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2. Modeling by first order linear ODEs

2.1. The savings account model. Modeling a savings account gives
a good way to visualize the significance of many of the features of a
general first order linear ordinary differential equation.

Write x(t) for the number of dollars in the account at time t. It
accrues interest at an interest rate I. This means that at the end of an
interest period (say ∆t years—perhaps ∆t = 1/12, or ∆t = 1/365) the
bank adds I · x(t) ·∆t dollars to your account:

x(t+ ∆t) = x(t) + Ix(t)∆t .

I has units (years)−1. Unlike bankers, mathematicians like to take
things to the limit: rewrite our equation as

x(t+ ∆t)− x(t)

∆t
= Ix(t) ,

and suppose that the interest period is made to get smaller and smaller.
In the limit as ∆t→ 0, we get

ẋ = Ix

—a differential equation.

In this computation, there was no assumption that the interest rate
was constant in time; it could well be a function of time, I(t). In fact
it could have been a function of both time and the existing balance,
I(x, t). Banks often do make such a dependence—you get a better in-
terest rate if you have a bigger bank account. If x is involved, however,
the equation is no longer “linear,” and we will not consider that case
further here.

Now suppose we make contributions to this savings account. We’ll
record this by giving the rate of savings, q. This rate has units dollars
per year. Later we will find ways to model this rate even if you make
lump sum contributions (or withdrawals), but for now suppose that
the rate is continuous: perhaps my employer deposits my salary at a
constant rate throughout the year. Over a small time span between t
and t + ∆t, the rate q(t) doesn’t change much, so the addition to the
account is close to q(t)∆t. This payment also adds to your account,
so, when we divide by ∆t and take the limit, we get

ẋ = Ix+ q.

Once again, your rate of savings may not be constant in time; we might
have a function q(t). Also, you may withdraw money from the bank, at
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some rate measured in dollars per year; this will contribute a negative
term to q(t), and exert a downward pressure on your bank account.

What we have, then, is the general first order linear ODE:

(1) ẋ− I(t)x = q(t).

2.2. Linear insulation. Here is another example of a linear ODE. The
linear model here is not as precise as in the bank account example.

A cooler insulates my lunchtime rootbeer against the warmth of the
day, but ultimately heat penetrates. Let’s see how you might come up
with a mathematical model for this process. You can jump right to
(2) if you want, but I would like to spend a minute talking about how
one might get there, so that you can carry out the analogous process
to model other situations.

The first thing to do is to identify relevant parameters and give
them names. Let’s write t for the time variable (measured in hours
after noon, say), x(t) for the temperature inside the cooler (measured
in degrees centigrade, say) and y(t) for the temperature outside (also
in centigrade).

Let’s assume (a) that the insulating properties of the cooler don’t
change over time—we’re not going to watch this process for so long that
the aging of the cooler itself becomes important! These insulating prop-
erties probably do depend upon the inside and outside temperatures
themselves. Insulation affects the rate of change of the temperature:
the rate of change at time t of temperature inside depends upon the
temperatures inside and outside at time t. This gives us a first order
differential equation of the form

ẋ = F (x, y)

Time for the next simplifying assumption: (b) that this rate of
change depends only on the difference y−x between the temperatures,
and not on the temperatures themselves. This means that

ẋ = f(y − x)

for some function f of one variable. If the temperature inside the cooler
equals the temperature outside, we expect no change. This means that
f(0) = 0.

Now, any reasonable function has a “tangent line approximation,”
and since f(0) = 0 we have

f(z) ' kz .
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When |z| is fairly small, f(z) is fairly close to kz. (From calculus you
know that k = f ′(0), but we won’t use that here.) When we replace
f(y−x) by k(y−x) in the differential equation, we are “linearizing”
the equation. We get the ODE

ẋ = k(y − x) ,

which is a linear equation (first order, inhomogeneous, constant coef-
ficient). The new assumption we are making, in justifying this final
simplification, is (c) that we will only use the equation when z = y−x
is reasonably small—small enough so that the tangent line approxima-
tion is reasonably good.

We can write this equation as

(2) ẋ+ kx = ky.

The system—the cooler—is represented by the left hand side, and
the input signal—the outside temperature—is represented by the right
hand side. This is Newton’s law of cooling.

The constant k is the coupling constant mediating between the
two temperatures. It will be large if the insulation is poor, and small
if it’s good. If the insulation is perfect, then k = 0. The factor of k
on the right might seem odd, but it you can see that it is forced on us
by checking units: the left hand side is measured in degrees per hour,
so k is measured in units of (hours)−1. It is the same whether we use
Fahrenheit or Celsius or Kelvin.

We can see some general features of insulating behavior from this
equation. For example, the times at which the inside and outside tem-
peratures coincide are the times at which the inside temperature is at
a critical point:

(3) ẋ(t1) = 0 exactly when x(t1) = y(t1).

2.3. System, signal, system response. A first order linear ODE is
in standard form when it’s written as

(4) ẋ+ p(t)x = q(t).

In the bank account example, p(t) = −I(t); in the cooler example,
p(t) = k. This way of writing it reflects a useful “systems and signals”
perspective on differential equations, one which you should develop.

There are three parts to this language: the input signal, the system,
and the output signal.
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In the bank example, the input signal is the function given by your
rate of deposit and withdrawal; the system is the bank itself; and the
output signal is the balance in your account.

In the cooler example, the input signal is the ambient temperature;
the system is the cooler; and the output signal is the temperature inside
the cooler.

The left hand side of (4) describes the system—the bank, or the
cooler—as it operates on the output signal. Operating without outside
influence (that is, without deposits or withdrawals, or with ambient
temperature zero), the system is described by the homogeneous linear
equation

ẋ+ p(t)x = 0.

The right hand side of (4) describes the outside influences. The sys-
tem is being “driven” by deposits and withdrawals in the bank model,
and by the external temperature in the cooler model.

Notice that the right hand side of (4) may not be precisely the input
signal! In the bank example it is; but in the cooler example it is k
times the input signal.

The standard form puts the system as it operates on the input signal
on the left, and an expression capturing the input signal on the right.

This way of thinking takes some getting used to. After all, in these
terms the ODE (4) says: the system response x determines the input
signal (namely, the input signal equals ẋ+ p(t)x). The ODE (or more
properly the differential operator) that represents the system takes the
system response and gives you back the input signal (or something
built from it—the reverse of what you might have expected. But that
is the way it works; the equation gives you conditions on x which make
it a response of the system. In a way, the whole objective of solving an
ODE is to “invert the system” (or the operator that represents it).

For more detail on this perspective, see Sections 8, 15 and 28.

We might as well mention some other bits of terminology. In the
equation (4), the function p(t) is a coefficient of the equation (the only
one in this instance—higher order linear equations have more), and the
equation is said to have “constant coefficients” if p(t) is constant. In
different but equivalent terminology, if p(t) is a constant then we have
a linear time-invariant, or LTI, system.


