18.075 Problem set 2

Andres Rios

Problem 1. Part a. We want to find the value of i^{2i} . For this we use the fact that

$$i = 0 + i1 = \cos(\pi/2) + i\sin(\pi/2) = e^{i\pi/2}$$

So we have that

$$i^{2i} = \left(e^{i\pi/2}\right)^{2i} = e^{i^2\pi} = e^{-\pi}$$

Therefore, the value of i^{2i} is $e^{-\pi}$.

Part b. We want to find the roots of

$$(z+1)^4 = (z^2 - 1)^4$$

We start by multiplying the left side by 1 in the polar form $e^{2\pi ni}$ and solving the equation

$$e^{2\pi ni}(z+1)^4 = (z^2 - 1)^4$$

$$e^{2\pi ni/4}(z+1) = (z^2 - 1)$$

$$e^{in\pi/2}(z+1) = (z-1)(z+1)$$

$$e^{in\pi/2} = (z-1)$$

$$z = e^{in\pi/2} + 1$$

Note that we assumed $z \neq -1$. This gives us four distinct roots

$$z = e^{in\pi/2} + 1$$
 for $n = 0, 1, 2, 3$

The value z=-1 also solves the equation, so we now have 5 roots. Although this is a polynomial of degree 8, some of its roots are repeated, so there are only 5 distinct roots. All the roots in cartesian form are the following

$$z = 2, 1+i, 0, 1-i, -1$$

Problem 2. First we want to find the real and imaginary parts of e^{iz} , where z = x + iy. Expanding this we have

$$e^{iz} = e^{ix+i^2y} = e^{ix}e^{-y} = (\cos(x) + i\sin(x))e^{-y} = e^{-y}\cos(x) + ie^{-y}\sin(x)$$

Therefore, the real and imaginary parts are

$$\operatorname{Re}(e^{iz}) = e^{-y}\cos(x)$$
 $\operatorname{Im}(e^{iz}) = e^{-y}\sin(x)$

Now we want to find the real and imaginary parts of $\cos(z)$. For this we use the result from the previous calculation and the fact that $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$. Computing this expression we get

$$\cos(z) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) = \frac{1}{2} \left(e^{-y} \cos(x) + i e^{-y} \sin(x) + e^{y} \cos(-x) + i e^{y} \sin(-x) \right)$$

So the real and imaginary parts are

$$Re(\cos(z)) = \frac{1}{2}\cos(x)(e^{-y} + e^y)$$
 $Im(\cos(z)) = \frac{1}{2}\sin(x)(e^{-y} - e^y)$

Finally, we want to find the values for which the real part of e^{iz} is equal to $\cos(z)$.

$$e^{-y}\cos(x) = \frac{1}{2}\cos(x)(e^{-y} + e^y) + i\frac{1}{2}\sin(x)(e^{-y} - e^y)$$

Note that the left side of the equation is real, so the imaginary part on the right must be zero. Also, the real part must be equal so $\frac{1}{2}(e^{-y}+e^y)=e^{-y}$. Both of these conditions are satisfied only when y=0. Therefore, the real part of e^{iz} is equal to $\cos(z)$ only when z is real.

onot complete

Because the statement of the problem was slightly ambiguous I will also check for what values of z the real part of e^{iz} is equal to the real part of $\cos(z)$. In this case we have

$$e^{-y}\cos(x) = \frac{1}{2}\cos(x)(e^{-y} + e^{y})$$

$$e^{-y} = \frac{1}{2}(e^{-y} + e^{y})$$

$$e^{-y} = e^{y}$$

$$-y = y$$

So this is satisfied when y = 0. Note that we ignored the case when $\cos(x) = 0$ which also solves the equation. Therefore, the real part of e^{ix} is equal to

2

cosx and sinx cannot both be 0. Hence either $e^{y} = \frac{1}{2}(e^{y} + e^{y})$ or $e^{y} = e^{y}$. In both cases it implies y = 0

the real part of $\cos(z)$ only when z is real or when z = (2n - 1)x/2 + iy for integer n and arbitrary y.

Problem 3. We want to find the values of a for which the function $u=xy^2+ax^3$ is the real part of an analytic function. The partial derivatives of this function are

$$\begin{aligned} \frac{\partial u}{\partial x} &= y^2 + 3ax^2 & \frac{\partial^2 u}{\partial x^2} &= 6ax \\ \frac{\partial u}{\partial y} &= 2xy & \frac{\partial^2 u}{\partial y^2} &= 2x \end{aligned}$$

From class we know that the real part of an analytic function must satisfy the Laplace equation. So we find the value of a such that u satisfies such equation.

$$\nabla^{2}u = 0$$
$$\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} = 0$$
$$6ax + 2x = 0$$
$$x = -\frac{1}{3}$$

Therefore, for u to be the real part of an analytic function then $a = -\frac{1}{3}$.

Now we want to find the imaginary part v of this analytic function. We do this by using the Cauchy-Riemann equations. We start by doing the following

$$\begin{split} \frac{\partial v}{\partial y} &= \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} &= y^2 - x^2 \\ v &= \int (y^2 - x^2) dy + g(x) \\ &= \frac{y^3}{3} - x^2 y + g(x) \end{split}$$

where g is some function of x. To find this function we use the other equation

$$-\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}$$
$$2xy - \frac{\partial g}{\partial x} = 2xy$$
$$\frac{\partial g}{\partial x} = 0$$
$$g = \int 0dx + c$$
$$= c$$

where c is an arbitrary constant. Therefore, the imaginary part of this analytic function is

$$v = \frac{y^3}{3} - x^2 y + c$$

So the complete analytic function is

$$f(x,y) = xy^2 - \frac{1}{3}x^3 + i\frac{y^3}{3} - ix^2y + ic = -\frac{1}{3}(x+iz)^3 + ic$$
$$f(z) = -\frac{1}{3}z^3 + ic$$