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1.6: 16, 20, 24, 27, 28

16) If A is positive definite, then A−1 is positive definite.
The proof of the above statement can easily be shown for the following 2× 2 matrix,

A =

[
a b
b c

]
If that matrix is positive definite, then its upper left determinants must be positive. These conditions are
stated by the inequalities a > 0 and ac− b2 > 0. The inverse of this 2× 2 matrix is easy to find; it is given
by

A−1 =
1

ac− b2

[
c −b
−b a

]
For A−1 to be positive definite, its upper left determinants must also be positive. The resulting inequalities
can be simplified as shown by using the given inequality ac− b2 > 0.

c

ac− b2
> 0

ca

(ac− b2)2
− b2

(ac− b2)2
> 0

c > 0
(ac− b2)

(ac− b2)2
> 0

1

ac− b2
> 0

1 > 0

The inequality on the right is trivially satisfied. The inequality on the left, c > 0, is also automatically
satisfied because if c ≤ 0, it would imply that b2 < ac ≤ 0 (using the fact that a > 0), which is a contradiction
because the the square of a real number cannot be strictly less than zero. Since both determinant tests for
A−1 are satisfied automatically, just by the fact that A is positive definite, it shows that A−1 is also positive
definite given that A is positive definite.

The case for a general matrix A can also be proven, using the eigen decomposition A = SΛS−1. If A is
positive definite, then all of its eigenvalues must be positive, or the diagonal entries on the diagonal matrix
Λ are all positive. Since Λ is a diagonal matrix, its inverse Λ−1 must also be a diagonal matrix with its
entries simply being the reciprocal of the corresponding entry in Λ; or mathematically, [Λ−1]ii = ([Λ]ii)

−1
.

This means that the diagonal entries of Λ−1 are also positive. The inverse of A is given by

A−1 = (SΛS−1)−1 = (S−1)−1Λ−1S−1 = SΛ−1S−1

Since the diagonal entries of Λ−1, which are known to be positive, are the eigenvalues of A−1, it indicates
that the eigenvalues of A−1 are all positive, and thus A−1 is positive definite.

20)

A =

[
cos θ − sin θ
sin θ cos θ

] [
2 0
0 5

] [
cos θ sin θ
− sin θ cos θ

]
Looking at the above equation, a few things are clear. First, the third matrix is the transpose of the first
matrix. Second, the first matrix has orthonormal column vectors. This can easily be checked as follows:
taking the inner product of the first column vector with itself gives cos2 θ + sin2 θ = 1; taking the inner
product of the second column vector with itself gives sin2 θ + cos2 θ = 1; and taking the inner product of
the first column vector with the second column vector gives − cos θ sin θ + sin θ cos θ = 0. Third, the second
matrix is a diagonal matrix. Putting all these observations together it is clear that the right hand side is the
eigen decomposition, A = QΛQT where

Q =

[
cos θ − sin θ
sin θ cos θ

]
Λ =

[
2 0
0 5

]
With A written in this form, the eigenvalues, eigenvectors, and determinant of A are easy to calculate.
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(a) The determinant of A is the product of the eigenvalues, which is 2× 5 = 10.

(b) The eigenvalues are on the diagonal of Λ and they are λ1 = 2 and λ2 = 5.

(c) The eigenvectors are the column vectors of Q and they are v1 =

[
cos θ
sin θ

]
and v2 =

[
− sin θ
cos θ

]
.

(d) Since the eigenvalues of A, given in part (b), are all positive, the matrix A is positive definite.

24) We want to show that P (u) = 1
2u

TKu − uT f is equal to 1
2 (u − K−1f)TK(u − K−1f) − 1

2f
TK−1f .

We can start with the latter expression and simplify it to obtain the former expression. Note that in the
simplification, the assumption that K is a symmetric, positive definite matrix was used. Also, the fact that
uT f = fTu is used, which comes from the fact that the inner product of those two column vectors is a scalar
and so the order of the inner product does not matter.

1

2
(u−K−1f)TK(u−K−1f)− 1

2
fTK−1f =

1

2

[
uTK(u−K−1f)− fT (KT )−1K(u−K−1f)

]
− 1

2
fTK−1f

=
1

2

[
uTKu− uTKK−1f − fTK−1Ku+ fTK−1KK−1f

]
− 1

2
fTK−1f

=
1

2
[uTKu]− 1

2
[uT f + fTu] +

1

2
fTK−1f − 1

2
fTK−1f

=
1

2
uTKu− uT f = P (u)

Other things to notice about P(u) can be seen by studying the longer expression representation. The term
1
2 (u − K−1f)TK(u − K−1f) can be simplified to 1

2v
TKv by letting v = (u − K−1f). Since K is positive

definite, by the definition of positive definite, this term must always be positive for any v 6= 0. When v does
equal 0, it implies that u = K−1f or Ku = f , and under this case P (u) simplifies to − 1

2f
TK−1f , which is

the minimum energy Pmin.

27) We are given that the matrices H (size m ×m) and K (size n × n) are positive definite and matrices
M and N are defined in block notation by

M =

[
H 0
0 K

]
N =

[
K K
K K

]
If we denote the upper triangular Gaussian eliminated forms of H and K as UH and UK respectively, then
we can perform Gaussian elimination on matrices M and N and get

M
elimination−−−−−−−→

[
UH 0
0 UK

]
N

elimination−−−−−−−→
[
UK UK
0 0

]
So the pivots of M are composed of the pivots of H and the pivots of K. Since the pivots of both H

and K are positive, the pivots of M are all positive and thus M is positive definite. The pivots of N are
composed of the pivots of K and n zeros. Since N has positive and zero pivots, it is not positive definite
but rather positive semi-definite.

The eigenvalues of M and N can also be connected to the eigenvalues of H and K. We define vHi and
λHi and to be the m eigenvectors and corresponding eigenvalues of H with i = 1, 2, ...,m. We also define
vKi and λKi and to be the n eigenvectors and corresponding eigenvalues for K with i = 1, 2, ..., n. Then the
following observations can be made.[

H 0
0 K

] [
vHi
0

]
=

[
HvHi

0

]
= λHi

[
vHi
0

] [
H 0
0 K

] [
0
vKi

]
=

[
0

KvKi

]
= λKi

[
0
vKi

]
So the eigenvalues of M are composed of the eigenvalues of H and the eigenvalues of K. Also if we define
ei to be the column vector consisting of (i − 1) zeros followed by a one and then followed by (n − i) zeros,
then we can use it to find the eigenvalues of N .[

K K
K K

] [
ei
−ei

]
=

[
0
0

]
= 0

[
ei
−ei

] [
K K
K K

] [
vKi
vKi

]
=

[
2KvKi
2KvKi

]
= 2λKi

[
vKi
vKi

]
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Since ei is orthogonal to ej for i 6= j, it is clear that

[
ei
−ei

]
for i = 1, 2, ..., n are n linearly independent

vectors. This means that zero is an eigenvalue for N with a multiplicity of n. The remaining eigenvalues
come from the eigenvalues of K, but as seen above they are doubled. So the eigenvalues of N are 2 times
the eigenvalues of K, as well as the eigenvalue zero with multiplicity n.

Finally, we want to construct the Cholesky of M , chol(M), from chol(H) and chol(K). We let A =
chol(H), so that H = ATA, and let B = chol(K), so that K = BTB. We then define a matrix C that is
given in block notation by

C =

[
A 0
0 B

]
=

[
chol(H) 0

0 chol(K)

]
If we multiply the transpose of C with C, we find that it equals

CTC =

[
AT 0
0 BT

] [
A 0
0 B

]
=

[
ATA 0

0 BTB

]
=

[
H 0
0 K

]
= M

So, M = CTC, which is the Cholesky factorization. Thus, chol(M) = C, where C was defined above in
terms of the chol(H) and chol(K).

28)

P =
[
w1 w2 u

]  1 0 −1
0 1 1
−1 1 0

w1

w2

u

 = w2
1 + w2

2 − 2uw1 + 2uw2

The eigenvalues of the middle matrix, denoted A, are λ1 = 1, λ2 = 2, and λ3 = −1, and their corresponding
normalized eigenvectors are

v1 =
1√
2

1
1
0

 v2 =
1√
3

 1
−1
−1

 v3 =
1√
6

 1
−1
2


A can be written in eigen decomposed form, A = QΛQT , where

Q =

v1 v2 v3

 Λ =

1 0 0
0 2 0
0 0 −1


So, P = yAyT , where y is defined to be y =

[
w1 w2 u

]
. Then, P = yAyT = yQΛQT yT . Letting

x = QT yT =
[
x1 x2 x3

]T
, P = xTΛx = λ1x

2
1 + λ2x

2
2 + λ2x

2
3. Then, x is found as followsx1

x2

x3

 =

1/
√

2 1/
√

2 0
1/
√

3 −1/
√

3 −1/
√

3

1/
√

6 −1/
√

6 2/
√

6

w1

w2

u

 =


w1+w2√

2
w1−w2−u√

3
w1−w2+2u√

6


So P = xTΛx = 1

(
w1+w2√

2

)2

+2
(
w1−w2−u√

3

)2

−1
(
w1−w2+2u√

6

)2

. The expression on the right can be simplified

considerably.

P = 1

(
w1 + w2√

2

)2

+ 2

(
w1 − w2 − u√

3

)2

− 1

(
w1 − w2 + 2u√

6

)2

=
1

2
(w1 + w2)2 +

2

3

[
(w1 − w2)2 − 2(w1 − w2)u+ u2

]
− 1

6

[
(w1 − w2)2 + 4(w1 − w2)u+ 4u2

]
=

1

2
(w1 + w2)2 +

1

2
(w1 − w2)2 − 2(w1 − w2)

=
1

2
(w2

1 + w2
2 + 2w1w2) +

1

2
(w2

1 + w2
2 − 2w1w2)− 2w1u+ 2w2u

= w2
1 + w2

2 − 2uw1 + 2uw2

This agrees with the original given equation.
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2.1: 5, 6, 7, 8

5) In the case of four identical springs connecting three identical masses together and to the fixed top and
bottom, the matrix K relating the displacements of the masses, u, to the forces on the masses, f , with the
equation Ku = f , is actually the 3 × 3 special K matrix times the spring constant, c. The force on each
mass is identical since it is simply equal to mg. Note that the convention here is to take both displacements
and forces in the downward direction to be positive. From the derivation of K in the fixed-fixed case it was
found that K = ACAT , where in this case C = cI, and A along with the other matrices are listed below.

K = c

 2 −1 0
−1 2 −1
0 −1 2

 A =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 C =


c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

 f = mg

1
1
1


The tension in the springs is given by w = CAu = CA(K−1f).

CA = c


1 0 0
−1 1 0
0 −1 1
0 0 −1

 K−1 =
1

4c

3 2 1
2 4 2
1 2 3

 CAK−1f =
1

4


3 2 1
−1 2 1
−1 −2 1
−1 −2 −3

mg
1

1
1

 =
mg

4


6
2
−2
−6


So, the reaction force at the top (where pointing downward is positive) is Rt = −w1 = − 3

2mg. The reaction
force at the bottom (where again pointing downward is positive) is Rb = w4 = − 3

2mg. Both reaction forces
are negative meaning they are both pointing upward, to counteract the force of gravity pointing downward.
Also, notice that the sum of the reaction forces Rt+Rb = 3mg, which is to be expected because the reaction
forces must exactly balance out the force of gravity on the three masses.

6) Now, in the fixed-free case with three equal masses and three springs, the first and third springs have
spring constant c1 = c3 = 1, but the second spring constant, c2, differs. The matrix K in Ku = f =[
1 1 1

]T
is given by the following equation

K = ATCA =

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3

 =

1 + c2 −c2 0
−c2 1 + c2 −1

0 −1 1


For c2 = 10:

K =

 11 −10 0
−10 11 −1

0 −1 1

 u = K−1f =

3.0
3.2
4.2


For c2 = 100:

K =

 101 −100 0
−100 101 −1

0 −1 1

 u = K−1f =

3.00
3.02
4.02


7) In the fixed-fixed case with three equal masses and originally four equal springs with spring constant
equal to 1, we now weaken spring 2 so that c2 → 0. Now, the K matrix becomes

K =

c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3 + c4

 =

1 0 0
0 1 −1
0 −1 2


This matrix is still invertible because its determinant is 1. Solving Ku = f =

[
1 1 1

]T
, we get u =[

1 3 2
]T

. To explain this answer physically, it is important to realize that by weaken spring 2, it splits
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the problem into two decoupled problem. One problem is mass 1 hanging freely off spring 1. In this problem,
we expect for the displacement to be u1 = 1 because there is a force of 1 on the mass connected to a spring
with spring constant equal to 1. The second problem is a free-fixed problem with two identical masses and
two identical spring, but the problem is upside compared to the typical fixed-free spring-mass problem. So,
when u2 = 3 and u3 = 2, it means that spring 4 is compressed by 2 by the two masses above it and spring
3 is compressed by 1 by the one mass above it, which makes sense physically.

8) With one free-free spring, the extension in the spring is e = u2 − u1. The tension is proportional
to the extension with the constant of proportionality, c, which is the spring constant. So, the tension
w = c

[
−1 1

]
u. Then the tension is related to two forces at the ends of the spring, f ti for the force at the

top and f bi for the force on bottom, by f ti = −w and f bi = w. So,

f =

[
f ti
f bi

]
=

[
−1
1

]
w = c

[
−1
1

] [
−1 1

]
u = c

[
1 −1
−1 1

]
u

Kelem,iu = f where Kelem,i = ci

[
1 −1
−1 1

]
The notation used on the bottom is to distinguish between the various forces when assembling multiple
element matrices, Kelem,i, into a bigger matrix K for the whole system. The superscript denotes whether
the force is on top of the spring, t, or on the bottom of the spring, b. The subscript is supposed to be a
number to distinguish which element matrix the forces are meant for. Also, as an example, if two springs,
spring 1 and spring 2, are attached to the same mass with spring 1 above spring 2, then from a free-body
diagram on the mass it can be seen that f b1 + f t2 = fm, where fm is the total force on the mass.

(a) The element matrices can be assembled to find Kfree-free for the free-free three-mass, two-spring (spring
2 and spring 3) problem.[

f t2
f b2

]
= c2

[
1 −1
−1 1

] [
u1

u2

]
expanded−−−−−−→

f t2f b2
0

 =

 c2 −c2 0
−c2 c2 0

0 0 0

u1

u2

u3


[
f t3
f b3

]
= c3

[
1 −1
−1 1

] [
u2

u3

]
expanded−−−−−−→

 0
f t3
f b3

 =

0 0 0
0 c3 −c3
0 −c3 c3

u1

u2

u3


Summing the two equations:

 f t2
f b2 + f t3
f b3

 =

f1

f2

f3

 =

 c2 −c2 0
−c2 (c2 + c3) −c3

0 −c3 c3


︸ ︷︷ ︸

Kfree-free

u1

u2

u3

 (1)

(b) Now, an element matrix for spring 1 can be adjusted and added to Kfree-free to get Kfixed-free, which is
the matrix for the fixed-free three-mass, three-spring problem.

[
f t1
f b1

]
= c1

[
1 −1
−1 1

] [
0
u1

]
expanded−−−−−−→


f t1
f b1
0
0

 =


c1 −c1 0 0
−c1 c1 0 0

0 0 0 0
0 0 0 0




0
u1

u2

u3

 simplified−−−−−−→

f b10
0

 =

c1 0 0
0 0 0
0 0 0

u1

u2

u3


Adding this equation to equation 1 givesf b1 + f t2

f b2 + f t3
f b3

 =

f1

f2

f3

 =

(c1 + c2) −c2 0
−c2 (c2 + c3) −c3

0 −c3 c3


︸ ︷︷ ︸

Kfixed-free

u1

u2

u3

 (2)

where this time f1 has a different equation because adding spring 1 changes the free-body diagram of mass
1. Looking at the free-body diagram it can be seen that f1 = f b1 + f t2 is consistent with balancing the forces
on mass 1.
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(c) Finally, an element matrix for spring 4 can be adjusted and added to Kfixed-free to get Kfixed-fixed, which
is the matrix for the fixed-fixed three-mass, four-spring problem.

[
f t4
f b4

]
= c4

[
1 −1
−1 1

] [
u3

0

]
expanded−−−−−−→


0
0
f t4
f b4

 =


0 0 0 0
0 0 0 0
0 0 c4 −c4
0 0 −c4 c4



u1

u2

u3

0

 simplified−−−−−−→

 0
0
f t4

 =

0 0 0
0 0 0
0 0 c4

u1

u2

u3


Adding this equation to equation 2 givesf b1 + f t2

f b2 + f t3
f b3 + f t4

 =

f1

f2

f3

 =

(c1 + c2) −c2 0
−c2 (c2 + c3) −c3

0 −c3 (c3 + c4)


︸ ︷︷ ︸

Kfixed-fixed

u1

u2

u3

 (3)

and again f3 has a different equation because adding spring 3 changes the free-body diagram of mass 3.
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2.2: 5, 6, 8

5)

du

dt
=

 0 c −b
−c 0 a
b −a 0

u
(a) ||u(1)||2 = u2

1 + u2
2 + u2

3, and the derivative of ||u(t)||2 with respect to time is 2u1u
′
1 + 2u2u

′
2 + 2u3u

′
3.

This can be simplified as follows.

d

dt
||u(t)||2 = 2u1(cu2 − bu3) + 2u2(au3 − cu1) + 2u3(bu1 − au2)

= 2cu1u2 − 2bu1u3 + 2au2u3 − 2cu1u2 + 2bu1u3 − 2au2u3 = 0

Thus ||u(t)||2 = ||u(0)||2.

(b) Q = eAt is an orthogonal matrix, where A is the matrix above. It can also be seen by studying the

matrix that A is a skew-symmetric matrix, or AT = −A. It can be shown that QT = e−At, and thus
QTQ = e−AteAt = I, satisfying the property for an orthogonal (actually orthonormal) matrix. The proof
below makes use of the Taylor series expansion of eAt about t = 0.

Q = eAt = I +At+
1

2!
(At)2 +

1

3!
(At)3 + ...

QT =

[
I +At+

1

2!
(At)2 +

1

3!
(At)3 + ...

]T
= I +AT t+

1

2!
(AT t)2 +

1

3!
(AT t)3 + ...

= I + (−At) +
1

2!
(−At)2 +

1

3!
(−At)3 + ... = e−At

6) The trapezoidal rule for u′ = Au is given by

(I − ∆t

2
A)Un+1 = (I +

∆t

2
A)Un

If AT = −A, then the trapezoidal rule will conserve the energy ||u||2. This can be proven by showing that

||Un+1||2 = ||Un||2.

(I − ∆t

2
A)Un+1 = (I +

∆t

2
A)Un

Un+1 − Un =
∆t

2
A(Un+1 + Un)

(UTn+1 + UTn )(Un+1 − Un) = (UTn+1 + UTn )
∆t

2
A(Un+1 + Un)

UTn+1Un+1 + UTn+1Un − UTn Un+1 − UTn Un =
∆t

2

[
(Un+1 + Un)TA(Un+1 + Un)

]
||Un+1||2 − ||Un||2 =

∆t

2
vTAv

where we let v = (Un+1 + Un) and UTn+1Un was canceled by UTn Un+1 since they are both equal scalars
and the order of the inner product does not matter. Likewise, vTAv is a scalar and thus it is equal to its
transpose (vTAv)T = vTAT v. However, since AT = −A, this means that vTAv = −vTAv and the only way
that equality can be satisfied is if vTAv = 0. Thus,

||Un+1||2 − ||Un||2 =
∆t

2
vTAv = 0

||Un+1||2 = ||Un||2
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8) The Forward and Backward Euler are given by

Forward Euler Backward Euler

Un+1 = Un + hVn Un+1 = Un + hVn+1

Vn+1 = Vn − hUn Vn+1 = Vn − hUn+1

Forward Euler multiplies the energy by (1 + h2) at every step.

U2
n+1 + V 2

n+1 = (Un + hVn)2 + (Vn − hUn)2 = U2
n + 2hUnVn + h2V 2

n + V 2
n − 2hUnVn + h2U2

n

= (1 + h2)U2
n + (1 + h2)V 2

n = (1 + h2)(U2
n + V 2

n )

Backward Euler divides the energy by (1 + h2) at every step. First, we rewrite the Backward Euler as
Un+1 − hVn+1 = Un and Vn+1 + hUn+1 = Vn. Then, we sum U2

n and V 2
n to find

U2
n + V 2

n = (Un+1 − hVn+1)2 + (Vn+1 + hUn+1)2

U2
n + V 2

n = U2
n+1 − 2hUn+1Vn+1 + h2V 2

n+1 + V 2
n+1 + 2hUn+1Vn+1 + h2U2

n+1

U2
n + V 2

n = (1 + h2)U2
n+1 + (1 + h2)V 2

n+1

U2
n + V 2

n = (1 + h2)(U2
n+1 + V 2

n+1)

U2
n+1 + V 2

n+1 =
1

1 + h2
(U2

n + V 2
n )

We can see what the gain in energy will be after 32 steps, for example, with h = 2π
32 : (1 + h2)32 ≈ 3.355.

It is interesting to see whether Euler converges, so we take the limit of y = (1 + h2)
2π
h as h→ 0.

lim
h→0

(1 + h2)
2π
h = lim

h→0
y = lim

h→0
eln y = exp

[
lim
h→0

ln y

]
= exp

[
lim
h→0

2π

h
ln(1 + h2)

]
= exp

[
2π lim

h→0

d
dh ln(1 + h2)

d
dhh

]
= exp

[
2π lim

h→0

2h

1 + h2

]
= e0 = 1

Since the limit equals 1, it indicates that Euler does converge, albeit slowly.
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Areg Hayrapetian (#53) Problem Set #3 18.085

MATLAB Assignment

In this problem, 100 identical masses are connected by identical springs with spring constant c = 1. Two
boundary conditions are considered: one is the fixed-fixed boundary condition, in which the top and bottom
masses are attached with springs to fixed supports; the other is the fixed-free boundary condition, in which
only the top mass is attached with a spring to a fixed support and the bottom mass is hanging freely. The
force on each mass is taken to have a magnitude of 0.01. MATLAB was used to generate the solutions to
these problems and graph the displacements. The code used is displayed below in Listing 1. The plot of the
displacement for the fixed-fixed case can be seen in Figure 1. The plot of the displacement for the fixed-free
case can be seen in Figure 2.

Listing 1: MATLAB Code to solve spring-mass system for both boundary conditions and plot displacements.

% Prepare necessary matr ices f o r system under both boundary cond i t i on s
K = KTBC( ’K’ , 100 , 1 ) ; % Create sparse K matrix f o r f i x ed−f i x e d case
H = K; H(100 , 100) = 1 ; % Create sparse H matrix f o r f i x ed−f r e e case
f = 0 .01 * ones (100 , 1 ) ; % Create f o r c e column vec to r

% So lve system Ku = f f o r both boundary cond i t i on s
u1 = K\ f ; % Solve d isp lacements , u1 , f o r f i x ed−f i x e d case
u2 = H\ f ; % Solve d isp lacements , u2 , f o r f i x ed−f r e e case

% Plo t r e s u l t s
f igure ( 1 ) ;
plot ( u1 , ’+ ’ ) ; % Plot r e s u l t s f o r f i x ed−f i x e d case
xlabel ( ’ Mass Number ’ ) ;
ylabel ( ’ Displacement ’ ) ;
t i t l e ( ’ Fixed−Fixed Case ’ ) ;

f igure ( 2 ) ;
plot ( u2 , ’+ ’ ) ; % Plot r e s u l t s f o r f i x ed−f r e e case
xlabel ( ’ Mass Number ’ ) ;
ylabel ( ’ Displacement ’ ) ;
t i t l e ( ’ Fixed−Free Case ’ ) ;
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Areg Hayrapetian (#53) Problem Set #3 18.085
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Figure 1: Plot of mass displacement for spring-mass system with a fixed-fixed boundary condition.
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Figure 2: Plot of mass displacement for spring-mass system with a fixed-free boundary condition.
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