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Abstract: Although perfectly matched layers (PMLs) have been widely
used to truncate numerical simulations of electromagnetism and other wave
equations, we point out important cases in which a PML fails to be reflec-
tionless even in the limit of infinite resolution. In particular, the underlying
coordinate-stretching idea behind PML breaks down in photonic crystals
and in other structures where the material is not an analytic function in the
direction perpendicular to the boundary, leading to substantial reflections.
The alternative is an adiabatic absorber, in which reflections are made
negligible by gradually increasing the material absorption at the boundaries,
similar to a common strategy to combat discretization reflections in PMLs.
We demonstrate the fundamental connection between such reflections and
the smoothness of the absorption profile via coupled-mode theory, and show
how to obtain higher-order and even exponential vanishing of the reflection
with absorber thickness (although further work remains in optimizing the
constant factor).
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1. Introduction

A perfectly matched layer (PML) is an artificial absorbing medium that is commonly used to
truncate computational grids for simulating wave equations (e.g. Maxwell’s equations), and is
designed to have the property that interfaces between the PML and adjacent media are reflec-
tionless in the exact wave equation [1,2]. We describe important cases in which PML fails to be
reflectionless, even in the exact (non-discretized) Maxwell equations, most notably in the case
of periodic media (photonic crystals [3])—contrary to previous suggestions of photonic-crystal
“PML” absorbers [4–8]. In these cases (similar to PML reflections due to discretization er-
ror [2,9]), the remaining approach to reduce reflections is to “turn on” the absorption gradually,
asymptotically approaching an “adiabatic” limit of zero reflections [10] regardless of whether
the medium forms a true PML—here, we provide a deeper understanding of all such adiabiatic
absorbers by showing that the reflection’s dependence on the thickness of the absorbing layer is
determined by the smoothness of the absorption profile, and can be predicted by coupled-mode
theory approximations. For a fixed absorption profile (typically quadratic or cubic in previous
work [2]), the reflection decreases with absorber thickness L proportional to some characteristic
power law determined by the smoothness (e.g. 1/L6 for quadratic absorption). As the absorber
becomes thicker, smoother absorptions become favorable, and we show that it is even possi-
ble to obtain exponential decrease of the reflection with L by new choices of the absorption
profile (although further work remains in optimizing the constant factor). The role of PML
(when it works), compared to ordinary absorbing materials, is to improve the constant factor in
this reflection convergence, rather than the functional form. For homogeneous materials as in
most previous analyses, although some attempts have been made to optimize the PML profile
among various polynomial functions [11–14], a quadratic or cubic profile works so well [2]
that further attempts at optimization are arguably superfluous. On the other hand, for periodic
media—especially when operating in modes with low group velocity—the required absorber
thickness can become so large that the choice of absorption profile becomes critical. We also
discuss the possibility of other optimizations, such as balancing the “transition” reflection from
the absorber interface with the “round-trip” reflection due to the finite absorption, but these
optimizations depend more sensitively on the incident-wave medium.

There are several nearly equivalent formulations of PML. Berenger’s original formulation [1]
split the wave solution into the sum of two new artificial field components. A more common
“UPML” (uniaxial-PML) formulation expresses the PML region as the ordinary wave equation
with a combination of artificial anisotropic absorbing materials [15]. Both of these formulations
were originally derived by laboriously computing the solution for a planewave incident on the
absorber interface at an arbitrary angle and polarization, and then solving for the conditions in
which the reflection is always zero. Both formulations, however, can also be derived by a com-
plex “stretched-coordinate” approach [16–18]—this much simpler and more elegant derivation
of PML reveals its underlying meaning and generalizes more easily to inhomogeneous media,
other wave equations, and other coordinate systems. In particular, the coordinate-stretching ap-
proach derives PML by an analytic continuation of Maxwell’s equations into complex spatial
coordinates, where the oscillating fields become exponentially decaying [16–19]. (This descrip-
tion can then be converted back into a change of materials via a complex coordinate transforma-
tion [18,20].) By viewing PML as an analytic continuation, it can be shown to be reflectionless
even for inhomogeneous media such as in Fig. 1(a) [21]: for a waveguide entering the PML
perpendicularly, complex coordinate stretching is still possible because the material parameters
(and hence Maxwell’s equations) are analytic functions (constants) in that direction. The same

(C) 2008 OSA 21 July 2008 / Vol. 16,  No. 15 / OPTICS EXPRESS  11378
#95834 - $15.00 USD Received 6 May 2008; revised 29 May 2008; accepted 29 May 2008; published 14 Jul 2008



waveguide

PML

PML? waveguide splitter

Fig. 1. (a) PML is still reflectionless for inhomogeneous media such as waveguides that
are homogeneous in the direction perpenendicular to the PML. (b, c) PML is no longer
reflectionless when the dielectric function is discontinuous (non-analytic) in the direction
perpendicular to the PML, as in a photonic crystal (b) or a waveguide entering the PML at
an angle (c).

derivation of PML, however, also immediately points to situations where PML is inapplicable:
in any problem where the material parameters are not described by analytic functions in the di-
rection perpendicular to the boundary, a reflectionless absorber cannot be designed by complex
coordinate stretching. As discussed in more detail below, this means that “PML” is not reflec-
tionless for photonic crystals as in Fig. 1(b) where the dielectric function varies discontinously
in the direction perpendicular to the boundary, or even in cases where a dielectric waveguide
hits the PML obliquely [Fig. 1(c)]. (In fact, even for rare cases in which an oscillating dielectric
function is analytic in the PML direction, we will explain that the analytic-continuation idea
still does not yield a useful PML absorber in the discretized equations.)

Previous suggestions to apply PML to photonic crystals by simply overlapping a “PML”
anisotropic absorber with the periodic dielectric function [4–8] (including a similar suggestion
for integral-equation methods [22]) were therefore not “true” PML media in the sense that the
reflection will not go to zero even in the limit of infinite resolution. In this paper, we will re-
fer to such an absorbing layer as a pseudo-PML (pPML). (In the special case of an effectively
one-dimensional medium where there is only a single propagating mode, such as a single-mode
waveguide surrounded by a complete-bandgapmedium, it is possible to arrange an “impedance-
matched” absorber to approximately cancel that one mode [23], or alternatively to specify
analytical boundary conditions of zero reflection for that one mode [24]. More generally, in
a transfer-matrix or scattering-matrix method where one explicitly computes all propagating
modes and expands the fields in that basis, it is possible to impose analytically reflectionless
boundary conditions [25, 26], but such methods become very expensive in three dimensions.)
These previous authors were nevertheless able to observe small reflections in a pPML only be-
cause they overlapped the pPML with many periods of the crystal and thereby turn on the pPML
very gradually. As we explain below, such absorbing layers are more properly understood as
adiabatic absorbers rather than PML media, and indeed the “PML” property only improves the
constant factor in the long-wavelength limit of an effective homogeneous medium, or in any
case where there are large homogeneous-material regions compared to the wavelength. More-
over, as we describe, the reflections worsen rapidly as the group velocity decreases (e.g., as a
band edge is approached).

Even in the case of a homogeneous medium (or one uniform in the direction perpendicular to
the boundary), where true PML applies, there are well-known numerical reflections due to the
finite discretization [2, 9]. It is sometimes claimed that the solutions for a PML converge expo-
nentially to the solution of the open problem as the PML thickness is increased [27, 28]. This
is true, but only in the limit where the discretization error is negligible. Once the discretization
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reflections dominate, we show in Sec. 4 that the convergence rate with PML thickness depends
on the smoothness of the PML profile in the same way as for any other adiabatic absorber,
and the rate is only polynomial for a fixed polynomial profile. That is, there is a universal re-
lationship between smoothness and reflectivity for all adiabatic absorbers, whether discrete or
continuous and whether PML or non-PML. Other authors have remarked that the numerical re-
flection seems to be dominated by the discontinuity in the profile or its derivatives at the PML
boundary [2], but have not presented a precise analysis of the relationship between convergence
and smoothness.

The following paper is structured as follows. We begin, in Sec. 2, with a very brief review of
the derivation of PML in the simple case of one and two dimensions, and define the key quan-
tities. Then, in Sec. 3, we explain and demonstrate the failure of PML for periodic media, even
in the simplest case of one-dimensional structures where only normal-incident, non-evanescent
waves are present, and even when the dielectric function varies analytically (sinusoidally). In
fact, in this case, pPML may do no better than an ordinary absorbing medium (e.g., a scalar elec-
tric conductivity). Next, in Sec. 4, we analyze the relationship of the reflection to the smooth-
ness of the absorption profile, and show via both 1d and 2d numerical calculations that the
asymptotic behavior is predicted by coupled-mode theory, as well as the effect of group ve-
locity. In Sec. 5, we describe how the coupled-mode understanding of this transition reflection
points the way towards improved absorbing layers—ideally, layers whose reflection decreases
exponentially with thickness (not the case even for true PML with a conventional quadratic
profile, as mentioned above). Finally, we conclude with some remarks about future directions
in Sec. 6.

2. Brief review of PML

Consider Maxwell’s equations in two dimensions (xy) for the TM polarization, in which the
electric field (E) is in the z direction and the magnetic field (H) is in the xy plane, for a current
source Jz and a dielectric function ε(x,y) in natural units (ε0 = μ0 = 1), with time-harmonic
fields (time-dependence∼ e−iωt ) are:

∇×H =
∂Hy

∂x
− ∂Hx

∂y
= −iωεEz (1)

∂Ez

∂y
= iωHx (2)

∂Ez

∂x
= −iωHy (3)

One can now derive a PML absorbing boundary in the x direction, assuming for now that ε is a
function of y only (e.g., the medium is homogeneous, or a waveguide in the x direction, near the
computational cell boundary). In this case, one performs an analytic continuation to complex x
coordinates by the transformation:

∂
∂x

→ 1

1+ i σ(x)
ω

∂
∂x

, (4)

in terms of a PML profile σ(x), which plays the role of a conductivity or absorption strength.
The profile σ(x) can also be a complex function, where the imaginary part corresponds to a real
coordinate stretching and enhances the attenuation of purely evanescent waves [2, 29], but in
this paper we focus on the case of real σ and the absorption of propagating waves. Maxwell’s
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equations then become:

∂Hy

∂x
−

(
1+

iσ
ω

)
∂Hx

∂y
= −iωεEz + σεEz (5)

∂Ez

∂y
= iωHx (6)

∂Ez

∂x
= −iωHy + σHy (7)

Note the σεEz and σHy terms, which have the form of electric and magnetic conductivities,
respectively. The remaining iσ/ω term becomes an integral or convolution in time-domain and
is typically handled by integrating an auxiliary differential Eq. [2], but is trivial in frequency
domain. The extension to PMLs in other directions is straightforward and is not reviewed here.

In a medium independent of x, the wave solutions can be decomposed into normal modes
with x dependence exp(ikxx) and kx > 0 for right-going waves in a right-handed [30] medium
(e.g. planewaves in a homogeneous medium or waveguide modes in a waveguide). The point of
this transformation (4) is that these normal modes are thereby analytically continued to decay-
ing solutions exp[ikxx− kx

ω
∫ x σ(x′)dx′] wherever σ > 0. The 1/ω factor is desirable because,

at least in a homogeneous dispersionless medium, the attenuation factor k x/ω is independent
of frequency (but not of incidence angle).

Outside the PML regions, where σ = 0, the wave equation and thus the solution are un-
changed, and it is only inside the PML (σ > 0) that the oscillating solution becomes exponen-
tially decaying with no reflections (in theory) no matter how fast σ changes, even if σ changes
discontinuously. After a short distance L in the PML, the computational cell can then be trun-
cated (e.g. with Dirichlet boundaries), with an exponentially small round-trip reflection

Rround−trip ∼ e−4 kx
ω

∫ L
0 σ(x′)dx′ , (8)

where we have started the PML at x = 0, and the factor of 4 is because the reflection is propor-
tional to the round-trip (2L) field squared.

In the exact Maxwell equations, the PML could be made arbitrarily thin by making σ very
large, but this is not feasible in practice because, once Maxwell’s equations are discretized (in
a finite-difference or finite-element scheme) the reflectionless property disappears. That is, it
is not meaningful to analytically continue the discretized equations, and thus in the discretized
system there are numerical reflections from the PML boundary that disappear in the limit of
high resolution. To reduce these numerical reflections, most authors suggest that the PML be
turned on gradually, i.e. that σ(x) be a continuous function starting at zero, typically chosen to
grow quadratically or cubically [2].

More precisely, let us define σ(x) in the PML (x ∈ [0,L]) by a shape function s(u) ∈ [0,1]:

σ(x) = σ0 s(x/L) (9)

where the argument of s(u) is a rescaled coordinate u = x/L ∈ [0,1] and σ 0 is an overall am-
plitude set to achieve some theoretical maximum round-trip absorption R 0 for normal-incident
waves in a medium of index n (kx = ωn). Using Eq. (8) for R0, we define:

σ0 =
− lnR0

4Ln
∫ 1

0 s(u′)du′
. (10)

For x < 0, outside the PML, σ = 0, i.e. s(u < 0) = 0. As L is made longer and longer for a
fixed s(u), the PML profile σ turns on more and more gradually [both because s(u) is stretched
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out and because σ0 decreases], and the numerical reflections decrease. Several authors have
suggested s(u) = u2 (quadratic) or s(u) = u3 (cubic) turn-on of the PML, which have discon-
tinuities at u = 0 in the second and third derivatives respectively [2]. In Sec. 4, we show that
there is a simple correspondence between the smoothness of s(u) and the rate of decrease of
absorption with L, as a consequence of the adiabatic theorem and coupled-mode theory. Note
that the smoothness of s(u) is still relevant in a discretized system—with a fixed resolution and
wavelength, as L is increased one samples s(x/L) more and more finely and a discrete version
of the adiabatic theorem applies [31].

In fact, we will see that the same adiabatic theorem and the same rate of decrease apply for
any absorption, whether or not the absorbing material forms a PML. For example, if we only
include σ on the right-hand-side of Eq. (5), and neither on the left-hand-side nor in Eqs. (6)
and (7), it corresponds to an ordinary scalar electric conductivity. As we see in Sec. 3, the
advantage of PML over this ordinary conductivity is not that the reflection decreases faster
with L, but that this decrease is multiplied by a much smaller constant factor (which decreases
with increasing resolution) in the case of PML. This advantage mostly disappears for periodic
media where analytic continuation fails, but the same relationship between the rate of decrease
and the smoothness of s(u) applies.

In general, therefore, we will divide the reflections from PML into two categories: the ex-
ponentially small round-trip reflections (above), and transition reflections from the boundary
between σ �= 0 and σ = 0 (which can arise either from numerical discretization or from other
failures of PML as described in the next section). It is possible to obtain exactly zero reflection
by balancing the round-trip and transition reflections so that they destructively interfere, but
this cancellation can only occur for isolated wavelengths (and incident angles) [12] and hence
is not useful in general. Instead, we will begin by setting the estimated round-trip reflection R 0

to be negligibly small (10−25) and focus on the transition reflection; we return to the question
of balancing round-trip and transition reflections in Sec. 5.

3. Failure of PML

To illustrate the failure of PML in periodic media, we consider a finite-difference frequency-
domain simulation (FDFD, with a second-order–accurateYee grid) [32] of the simplest possible
case: a periodic dielectric function ε(x) in one dimension [so that we only have the E z and Hy

fields in Eqs. (5) and (7)]. Given a point dipole source at some position (outside the absorber),
we then compute the reflection coefficient from a pPML of thickness L as a function of both L
and resolution.

Here, pPML (pseudo-PML) is defined by using Eqs. (5) and (7): exactly the same equa-
tions as for an ordinary PML, but with an inhomogeneous ε function overlapping the “PML”
as in Refs. 4–8. For comparison, we also show a non-PML absorber in which σ is included
only in Eq. (5) but not in Eq. (7), i.e. an ordinary electric conductivity only. We consider
two dielectric functions: vacuum (ε = 1) for comparison, and a periodic dielectric function
ε(x) = 6+5sin(2πx/a) that varies from 1 to 11 with period a. Like all one-dimensional peri-
odic structures, this ε(x) has photonic band gaps that prohibit propagation in certain frequency
ranges [3], but we operate at a vacuum wavelength ≈ a slightly below the first bandgap (at a
wavevector kx = 0.9π/a and vacuum wavelength λ = 0.9597a). The reflection is computed as
the squared amplitude of the reflected Bloch wave, given by the total field minus the incident
Bloch wave (computed by numerically solving for the Bloch waves of the discretized unit cell).
Of course, there are two boundaries, at +x and −x, but we make the latter reflection negligi-
ble by using an absorber of thickness 5L on the left (and verified that further increasing the
left-absorber thickness does not change the result). In this section, we use a quadratic shape
function s(u) = u2 for the absorber profile σ as defined above.
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Fig. 2. Reflection coefficient as a function of discretization resolution for both a uniform
medium and a periodic medium with PML and non-PML absorbing boundaries (insets).
For the periodic medium, PML fails to be reflectionless even in the limit of high resolution,
and does no better than a non-PML absorber. Inset: reflection as a function of absorber
thickness L for fixed resolution ∼ 50pixels/λ : as the absorber becomes thicker and the
absorption is turned on more gradually, reflection goes to zero via the adiabatic theorem;
PML for the uniform medium only improves the constant factor.

The absorber, here, is a pPML because it is not derived by analytic continuation of the di-
electric function, and is instead formed by simply applying the homogeneous-PML equations
on top of the inhomogeneous medium, leading to intrinsic reflections. However, in this case the
periodic ε(x) function is actually analytic in x, so in principle one could have derived a true
PML by using Eq. (5) with the analytically continued dielectric function ε[x + i

ω
∫ x σ(x′)dx′].

Unfortunately, this introduces new problems. Even though the boundary of such a PML would
be reflectionless (in the exact Maxwell equations), the field is exponentially growing rather
than decaying, and truncating the PML to a finite thickness would be impossible without large
reflections from the truncation. The reason is that a propagating Bloch mode generally includes
Fourier components with both positive and negative wavevectors, and the latter analytically
continue to exponential growth. In any case, this possibility is not applicable in the vast majority
of practical periodic structures, which more commonly involve a discontinuous (non-analytic)
ε , so we do not consider analytically continuing ε(x) further here and focus only on the pPML
case.

Figure 2 shows the results of these one-dimensional FDFD simulations, and the difference
between the uniform medium (where PML works) and the periodic medium (where it does not)
is stark. In the uniform medium, the reflection from PML rapidly goes to zero as resolution
is increased (and in fact, goes to zero quadratically with resolution because FDFD’s center-
difference discretization is second-order accurate), whereas the non-PML absorber in the uni-
form medium goes to a constant nonzero reflection (the Fresnel reflection coefficient from the
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exact Maxwell equations). For the periodic medium, both the pPML and non-PML absorbers
behave roughly the same, going to a constant nonzero-reflection in the high-resolution limit:
the pPML is not reflectionless for the exact Maxwell equations.

One way of understanding why pPML is not reflectionless for a periodic medium was de-
scribed in the previous section: the equations with “PML” absorption are no longer derived via
analytic continuation of Maxwell’s equations, and so the fundamental justification for PML
disappears. This has nothing to do with either evanescent waves or glancing-angle waves, nei-
ther of which are present in one dimension, nor is it a numerical reflection from discretization
(since it does not vanish as resolution is increased). Another way of understanding this is that
the propagating waves in a periodic medium are Bloch waves [3], and consist of a superposition
of reflections from all interfaces (all places where ε changes) in the medium—when we absorb
waves reflected from interfaces within the “PML,” we have effectively terminated the period-
icity and hence see reflections from this termination. (Similar but even stronger reflections are
observed if one terminates the periodicity before it enters the absorbing region [23].)

However, the inset of Fig. 2 shows a way in which the reflections can still be made small for
the periodic medium: by increasing the thickness L of the absorbing layer. As L is increased,
we see that the reflections in all four cases (PML and non-PML, uniform and periodic) go to
zero as 1/L6 asymptotically (although the periodic media take longer to attain this asymptotic
power law). The true PML in the uniform medium is only different in that it has a better constant
factor (which depends on resolution). The reason for this, as described in the next section, is
that all transition reflections can be understood via the same coupled-mode mechanism, and the
1/L6 rate is a consequence of the second-derivative discontinuity in s(u) = u 2. This reduction of
reflection with L is adiabatic absorption, distinct from the PML concept, and it is such adiabatic
absorption that one must better understand in order to efficiently truncate periodic media.

4. Smoothness & reflection

In this section, we demonstrate and explain the relationship between the smoothness of the
absorber profile’s shape function s(u) and the dependence of reflection on absorber thickness
L. The basic principle is that, as L increases, the rate of change of the absorption (PML or
otherwise) becomes more and more gradual—as it approaches a perfectly uniform (or perfectly
periodic) limit, there is an adiabatic theorem stating that the reflections must go to zero. Such
an adiabatic theorem is the well-understood mechanism behind gradual waveguide tapers [33],
and adiabatic theorems also hold in periodic media with slowly varying unit cells [10], and
there is also an adiabatic theorem for slowly-varying discretized systems [31]. Moreover, as we
discuss in the next section, the rate at which the adiabatic (zero-reflection) limit is approached
is determined by the smoothness of the transition s(u).

4.1. Numerical results

First, however, let us present the results of numerical experiments using second-order FDFD
discretization for four structures: uniform and periodic media in one and two dimensions
(with continuous and discontinuous ε , respectively). The reflection versus PML/pPML absorber
length L in one dimension is shown for uniform media in Fig. 3 and for a periodic medium (the
same medium as for Fig. 2) in Fig. 4, for a variety of shape functions s(u) = u d for exponents
d ∈ {1,2,3,4,5}. In both cases, there is a striking pattern: the reflection asymptotically follows
a power law 1/L2d+2, which we will explain analytically below in terms of the smoothness of
s(u).

In two dimensions, we looked at the boundary reflection from a point source at the center of
the cell. In this case, defining a single “reflection” coefficient is more difficult because the point
source emits waves at multiple angles. Instead, we look at the convergence of the electric field
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as L is increased, and defined a field convergence factor

|E(L+1)
z (x,y)−E(L)

z (x,y)|2
|E(L)

z (x,y)|2
(11)

in terms of the electric field Ez at a point (x,y) (chosen roughly halfway between the point
source and the absorbing layer) for two PML/pPML thicknesses L and L + 1. This difference
should go to zero as L → ∞, assuming that the reflection goes to zero in this limit (and hence
the field converges to the solution for open boundaries). Indeed, this adiabatic limit is observed
for both the uniform medium (vacuum) in Fig. 5 and for a periodic medium (a square lattice of
width-0.7a square air holes in ε = 12) in Fig. 6. Again, there is a simple power-law relationship
evident in both plots: when s(u) = ud , the field convergence factor goes as 1/L2d+4.

In 1d, we found that the reflection went as 1/L2d+2 for s(u) = ud , and in 2d we found that the
corresponding field convergence factor went as 1/L 2d+4. These two results are mathematically
equivalent, for the following reason. Suppose that the reflection coefficient (for waves at any
angle) goes asymptotically as 1/L2α for some exponent α; it follows that the reflected electric
field goes as 1/Lα , and hence E (L)(x,y) = E(∞)(x,y)+ O(1/Lα). Substituting this expression
into Eq. (11) and expanding in powers of 1/L, one finds that the field convergence factor goes
as 1/L2α+2, exactly the difference of 1/L2 that we observed above. [There is a subtlety in this
derivation: it implicitly assumes that the phase of the O(1/Lα) term, i.e. the reflected phase,
goes to a constant as L → ∞ in order to expand in powers of 1/L. This assumption is confirmed
by our numerical results, but it is also predicted analytically by the coupled-mode theory result
Eq. (13) in the next section.]
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length λ = 0.9597a, just below the first gap) for various shape functions s(u) ranging from
linear [s(u) = u] to quintic [s(u) = u5]. For reference, the corresponding asymptotic power
laws are shown as dashed lines.

4.2. Analysis

The natural way to analyze waves propagating along a medium that is slowly varying in the
propagation direction (say x) is coupled-mode theory (or coupled-wave theory) [10,34]: at each
x, one expands the fields in the basis of the eigenmodes (indexed by �) of a uniform struc-
ture with that cross-section in terms of expansion coefficients c �(x). (The eigenmodes have x-
dependence eiβ�x for some propagation constants β�.) The expansion coefficients c� in this basis
are then determined by a set of ordinary differential equations for dc �/dx coupling the different
modes, where the coupling coefficient is proportional to the rate of change [here, the derivative
s′(x/L)]. In the limit where the structure varies more and more slowly, the solution approaches
an “adiabatic” limit in which the c� are nearly constant (i.e. no scattering between modes).
Although coupled-mode theory was originally developed for media that are slowly varying in
the propagation direction [34], it has been generalized to periodic media with a slowly vary-
ing unit cell [10], in which very similar coupled-mode equations appear. A similar adiabatic
limit has also been derived for slowly varying discrete systems. Using coupled-mode theory,
one can derive a universal relationship between the smoothness of the rate of change [s ′(u)]
and the asymptotic rate of convergence to the adiabatic limit. This relationship, derived below,
analytically predicts the convergence rates of the reflection with absorber length observed in
the previous section.

We omit the derivation of the coupled-mode equations here; their general form is considered
in detail elsewhere [10, 34]. We simply quote the result: in the limit of slow variation (large L),
the equations can be solved to lowest order in 1/L in terms of a simple integral. In particular, if
the structure is smoothly parameterized by a shape function s(x/L) (e.g. the absorption profile
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as given here), then the amplitude cr (corresponding to a reflected power |cr|2) of a reflected
mode is given to lowest-order (for large L) by [10]:

cr(L) =
∫ 1

0
s′(u)

M[s(u)]
Δβ [s(u)]

eiL
∫ u
0 Δβ [s(u′)]du′du. (12)

Here, M is a coupling coefficient depending on the mode overlap between the incident and
reflected field (in the changing part of the structure) and Δβ �= 0 is the difference β i−βr between
the propagation constants of the incident and reflected modes. Both of these are some analytic
functions of the shape s(u). In general, there may be more than one reflected mode, and in
a periodic structure the coefficient even for a single reflected mode is a sum of contributions
of above form from the different Brillouin zones [10], but it suffices to analyze the rate of
convergence of a single such integral with L. The basic reason for the adiabatic limit is that, as
L grows, the phase term oscillates faster and faster and the integral of this oscillating quantity
goes to zero.

There are many standard methods to analyze the asymptotic (large L) properties of such an
integral. In particular, we apply a technique that is commonly used to analyze the convergence
rate of Fourier series: one simply integrates by parts repeatedly until a nonzero boundary term is
obtained [35,36]. Each integration by parts integrates the e iL

∫
Δβ term, dividing the integrand by

iLΔβ (u), and differentiates the s′M/Δβ term. After integrating by parts d times, the boundary
term at u = 0 is zero if the corresponding derivative s (d)(0+) is zero, whereas the boundary
term at u = 1 is always negligible because of the absorption (leading to a complex Δβ and
exponential decay), assuming a small round-trip reflection R 0. The dominant asymptotic term
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is the first (lowest-d) u = 0 boundary term that is nonzero, since all subsequent integrations by
parts have an additional factor of 1/L. [Here, we have assumed that s is a smooth function in
(0,1) so that there are never delta-function contributions from the interior.] The result is the
following asymptotic form for cr(L), independent of the particular details of the geometry or
the modes:

cr(L) = s(d)(0+)
M(0+)
Δβ (0+)

[−iLΔβ (0+)]−d +O(L−(d+1)), (13)

where s(d)(0+) is the first nonzero derivative of s(u) at u = 0+, and integrating by parts d times
yielded a division by (−iLΔβ )d (flipping sign each time). This result corresponds to what is
sometimes called “Darboux’s principle:” the convergence is dominated by the lowest-order
singularity [36], which here is the first discontinuity in the rate of change s ′(u) at u = 0. A
similar result applies, for example, to the convergence rate of a Fourier series: a function that
has a discontinuity in the d-th derivative has a Fourier series whose coefficients c n decrease
asymptotically as 1/n(d+1) [35, 36] (the d + 1 instead of d is due to the fact that our integral
starts with s′).

Equation (13) would seem to imply that the reflection ∼ |c r|2 is O(L−2d), but this is not
the case because there is a hidden 1/L factor in the coupling coefficient M, thanks to the 1/L
dependence of σ0 in Eq. (10). The coupling coefficient M is a matrix element proportional to
the rate of change of the materials [10], which in this case is ∂σ

∂u = s′(u)σ0 ∼ 1/L. Therefore,

the reflection scales as |M|2/L2d = O(L−(2d+2)), exactly corresponding to our numerical results
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above.
Other useful results can be obtained from Eq. (13), and in particular one can show that the

reflections due to nonuniformity worsen in a periodic structure as a flat band edge (β 0,ω0) is
approached [33]. As a quadratic-shaped band-edge ω−ω 0 ∼ (β −β0)2 is approached, the group
velocity vg = dω

dβ scales proportional to β −β0, while the Δβ between the forward and reflected
modes is 2(β − β0) ∼ vg. Also, the coupling coefficient M is proportional to 1/vg because
of the constant-power normalizations of the incident and reflected modes [10, 33]. Hence, by

inspection of Eq. (13), the reflection |cr|2 = O(v−(2d+4)
g ). For example, the reflection is O(v−6

g )
for a linear taper s(u) = u [33]. Because of this unfavorable scaling, an imperfect absorbing
layer such as a pPML is most challenging in periodic structures when operating close to a
band edge where there are slow-light modes (in the same way that other taper transitions are
challenging in this regime [33]).

There is one thing missing from the above analysis, and that is the discretized-space adiabatic
case. In a slowly varying discrete system [i.e, sampling some slow change s n = s(nΔx/L) as L
grows larger], there is still a proof of the adiabatic theorem (c r → 0), but the only published
proof is currently for the lossless case (unitary evolution) [31]. Also, an analogous integral
form of the lowest-order reflection has not been presented, nor has the rate of convergence to
the adiabatic limit been analyzed in the discrete case. So, our prediction of the asympototic
convergence rate is rigorously proven only for the case of the continuous-space wave propa-
gation. However, our numerical results demonstrate that a slowly-changing discretized system
exhibits exactly the same scaling (e.g. in the PML case for uniform media, where the only
reflections are due to discretization). (This seems analogous to the fact that the discretization
error of a discrete Fourier transform converges at the same rate as the decay of the coefficients
of the continuous-space Fourier series [36].) In future work, we hope to further validate our
numerical result for the convergence rate in discretized space with a proper generalization of
the coupled-mode analysis.

5. Towards better absorbers

From the previous section, there is a close relationship between the smoothness of the absorp-
tion profile and the asymptotic convergence rate of the reflections R(L) as a function of absorber
thickness L: if the profile s(u) has a discontinuity in the d-th derivative (e.g. for s = u d), then
the reflection coefficient goes as 1/L2d+2 for a fixed round-trip reflection. This result raises sev-
eral interesting questions. Can one do better than polynomial convergence? What is the optimal
shape s(u)? And what if the round-trip reflection is not fixed?

The above result relating smoothness and convergence has a natural corollary: if s(u) is C ∞,
i.e. all of its derivatives are continuous, then the reflection goes to zero faster than any poly-
nomial in 1/L. This is similar to a well-known result for the convergence of Fourier series of
C∞ functions [36]; the exact rate of faster-than-polynomial convergence again depends on the
strongest singularity in s(u). For example, for s(u) = (tanh(u)+1)/2, which goes exponentially
to zero as u →−∞ and to one as u → +∞, the reflection should decrease exponentially with L,
as determined by contour integration from the residue of the pole at u =±iπ/2 that is closest to
the real axis (similar to the analysis for the convergence of a Fourier series for an analytic func-
tion [36, 37]). However, such an absorption taper would require an infinitely thick absorber in
order to avoid discontinuously truncating the exponential tail of tanh(u). To have a C ∞ function
with a finite absorber, with s(u) = 0 for u≤ 0, the s(u) function must be non-analytic; a standard
example of such a function is s(u) = e1−1/u for u > 0 (all of whose derivatives go to zero as
u→ 0+, where there is an essential singularity). Because s(u) = e1−1/u is C∞, its reflection R(L)
must decrease faster than any polynomial. Exactly how much faster than polynomial is deter-
mined by asymptotically evaluating the integral of Eq. (12) by a saddle-point method [38, 39]:
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Fig. 7. Reflectivity vs. PML thickness L for 1d vacuum (blue circles) at a resolution of
50pixels/λ , and for pPML thickness L in the 1d periodic medium of Fig. 4 (red squares)
with period a at a resolution of 50pixels/a with a wavevector kx = 0.9π/a (vacuum
wavelength λ = 0.9597a. In both cases, a C∞ (infinitely differentiable) shape function
s(u) = e1−1/u for u > 0 is used, leading to asymptotic convergence as e−α

√
L for some

constants α .

the result is that R(L) decays asymptotically as e−α
√

L for some constant α > 0 [38]. This is
confirmed by Fig. 7, which plots the PML/pPML reflection for the 1d uniform and periodic
cases on a semilog scale versus

√
L, and results clearly approach a straight line as expected.

Although s(u) = e1−1/u yields an exponential convergence of the absorption in Fig. 7, the
constant factor and the exponential rate are almost certainly suboptimal for this arbitrary choice
of C∞ function. If we compare Fig. 7 to Fig. 3 for the uniform case and Fig. 4 for the periodic
case, we see that this C∞ s(u) is superior to the polynomial s(u) for the periodic case where PML
is not perfect, but inferior for the uniform case until the reflection becomes inconsequential (∼
10−20). This is still a useful result in the sense that one mainly needs to improve pPML for the
periodic case, whereas PML is already good enough for uniform media. However, one would
ideally prefer a shape function that is consistently better than the polynomial s(u), regardless of
the dielectric function, so further exploration of the space of possible absorption profiles seems
warranted.

Finally, in the above analysis we fixed the round-trip reflection R 0, via the estimate of Eq. (8),
to approximately 10−25 in order for our calculations to isolate the effect of the transition reflec-
tion. Obviously, in a real application, one is unlikely to require such low reflections and one will
set R0 to a larger value, corresponding to a larger σ 0 ∼ lnR0 in Eq. (10). This will also reduce
the transition reflection [as seen from Eq. (13)], but only by a logarithmic constant factor. The
best choice to minimize reflection for a given absorber length, in principle, is to set R 0 to be
roughly equal to the transition reflection for that length. (Another reason to make them equal is
the possibility of destructive interference between the round-trip and transition reflection [12],
but such destructive interference is inherently restricted to narrow bandwidths and ranges of
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to match the estimated transition reflection from Fig. 3 (lower red line). By matching the
round-trip reflection R0 to the estimated transition reflection, one can obtain a substantial
reduction in the constant factor of the total reflection, although the asymptotic power law
is only changed by a lnL factor.

incident angles and so we do not concern ourselves with this possibility.) In order to make them
roughly equal, one needs an estimate of the transition reflection; for example, one could simply
numerically fit the power law of Eq. (13). The result of such matching is shown in Fig. 8 for
a quadratic profile s(u) = u2 in 1d uniform media, and the overall reflection is reduced by a
factor of 3–400 compared to a fixed R0 = 10−16. This is a significant reduction, but is not over-
whelming (especially for smaller L) and changes the asymptotic convergence rate Eq. (13) only
by a factor of lnR0 ∼ lnL. The drawback of this optimization is that it is difficult to determine
the transition reflection analytically for inhomogeneous media, and so one is generally forced
to make a conservative estimate of R0, which reduces the advantage gained.

6. Conclusion

Perfectly matched layers are an extraordinarily powerful technique to absorb waves incident
on the boundaries of wave-equation simulation, but they are not a panacea. In particular, for
cases such as photonic crystals where the medium is not analytic in the direction perpendicular
to the boundary, the fundamental coordinate-stretching idea behind PML breaks down, and
the interface has intrinsic reflections (even for simple 1d cases with only normal-incident non-
evanescent waves). However, one can still obtain small reflections by gradually ramping up
the “pseudo-PML” (pPML) absorption, similar to the idea behind the quadratic PML profiles
commonly used to circumvent discretization-based reflections in uniform media, forming an
adiabatic absorber. In fact, for both cases (pPML in periodic media and PML in discretized
uniform media), we show that the basic mechanism behind the reflection is determined in the
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same way by the smoothness of the absorption profile, which can be predicted analytically by
coupled-mode theory. More generally, an adiabatic absorber is applicable in any situation where
a true PML is inconvenient or impossible to implement.

The same theory then predicts that an exponential absorber, one whose reflections decrease
exponentially with some power of the absorber thickness L, is possible, for example by using
an infinitely differentiable absorption profile. (In contrast, ordinary PML in a uniform medium
with a quadratic profile is not an exponential absorber: its numerical-discretization reflections
decrease as 1/L6.) We gave a simple C∞ example profile that led to such exponential absorp-
tion, but much future work remains to be done in identifying profiles with both exponential
absorption and good constant factors. In particular, one possibility that we will examine in a
subsequent manuscript is an absorption profile whose smoothness increases with L, so that it
matches simple quadratic profiles for small L but becomes exponentially smoother with large
L. (Such L-varying profiles require a more careful convergence analysis, however, in order to
ensure that they approach the adiabatic zero-reflection limit. A closely related mathematical
idea is explored in Ref. 38.)
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