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A Modified Split-Radix FFT With Fewer Arithmetic
Operations

Steven G. Johnson and Matteo Frigo

Abstract—Recent results by Van Buskirk et al. have broken
the record set by Yavne in 1968 for the lowest exact count of real
additions and multiplications to compute a power-of-two discrete
Fourier transform (DFT). Here, we present a simple recursive
modification of the split-radix algorithm that computes the DFT
with asymptotically about 6% fewer operations than Yavne,
matching the count achieved by Van Buskirk’s program-genera-
tion framework. We also discuss the application of our algorithm
to real-data and real-symmetric (discrete cosine) transforms,
where we are again able to achieve lower arithmetic counts than
previously published algorithms.

Index Terms—Arithmetic complexity, discrete cosine transform
(DCT), fast Fourier transform (FFT), split radix.

I. INTRODUCTION

ALL known fast Fourier transform (FFT) algorithms com-
pute the discrete Fourier transform (DFT) of size in

operations,1 so any improvement in them appears
to rely on reducing the exact number or cost of these operations
rather than their asymptotic functional form. For many years,
the time to perform an FFT was dominated by real-number
arithmetic, and so considerable effort was devoted towards
proving and achieving lower bounds on the exact count of arith-
metic operations (real additions and multiplications), herein
called “flops” (floating-point operations), required for a DFT of
a given size [2]. Although the performance of FFTs on recent
computer hardware is determined by many factors besides pure
arithmetic counts [3], there still remains an intriguing unsolved
mathematical question: what is the smallest number of flops re-
quired to compute a DFT of a given size , in particular for the
important case of ? In 1968, Yavne [4] presented what
became known as the “split-radix” FFT algorithm [5]–[7] for

and achieved a record flop count of
for (where denotes ), an improvement by 20%
over the classic “radix-2” algorithm presented by Cooley and
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1We employ the standard notation of
 and� for asymptotic lower and tight
bounds, respectively [1].

TABLE I
FLOP COUNTS (REAL ADDITIONS PLUS MULTIPLICATIONS) OF STANDARD

COMPLEX-DATA SPLIT RADIX AND OUR NEW ALGORITHM

Tukey (flops ) [8]. Here, we present a modified ver-
sion of the split-radix FFT that (without sacrificing numerical
accuracy) lowers the flop count by a further 5.6% (1/18) to

(1)
for , where the savings (starting at ) are due
to simplifications of complex multiplications. See also Table I.
More specifically, throughout most of this paper, we assume that
complex multiplications are implemented with the usual four
real multiplications and two real additions (as opposed to the
three multiplications three adds variant [9]), and in this case
the savings are purely in the number of real multiplications.

The first demonstration of this improved count was in a 2004
Usenet post by Van Buskirk [10], who had managed to save
eight operations over Yavne by hand optimization for ,
using an unusual algorithm based on decomposing the DFT
into its real and imaginary and even-symmetry and odd-sym-
metry components (essentially, type-I discrete cosine and sine
transforms). These initial gains came by rescaling the size-eight
subtransforms and absorbing the scale factor elsewhere in the
computation (related savings occur in the type-II discrete co-
sine transform of size eight, where one can save six multiplica-
tions by rescaling the outputs [11] as discussed in Section VIII).
Van Buskirk et al. later developed an automatic code-gener-
ation implementation of his approach that achieves (1) given
an arbitrary fixed [12].2 Meanwhile, following his
initial posting, we developed a way to explicitly achieve the
same savings recursively in a more conventional split-radix al-
gorithm. Our split-radix approach involves a recursive rescaling

2J. Van Buskirk, http://home.comcast.net/~kmbtib/; http://www.cuttle-
fisharts.com/newfft/.
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of the trigonometric constants (“twiddle factors” [13]) in sub-
transforms of the DFT decomposition (while the final FFT re-
sult is still the correct, unscaled value), relying on four mutually
recursive stages.

A few rigorous bounds on the DFT’s arithmetic complexity
have been proven in the literature, but no tight lower bound on
the flop count is known [and we make no claim that (1) is the
lowest possible]. Following work by Winograd [14], a realiz-
able lower bound is known for the number of irrational
real multiplications for , given by

[2], [15], [16] (matching split radix as well as our
algorithm up to ) but is achieved only at the price
of many more additions and thus has limited utility on CPUs
with hardware multipliers. The DFT has been shown to require

complex-number additions for linear algorithms
under the assumption of bounded multiplicative constants [17],
or alternatively, assuming a bound on a measure of the algo-
rithm’s “asynchronicity” [18]. Furthermore, the number of
complex-number additions obtained in Cooley–Tukey—related
algorithms (such as split radix) for has been argued to
be optimal over a broad class of algorithms that do not exploit
additive identities in the roots of unity [19]. Our algorithm does
not change this number of complex additions.

In the following, we first review the known variant of the split-
radix FFT that is the starting point for our modifications, then
describe our modified algorithm, analyze its arithmetic costs
(both theoretically and with two sample implementations in-
strumented to count the operations) as well as its numerical
accuracy, describe its application to real-input and real-sym-
metric (discrete cosine) transforms where one also finds arith-
metic gains over the literature, and conclude with some remarks
about practical realizations and further directions.

II. CONJUGATE-PAIR SPLIT-RADIX FFT

The starting point for our improved algorithm is not the stan-
dard split-radix algorithm but rather a variant called the “con-
jugate-pair” FFT that was itself initially proposed to reduce the
number of flops [20], but its operation count was later proved
identical to that of ordinary split radix [21]–[23]. This variant
was rediscovered in unpublished work by Bernstein [24], who
argued that it reduces the number of twiddle-factor loads. A sim-
ilar argument was made by Volynets [25], who adapted the al-
gorithm to the discrete Hartley transform. We use it for a related
reason: because the conjugate-pair FFT exposes redundancies in
the twiddle factors, it enables rescalings and simplifications of
twiddle pairs that we do not know how to extract from the usual
split-radix formulation. To derive the algorithm, recall that the
DFT is defined by

(2)

where and is the primitive root of unity
. Then, for divisible by four, we perform a dec-

imation-in-time decomposition of into three smaller DFTs,
of (the even elements), , and (where

)—this last subsequence would be in standard split
radix but here is shifted cyclically by 4.3 We obtain

(3)

where the and are the conjugate pair of twiddle fac-
tors (whereas an ordinary split radix would have and ).
(In this paper, we will use the term “twiddle factor” to refer to
all data-independent trigonometric constants that appear in an
FFT.) These summations are DFTs of size 2 and 4, and
the for are related to via trivial
multiplications by and 1. Thus, we obtain Algorithm 1, in
which the results of the three subtransforms are denoted by ,

, and .

Algorithm 1 Standard conjugate-pair split-radix FFT of length
(divisible by four). (Special-case optimizations for

and are not shown.)

function :

for to do

end for

For clarity, Algorithm 1 omits special-case optimizations for
in the loop (where is unity and requires no

flops) and for (where and re-
quires only two real multiplications instead of four for ).
It also omits the base cases of the recursion: is just
a copy and is an addition
and a subtraction . With these optimizations and
base cases, the standard assumptions that multiplications by 1

3Past formulations of the conjugate-pair FFT sent n ! �n and used an
inverse DFT for this subtransform, but they are essentially equivalent to our
expression; the difference is a matter of convenience only.
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and are free,4 and extracting common subexpressions such
as , the flop count of Yavne is obtained. More
specifically, the number of real additions and multiplica-
tions (for 4/2 multiply/add complex multiplies) is [26] for

(4)

(5)

Traditionally, the recursion is “flattened” into an iterative algo-
rithm that performs all the FFTs of a given size at once [27],
may work in-place, can exploit to halve the
number of twiddle factors (see Section VI), etc., but none of
this affects the flop count. Although in this paper we consider
only decimation-in-time (DIT) decompositions, a dual decima-
tion-in-frequency (DIF) algorithm can always be obtained by
network transposition5 (reversing the flow graph of the compu-
tation) with identical operation counts.

III. NEW FFT: RESCALING THE TWIDDLES

The key to reducing the number of operations is the obser-
vation that, in Algorithm 1, both and (the th outputs of
size- 4 subtransforms) are multiplied by a twiddle factor
or before they are used to find . This means that we can
rescale the size- 4 subtransforms by any factor de-
sired and absorb the scale factor into at no cost. So,
we merely need to find a rescaling that will save some opera-
tions in the subtransforms. (As is conventional in counting FFT
operations, we assume that all data-independent constants like

are precomputed and are therefore not included in the
flops.) Moreover, we rely on the fact that and have con-
jugate twiddle factors in the conjugate-pair algorithm, so that a
single rescaling below will simplify both twiddle factors to save
operations—this is not true for the and factors in the
usual split radix. Below, we begin with an outline of the general
ideas and then analyze the precise algorithm in Section IV.

Consider a subtransform of a given size that we wish to
rescale by some 1 for each output . Suppose we take

for . In this case,
from Algorithm 1 becomes ,
where

(6)

Multiplying requires four real multiplications and two
real additions (six flops) for general , but multiplying

4In the algorithms of this paper, all negations can be eliminated by turning
additions into subtractions or vice versa.

5Network transposition is equivalent to matrix transposition [28] and pre-
serves both the DFT (a symmetric matrix) and the flop count (for equal numbers
of inputs and outputs) but changes DIT into DIF and vice versa.

Fig. 1. Scale factor s from (7) versus one period of k forN = 2 = 4096.

requires only two real multiplications and two real additions
(four flops). (A similar rescaling was proposed [29] to increase
the number of fused multiply-add operations, and an analogous
rescaling also relates the Givens and “fast Givens” algo-
rithms [30].) Thus, we have saved four real multiplications in
computing but spent two real multiplications in

and another two for , for what may seem
to be no net change. However, instead of computing di-
rectly, we can instead push the 1 scale factor “down” into
the recursive computation of . In this way, it turns out that
we can save most of these “extra” multiplications by combining
them with twiddle factors inside the 2 transform. Indeed, we
shall see that we need to push 1 down through two levels
of recursion in order to gain all of the possible savings.

Moreover, we perform the rescaling recursively, so that the
subtransforms and are themselves rescaled by 1
for the same savings, and the product of the subtransform scale
factors is combined with 2 and pushed up to the top-
level transform. The resulting scale factor is given by the
following recurrence, where we let :

for
for
otherwise

(7)

which has an interesting fractal pattern plotted in Fig. 1. This
definition has the properties , , and

(a symmetry whose importance appears in
subsequent sections). We can now generally define

(8)

where is either or and thus is always
of the form or . This last property is critical
because it means that we obtain in all of the
scaled transforms, and multiplication by requires at most
four flops as above.
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Algorithm 2 New FFT algorithm of length (divisible by
four). The subtransforms are rescaled by

to save multiplications. The subsubtransforms of size
8, in turn, use two additional recursive subroutines from

Algorithm 3 (four recursive functions in all, which differ in
their rescalings).

function :

{computes DFT}

for to do

end for

function :

for to do

end for

Algorithm 3 Rescaled FFT subroutines called recursively
from Algorithm 2. The loops in these routines have more
multiplications than in Algorithm 2, but this is offset by
savings from in Algorithm 2.

function :

for to do

end for

function :

for to do

end for

Rather than elaborate further at this point, we now simply
present the algorithm, which consists of four mutually recursive
split-radix-like functions listed in Algorithms 2 and 3 and ana-
lyze it in the next section. As in the previous section, we omit for
clarity the special-case optimizations for and in
the loops, as well as the trivial base cases for and .

IV. OPERATION COUNTS

Algorithms 2 and 3 manifestly have the same number of real
additions as Algorithm 1 (for 4/2 multiply/add complex multi-
plies), since they only differ by real multiplicative scale factors.
So, all that remains is to count the number of real mul-
tiplications saved compared to Algorithm 1, and this will give
the number of flops saved over Yavne. We must also count the
numbers , , and of real multiplica-
tions saved (or spent, if negative) in our three rescaled subtrans-
forms. In itself, the number of multiplications is
clearly the same as in , since all scale factors are
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absorbed into the twiddle factors—note that , so the
special case is not worsened either—and thus the savings

come purely in the subtransforms

(9)

In , as discussed above, the substitution of
for means that two real multiplications are saved from each
twiddle factor, or four multiplications per iteration of the loop.
This saves multiplications, except that we have to take into
account the and special cases. For ,

, again saving two multiplications (by 1 ) per
twiddle factor. Since , however, the special case
is unchanged (no multiplies), so we only save multiplies
overall. Thus

(10)

At first glance, the routine may seem to have
the same number of multiplications as , since the
two multiplications saved in each (as above) are exactly
offset by the multiplications. (Note that we do not
fold the into the because we also have to scale
by and would thus destroy the common
subexpression.) However, we spend two extra multiplications in
the special case, which ordinarily requires no multiplies,
since (for ) appears
in and . Thus

(11)

Finally, the routine involves more mul-
tiplications than ordinary split radix, although we have endeav-
ored to minimize this by proper groupings of the operands. We
save four real multiplications per loop iteration because of
the replacing . However, because each output has a
distinct scale factor

, we spend eight real multiplications per iteration,
for a net increase of four multiplies per iteration . For the

iteration, however, the gains us nothing, while
does not cost us, so we spend six net multiplies in-

stead of four, and therefore

(12)

Above, we omitted the base cases of the recurrences, i.e., the
or that we handle directly as in Section II (without

recursion). There, we find
(where the scale factors are unity)

and . Finally, solving these recurrences by stan-
dard generating-function methods [1] (for )

(13)

Subtracting (13) from the flop count of Yavne, we obtain (1) and
Table I. Separate counts of real adds/multiplies are obtained by
subtracting (13) from (5).

In the above discussion, one immediate question that arises
is: why stop at four routines? Why not take the scale factors
in and push them down into yet another recur-
sive routine? The reason is, unlike in , we lack
sufficient symmetry: because the scale factors are different for

and , no single scale factor for will save us that
multiplication, nor can we apply the same scale factor to the

common subexpressions. Thus, independent
of any practical concerns about algorithm size, we currently see
no arithmetic benefit to using more subroutines.

In some FFT applications, such as convolution with a fixed
kernel, it is acceptable to compute a scaled DFT instead of the
DFT, since any output scaling can be absorbed elsewhere at no
cost. In this case, one would call directly and
save multiplications over Yavne, where

(14)
with savings starting at .

To verify these counts, as well as the correctness, accuracy,
and other properties of our algorithm, we created a “toy” (slow)
implementation of Algorithms 1–3, instrumented to count the
number of real operations. (We checked it for correctness via
[31], and for accuracy in Section V.) This implementation was
also instrumented to check for any simple multiplications by

1, , and , as well as for equal scale factors,
that might have been missed in the above analysis, but we did
not discover any such obvious opportunities for further savings.
We have also implemented our new algorithm in the symbolic
code-generation framework of (FFTW) [32], which takes the
abstract algorithm as input, performs symbolic simplifications,
and outputs optimized C code for a given fixed size. The gen-
erator also outputs a flop count that again verified (1), and the
simplifier did not find any trivial optimizations that we missed;
this code was again checked for correctness, and its performance
is discussed in the concluding section below.

Finally, we should note that if one compares instead to split-
radix with the 3/3 multiply/add complex multiplies often used in
earlier papers (which trade off some real multiplications for ad-
ditions without changing the total flops), then our algorithm has
slightly more multiplications and fewer additions (still beating
the total flops by the same amount, of course). The reason is that
the factored form of the multiplications in Algorithm 3 cannot,
as far as we can tell, exploit the 3/3 trick to trade off multiplies
for adds. In any case, this tradeoff no longer appears to be bene-
ficial on CPUs with hardware multipliers (and especially those
with fused multiply-adders).

V. FLOATING-POINT ACCURACY

In order to measure the accuracy of the new algorithm,
we computed the (root mean square) relative error

of our “toy” implementation com-
pared to the “exact” result (from an FFT implemented in
arbitrary-precision arithmetic), for uniform pseudorandom in-
puts , in 64-bit double precision on a Pentium
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Fig. 2. Root mean square (L ) relative error of our new FFT and the standard
conjugate-pair split-radix FFT versus DFT sizeN , in 64-bit double precision.

IV with Linux and gcc 3.3.5. The results, in Fig. 2, show that our
new FFT has errors within 10% of the standard conjugate-pair
split-radix algorithm, both growing roughly as [33].
At first glance, this may seem surprising, since our use of the
tangent function, which is singular, or equivalently our division
by a cosine in 1 , may appear to raise questions about
the numerical accuracy of our algorithm. Although we have
not performed a detailed numerical analysis, the reason for
the similarity to standard split radix seems clear upon closer
inspection: we never add scaled values with unscaled values,
so that whenever standard split radix computes , our
new FFT merely computes for some constant scale
factor . An alternative explanation might simply be that our
scale factors are not very big, as described below, but we have
checked this: changing (7) for to a less symmetric form
that always uses (and thus grows very small for ,
e.g., reaching 10 for ), the error varies by less than
10% from Fig. 2.

Another concern, nevertheless, might be simply that the
scaling factor will grow so large/small as to induce over/un-
derflow. This is not the case: the 1 from (7) grows so
much more slowly than the DFT values themselves (which
grow as for random inputs) that over/underflow
should not be significantly worsened by the new FFT algo-
rithm. In particular, we explicitly avoided the cosine zero (at

) by the symmetric form of (7), so that its cosine
(or sine) factor is always ; thus, the loose bound

follows. In fact, the smallest where
is minimum apparently follows the integer sequence

A007910 [34], which approaches 10, and thus
asymptotically. For

example, with , the minimum scale factor is only
.

It is instructive to contrast the present algorithm with the
“real factor” FFT algorithm that was once proposed to reduce
the number of multiplications, but which proved numerically
ill behaved and was later surpassed by split radix [2], [35]. In
that algorithm, one obtained an equation of the form

, where is the trans-
form of (the even elements) and is the transform of

(the difference of adjacent odd elements). This

reduces the number of real multiplications (matching standard
split radix, albeit with more additions) but is numerically ill be-
haved because of the singular function—unlike in our algo-
rithm, was not scaled by any function that would cancel
the singularity, and thus the addition with the unscaled
exacerbates roundoff.

VI. TWIDDLE FACTORS

In the standard conjugate-pair split-radix Algorithm 1, there
is a redundancy in the twiddle factors between and

. This can be exploited to halve the number
of twiddle factors that need to be computed (or loaded from
a lookup table): is computed only for , and for

it is found by the above identity via conju-
gation and multiplication by (both of which are costless op-
erations). This symmetry is preserved by the rescaling of our
new algorithm, since . Thus, for

, we can share the (rescaled) twiddle factors with
. For example, in , we obtain

for (the operation count is
unchanged, of course). The twiddle factors in are
also redundant because (from the period-
icity of ). For , we have constants and

, and we use the fact that
and so that the constants are shared
between and , albeit in reverse order. Simi-
larly, for , we have constants , ,

, and ; when , these become
, , , and respectively.

Despite these redundancies, our new FFT requires a larger
number of distinct twiddle-factor-like constants to be computed
or loaded than the standard conjugate-pair FFT algorithm, be-
cause of the differing scale factors in the four subroutines. It is
difficult to make precise statements about the consequences of
this fact, however, because the performance impact will depend
on the implementation of the FFT, the layout of the precom-
puted twiddle tables, the memory architecture, and the degree
to which loads of twiddle factors can be overlapped with other
operations in the CPU. Moreover, the access pattern is complex;
for example, the routine actually requires fewer
twiddle constants than , since is only one non-
trivial real constant versus two for . Such practical concerns
are discussed further in the concluding remarks.

A standard alternative to precomputed tables of twiddle con-
stants is to generate them on the fly using an iterative recur-
rence relation of some sort (e.g., one crude method is

), although this sacrifices substantial accuracy in the
FFT unless sophisticated methods with storage are
employed [36]. Because of the recursive nature of (7), however,
it is not obvious to us how one might compute by a
simple recurrence from or similar.

VII. REAL-DATA FFTS

For real inputs , the outputs obey the symmetry
and one can save slightly more than a factor of two in flops

when computing the DFT by eliminating the redundant calcu-
lations; practical implementations of this approach have been
devised for many FFT algorithms, including a split-radix-based
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TABLE II
FLOPS OF STANDARD REAL-DATA SPLIT RADIX AND OUR NEW ALGORITHM

real-data FFT [37], [38] that achieved the best known flop count
of for . The same elimi-
nation of redundancy applies to our algorithm, and thus we can
lower the minimum flops required for the real-data FFT.

Because our algorithm only differs from standard split radix
by scale factors that are purely real and symmetric, existing al-
gorithms for the decimation-in-time split-radix FFT of real data
[38] immediately apply: the number of additions is unchanged
as for the complex algorithm, and the number of real multipli-
cations is exactly half that of the complex algorithm. In par-
ticular, we save 2 multiplies compared to the previous
algorithms. Thus, the flop count for a real-data FFT of length

is now

(15)
for . To derive this more explicitly, note that each of
the recursive subtransforms in Algorithms 2–3 operates on real
inputs and thus has (a symmetry unaffected
by the real scale factors, which satisfy for

). Therefore, in the loop over , the computation of
and is redundant and can be eliminated, saving half of

(in , etc.), except for where is the
real Nyquist element. For , we must compute both and

, but since these are both purely real, we still save half of
(multiplying a real number by a real scale factor costs

one multiply, versus two multiplies for a complex number and
a real scale factor). As for complex data, (15) yields savings
over the standard split-radix method starting at , as
summarized in Table II.

As mentioned above, we also implemented our complex-data
algorithm in the code-generation program of FFTW, which
performs symbolic-algebra simplifications that have proved
sufficiently powerful to automatically derive optimal-arithmetic
real-data FFTs from the corresponding “optimal” complex-data
algorithm—it merely imposes the appropriate input/output
symmetries and prunes redundant outputs and computations
[32]. Given our new FFT, we find that it can again automatically
derive a real-data algorithm matching the predicted flop count
of (15).

VIII. DISCRETE COSINE TRANSFORMS

Similarly, our new FFT algorithm can be specialized for
DFTs of real-symmetric data, otherwise known as discrete
cosine transforms (DCTs) of the various types [39] (and
also discrete sine transforms for real-antisymmetric data).

TABLE III
FLOPS REQUIRED FOR THE DCT BY PREVIOUS ALGORITHMS AND BY OUR

NEW ALGORITHM

Moreover, since FFTW’s generator can automatically derive
algorithms for types I–IV of the DCT and DST [3], we have
found that it can automatically realize arithmetic savings over
the best known DCT/DST implementations given our new
FFT, as summarized in Table III.6 Although here we exploit the
generator and have not derived explicit general- algorithms
for the DCT flop count (except for type I), the same basic prin-
ciples (expressing the DCT as a larger DFT with appropriate
symmetries and pruning redundant computations from an FFT)
have been applied to “manually” derive DCT algorithms in the
past, and we expect that doing so with the new algorithm will
be straightforward. Below, we consider types II, III, IV, and I
of the DCT.

A type-II DCT (often called simply “the” DCT) of length
is derived from a real-data DFT of length 4 with appro-

priate symmetries. Therefore, since our new algorithm begins to
yield improvements starting at for real/complex data,
it yields an improved DCT-II starting at . Previously, a
16-point DCT-II with 112 flops was reported [11] for the (un-
normalized) -point DCT-II defined as

k=0

otherwise
(16)

whereas our generator now produces the same transform with
only 110 flops. In general, flops were re-
quired for this DCT-II [40], as can be derived from the standard
split-radix approach [41] (and is also reproduced automatically
by our generator starting from complex split radix), whereas the
flop counts produced by our generator starting from our new
FFT are given in Table III. DCT-III (also called the “IDCT”
since it inverts DCT-II) is simply the transpose of DCT-II, and
its operation counts are identical.

It is also common to compute a DCT-II with scaled outputs,
e.g., for the JPEG image-compression standard, where an ar-
bitrary scaling can be absorbed into a subsequent quantization
step [42], and in this case the scaling can save six multiplica-
tions [11] over the 40 flops required for an unscaled eight-point
DCT-II. Since our attempts to be the optimal
scaled FFT, we should be able to derive this scaled DCT-II by
using it in the generator instead of —indeed, we

6The precise multiplication count for a DCT generally depends upon the nor-
malization convention that is chosen; here, we use the same normalizations as
the references cited for comparison.
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find that it does save exactly six multiplies over our unscaled
result (after normalizing the DFT by an overall factor of 1/2
due to the DCT symmetry). Moreover, we can now find the cor-
responding scaled transforms of larger sizes: e.g., 96 flops for
a size-16 scaled DCT-II and 252 flops for size 32, saving 14
and 30 flops, respectively, compared to the unscaled transform
above.

For DCT-IV, which is the basis of the modified discrete cosine
transform (MDCT) [43], the corresponding symmetric DFT is
of length 8 , and thus the new algorithm yields savings starting
at : the best (split-radix) methods for an eight-point
DCT-IV require 56 flops (or [41]) for the DCT-IV
defined by

(17)

whereas the new algorithm requires 54 flops for (as
derived by our generator), with other sizes shown in Table III.

Finally, a type-I DCT of length (with 1 data points)
defined as

(18)

is exactly equivalent to a DFT of length 2 where the input
data are real-symmetric and the split-radix FFT
adapted for this symmetry requires
flops [37].7 Because the scale factors preserve this sym-
metry, one can employ exactly the same approach to save

(2 ) 4 multiplications starting from our new FFT (proof is
identical). Indeed, precisely these savings are derived by the
FFTW generator for the first few , as shown in Table III.

IX. CONCLUDING REMARKS

The longstanding arithmetic record of Yavne for the
power-of-two DFT has been broken, but at least two im-
portant questions remain unanswered. First, can one do better
still? Second, will the new algorithm result in practical im-
provements to actual computation times for the FFT?

Since this algorithm represents a simple transformation
applied to the existing split-radix FFT, a transformation that
has obviously been insufficiently explored in the past four
decades of FFT research, it may well be that further gains can
be realized by applying similar ideas to other algorithms or
by extending these transformations to greater generality. One
avenue to explore is the automatic application of such ideas—is
there a simple algebraic transformational rule that, when ap-
plied recursively in a symbolic FFT-generation program [32],
[44], can derive automatically the same (or greater) arithmetic
savings? (Note that both our own code generation and that of
Van Buskirk currently require explicit knowledge of a rescaled
FFT algorithm.) Moreover, a new fundamental question is to
find the lowest arithmetic scaled DFT—our current best answer

7Our count is slightly modified from that of Duhamel [37], who omitted all
multiplications by two from the flops.

is and (14), but any improvement will also
improve the unscaled DFT.

The question of practical impact is even harder to answer, be-
cause the question is not very well defined—the “fastest” algo-
rithm depends upon what hardware is running it. For large ,
however, it is likely that the split-radix algorithm here will have
to be substantially modified in order to be competitive, since
modern architectures tend to favor much larger radices com-
bined with other tricks to placate the memory hierarchy [3]. (Un-
less similar savings can be realized directly for higher radices
[45], this would mean “unrolling” or “blocking” the decompo-
sition of so that several subdivisions are performed at once.)
On the other hand, for small , which can form the computa-
tional “kernels” of general- FFTs, we already use the original
conjugate-pair split-radix algorithm in FFTW [32] and can im-
mediately compare the performance of these kernels with ones
generated from the new algorithm. We have not yet performed
extensive benchmarking, however, and the results of our limited
tests are somewhat difficult to assess. On a 2 GHz Pentium-IV
with gcc, the performance was indistinguishable for the DFT
of size 64 or 128, but the new algorithm was up to 10% faster
for the DCT-II and IV of small sizes—a performance differ-
ence greater than the change in arithmetic counts, leading us to
suspect some fortuitous interaction with the code scheduling.
Nevertheless, it is precisely because practical performance is so
unpredictable that the availability of new algorithms, especially
ones with reasonably regular structure amenable to implemen-
tation, opens up rich areas for future experimentation.
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