cos¢
" | Dcos¢ sing

and the inverse of the Jacobian is

1 sin ¢ —cos¢ | 1 sin ¢ —cos ¢
 det(J) [~Dcos¢ —Dsing| —Dsin?¢— Dcos2¢ |~Dcos¢ —Dsing

1 [sin ¢ —cosgb}:[—})simb]ljcosgzﬁ}

T _D|-Dcos¢ —Dsing cos ¢ sin ¢

Now, we can find the solution vector u = (¢, h) using Newton’s Method. We start with an initial guess
vector uiyy and set the current vector uc,, equal to it. For each iteration in the loop, we compute a new
vector Upew through the computation

_ _ g—1_ or Dnew _ | Peur | % Sin Peyr % COS Geur | |91 (¢cur7 hcur)
unew - ucur J g - {hncw] o {hcur] [Ccos ¢Cllr Sin ¢Cur 92 (¢Cur7 hCur) (8)
N3
where D=—(1- fE+h (9)

and the functions g; and g, are defined in equations 6 and 7 respectively, except the functions would of course
not equal zero when evaluated at the current u.,, unless u.,, happened to exactly be the true solution. Every
time the loop is repeated, upew of the prior loop becomes ucy, of the current loop. The new calculated vector
Unew Should be closer to the actual solution. Eventually, u,ew should be close enough to the actual solution,
within some tolerance, that we can break out of the loop and treat une as the solution. The MATLAB
function that does this conversion essentially uses equations 1 to 4 to convert the current estimate for the
geodetic coordinates into geocentric rectangular coordinates (Xeur, Yeur, Zeur), and then it calculates the
Euclidean distance between this point and the point (X, Y, Z) specified by the user. If this distance is
smaller than some threshold distance, which can be specified by the user through an optional argument in
the MATLAB function, it will break out of the loop. Newton’s method requires an initial guess to start
from; however, testing showed that regardless of where the initial guess was, the unique correct solution was
quickly obtained in a few iterations. Therefore, the MATLAB function makes specifying the initial guess of
the latitude and altitude optional, and by default it sets both to zero (at the equator with zero altitude).
Finally, the longitude is explicitly calculated from X and Y alone, using equation 5.

The code for the MATLAB function, gps, that converts from geocentric rectangular to geodetic coordi-
nates is displayed in Listing 1.

10/27/10 Page 7 of 9

0 O Ui Wi =

NN REK

Areg Hayrapetian (#53) Problem Set #5 18.085

We can look at an example where we wish to convert the geocentric rectangular coordinates (X, Y, Z)
to geodetic coordinates latitude, longitude, and altitude. X, Y, and Z are specified as follows:

X = 3427056.327 m
Y = 601199.931 m
Z = 5327877.892 m

Then the following MATLAB code can be used to call the function and get the converted coordinates:
[phi, lambda, h] = gps(3427056.327, 601199.931, 5327877.892)

The variable h has the altitude (h) in meters, the variable phi has the latitude (¢) in degrees, and the
variable lambda has the longitude () in degrees. The values for these three variables, for this example, are
¢ ~ 57.03°
A~ 9.95°
h ~ 56.95 m

We can verify the results of the function by plugging these values into equations 1 to 4 and getting the
original specified values for X, Y, and Z.

Listing 1: MATLAB function that converts from geocentral rectangular to geodetic coordinates.

function [lat, long, alt | = gps(X, Y, Z, varargin)
%GPS Converts from geocentric rectangular to geodetic coordinates.

[lat , long, alt] = gps (X, Y, Z, init_lat = 0, init_alt = 0,

tol = le—6, maz_iter = 100)
converts from geocentric rectangular coordinates (X, Y, Z) in meters to
geodetic coordinates: latitude (lat) and longitude (long) in degrees
and altitude (alt) in meters. The conversion is done by solving a
system of non—linear equations wusing Newton’s method, so an initial
guess for the latitude (init_lat) in degrees and the altitude
(init_alt) in meters is necessary. By default the initial latitude is
set to 0 degrees (equator) and the initial altitude is set to 0 m.

The tolerance (tol), which specifies the mazimum acceptible distance in
meters between the specified (X, Y, Z) point and the estimated point

given by the calculated latitude , longitude , altitude , is set to le—6 m
by default. The mazimum number of iterations (maz_iter) before aborting
Newton ’s method and printing an error message is set to 100 by default.

Constants for FEarth
= 6378388; % [m] length of semi—major axis of FEarth
= 1/297; % polar flattening

= & R

% Set default values for tolerance and maz_iter if not specified.
numvarargs = length(varargin);
if (numvarargs > 4)

error (’Requires at most 4 optional inputs’);

end

optargs = {0, 0, le—6, 100}; % Set defaults
newVals = cellfun (Q(x) “isempty(x), varargin);
optargs (newVals) = varargin (newVals);

[init_lat , init_alt , tol, max_iter] = optargs{:};

10/27/10 Page 8 of 9

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o7
o8
59
60
61
62
63

Areg Hayrapetian (#53) Problem Set #5 18.085

% Newton’s Method

u = [degtorad(init_lat) ; init_alt];

g_right = [sqrt(X«X + Y«Y) ; Z |;

g_right_norm = norm(g_right); % g-right-norm = sqrt (X«X + Y«xY + ZxZ);
for i=[1l:max_iter|

phi = u(l); h = u(2);
N = as(1 — f+(2—f)«(sin(phi)"2))"(~1/2);
D=h+ (1-f)"2 « N3 / a"2;
g_left = [(Nh)xcos(phi) ; (Nx(1—f)"2 4 h)xsin(phi)];
g = g_left — g_right;
u = u — [-sin(phi)/D, cos(phi)/D ; cos(phi), sin(phi)] * g;
% Calculate current distance from desired point (error) and check if
% is within the specified tolerance.
if (abs(norm(g_left) — g_right_norm) < tol)
break; % Tolerance satisfied , break out of loop.
end
end
% Check if loop aborted because of mazrimum iterations

if (i >= max_iter)

error ('gps: maxIteration’,
["Exceeded maximum number of iterations (%d) without finding’
" a solution within the tolerance’], max_iter);
end
% Set output variables

long = radtodeg (atan2(Y, X));

lat = radtodeg(phi);
alt = h;
end

10/27/10 Page 9 of 9

