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1. Notation and language

1.1. Dependent and independent variables. Most of what we do
will involve ordinary differential equations. This means that we will
have only one independent variable. We may have several quantities
depending upon that one variable, and we may wish to represent them
together as a vector-valued function.

Differential equations arise from many sources, and the independent
variable can signify many different things. Nonetheless, very often it
represents time, and the dependent variable is some dynamical quantity
which depends upon time. For this reason, in these notes we will
pretty systematically use t for the independent variable and x for the
dependent variable.

Often we will write simply x, to denote the entire function. The
symbols x and x(t) are synonymous, when t is regarded as a variable.

We generally denote the derivative with respect to t by a dot:

ẋ =
dx

dt
,

and reserve the prime for differentiation with respect to a spatial vari-
able. Similarly,

ẍ =
d2x

dt2
.

1.2. Equations and Parametrizations. In analytic geometry one
learns how to pass back and forth between a description of a set by
means of an equation and by means of a parametrization.

For example, the unit circle, that is, the circle with radius 1 and
center at the origin, is defined by the equation

x2 + y2 = 1 .

A solution of this equation is a value of (x, y) which satisfies the equa-
tion; the set of solutions of this equation is the unit circle.

This solution set is the same as the set parametrized by

x = cos θ , y = sin θ , 0 ≤ θ < 2π .

The set of solutions of the equation is the set of values of the parametriza-
tion. The angle θ is the parameter which specifies a solution.

An equation is a criterion, by which one can decide whether a
point lies in the set or not. (2, 0) does not lie on the circle, because it
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doesn’t satisfy the equation, but (1, 0) does, because it does satisfy the
equation.

A parametrization is an enumeration, a listing, of all the elements
of the set. Usually we try to list every element only once. Sometimes
we only succeed in picking out some of the elements of the set; for
example

y =
√

1− x2 , −1 ≤ x ≤ 1

picks out the upper semicircle. For emphasis we may say that some
enumeration gives a complete parametrization if every element of the
set in question is named; for example

y =
√

1− x2 , −1 ≤ x ≤ 1 , or y = −
√

1− x2 , −1 < x < 1 ,

is a complete parametrization of the unit circle, different from the one
given above in terms of cosine and sine.

Usually the process of “solving” and equation amounts to finding a
parametrization for the set defined by the equation. You could call a
parametrization of the solution set of an equation the “general solution”
of the equation. This is the language used in Differential Equations.

1.3. Parametrizing the set of solutions of a differential equa-
tion. A differential equation is a stated relationship between a function
and its derivatives. A solution is a function satisfying this relationship.
(We’ll amend this slightly at the end of this section.)

For a very simple example, consider the differential equation

ẍ = 0 .

A solution is a function which satisfies the equation. It’s easy to write
down many such functions: any function whose graph is a straight line
satisfies this ODE.

We can enumerate all such functions: they are

x(t) = mt+ b

form and b arbitrary real constants. This expression gives a parametriza-
tion of the set of solutions of ẍ = 0. The constants m and b are the
parameters. In our parametrization of the circle we could choose θ ar-
bitrarily, and analogously now we can choose m and b arbitrarily; for
any choice, the function mt+ b is a solution.

Warning: If we fix m and b, say m = 1, b = 2, we have a specific line
in the (t, x) plane, with equation x = t + 2. One can parametrize this
line easily enough; for example t itself serves as a parameter, so the
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points (t, t+2) run through the points on the line as t runs over all real
numbers. This is an entirely different issue from the parametrization
of solutions of ẍ = 0. Be sure you understand this point.

1.4. Solutions of ODEs. The basic existence and uniqueness theo-
rem for ODEs is the following. Suppose that f(t, x) is continuous in
the vicinity of a point (a, b). Then there exists a solution to ẋ = f(t, x)
defined in some interval containing a, and it’s unique provided ∂f/∂x
exists.

Here an interval is a collection I of real numbers such that if a and
b are in I then so is every number between a and b.

There are certainly subtleties here. But some things are obvious.
The “uniqueness” part of this theorem says that knowing x(t) for one
value t = a is enough to pick out a single solution: there’s supposed
to be only one solution with a given “initial value.” Well, look at
the ODE ẋ = 1/t. The solutions can be found by simply integrating:
x = ln |t| + c. This formula makes it look as though the solution with
x(1) = 0 is x = ln |t|. But in fact there is no reason to prefer this
to the following function, which is also a solution to this initial value
problem, for any value of c:

x(t) =

{
ln t for t > 0 ,
ln(−t) + c for t < 0 .

The gap at t = 0 means that the values of x(t) for t > 0 have no power
to determine the values for t < 0.

For this reason it’s best to declare that a solution to an ODE must be
defined on an entire interval. The graph has to be a connected curve.

Thus it is more proper to say that the solutions to ẋ = 1/t are

ln(t) + c for t > 0

and
ln(−t) + c for t < 0 .

The single formula ln |t| + c actually describes two solutions for each
value of c, one defined for t > 0 and the other for t < 0. The solution
with x(1) = 0 is x(t) = ln t, with domain of definition the interval
consisting of the positive real numbers.


