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1 Introduction
Many physical and mathematical problems involve the study
of harmonic modes, solutions which oscillate sinusoidally in
time. For example, the vibrations of a drum or a piano string
(acoustic waves), the propagation of light (an electromagnetic
wave) in a medium or down an optical fiber, and the allowed
energies of an electron bound to a nucleus (a quantum prob-
ability wave), are all described by harmonic-mode solutions
of the corresponding wave equation. An important question,
with very general solutions, is what happens to these har-
monic modes if we allow them to weakly couple to one an-
other. For example, if we bring a piano string next to a tuning
fork, vibrations in one will excite vibrations in the other—
they are resonantly coupled if they have the same vibrational
frequency. Even more interesting things can happen if you
change the vibrational modes with time—for example, if you
start a piano string vibrating and then change its tension, or
change how far away the tuning fork is, or change the shape of
an optical fiber (e.g. by bending it) as light propagates down
it, or shake an atom with an external field. In this case, there
is a general adiabatic theorem that tells you what happens if
you change the system slowly enough.

Put another way, strictly harmonic modes arise in linear,
time-invariant systems. If we can extend this analysis to al-
most linear time-invariant systems, we will have greatly ex-
panded the reach of our understanding.

2 Two coupled pendula
We’ll center our discussion on a simple physical example.
Suppose that we have two swinging pendula (denoted by
k = 1,2) of lengths Lk and at angles θk with vertical. A sin-
gle rigid pendulum swinging under gravity is described by the
second-order ODE d2θk

dt2 = θ̈k =− g
Lk

sinθk ≈− g
Lk

θk, approx-
imated for small θk. This is just a harmonic oscillator with
angular frequency ω =

√
g/Lk. Now, however, suppose that

we couple the two pendula: for example, when one swings,
suppose it exerts a force on the other proportional to θ1−θ2.
We then obtain equations of the form:

θ̈1 = −ω
2
1 θ1 + cθ2

θ̈2 = −ω
2
2 θ2 + cθ1,

where ω2
k =

√
g/Lk + c and c is the proportionality constant

of the coupling. For later convenience, we will set c = κω̄2,
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where ω̄2 =
ω2

1+ω2
2

2 and we will assume κ � 1.
We’ll be using this as a model system to study two im-

portant concepts: what are the stationary or harmonic modes
of the system, and how do these states evolve as the system
changes, for example if we change the length of one of the
pendula as it is swinging.

In a linear, time-invariant set of differential equations like
this one, you can always look for harmonic solutions, or sta-
tionary modes, or eigenmodes, of the form θk = ukeiωt (the
“physical” solution is just the real part) where uk is a con-
stant and ω is the eigenfrequency. To find them, we just plug
θk = ukeiωt into the differential equations, and obtain a linear
eigenproblem where ω2 is the eigenvalue:

ω
2
(

u1
u2

)
=

(
ω2

1 −κω̄2

−κω̄2 ω2
2

)(
u1
u2

)
.

This gives a quadratic equation λ 2 − 2ω̄2λ + (ω2
1 ω2

2 −
κ2ω̄4) = 0 for the eigenvalue λ = ω2. Obviously, if κ = 0
the solutions are ω = ω1 and ω = ω2, the frequencies of the
individual pendula. More generally, we get:

λ = ω̄
2±

√(
ω2

1 −ω2
2

2

)2

+κ2ω̄4

2.1 Resonant coupling

Let’s start by taking a simple case: suppose ω1 = ω2 = ω̄ , i.e.
the pendula have the same length. In this case the eigenval-
ues are just ω2 = λ = ω̄2 · (1±κ) and thus ω = ω̄

√
1±κ ≈

ω̄ · (1±κ/2). The corresponding eigenvectors are
(

1
∓1

)
:

when the pendula are swinging together they have a lower
frequency [ there is no resistance to their swinging since
c(θ1−θ2) = 0], and when they are swinging oppositely they
have a higher frequency (the resistance κ to their separation
increases the “spring constant”). Now, what if we start just
one of the pendula swinging, with zero initial velocity and

initial amplitude
(

1
0

)
? This initial condition is satisfied by

a superposition of the two eigenvectors:(
θ1
θ2

)
=

(
1
−1

)
eiω̄(1+κ/2)t +

(
1
+1

)
eiω̄(1−κ/2)t

= eiω̄(1+κ/2)t
[(

1
−1

)
+

(
1
+1

)
e−iω̄κt

]
.
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Figure 1: Plot of θk(t) for two coupled pendula of equal
length, where one is started swinging: the energy periodically
exchanges between them.

At t = 0 this gives
(

1
0

)
, but at t = π/(ω̄κ) this gives(

0
−1

)
, and then back to

(
1
0

)
at t = 2π/(ω̄κ)! That

is, the energy in the system seems to oscillate periodically
back and forth between the two pendula, repeating every 1/κ

periods 2π/ω̄ of the isolated pendula! This is precisely what
we see in fig. 1, where we have used a period 2π/ω̄ = 1 and
κ = 1/10. This behavior is typical of resonant coupling of
two oscillators.

2.2 Anti-crossings and time evolution
On the other hand, suppose the frequencies ω1 and ω2 are very
different, with |ω2

1 −ω2
2 | � κ2ω̄2. In this case, the two oscil-

lators are out of resonance from one another, and the coupling
shouldn’t have much effect: the pendula should just swing
separately. If we solve the eigenequation, this is precisely
what we find:

λ ≈ ω
2
1,2±

κ2ω̄4

ω2
1 −ω2

2
≈ ω

2
1,2± (small).

That is, the eigensolutions are almost those of the isolated
pendula. In fig. 2, we plot the two eigenfrequencies ω =

√
λ

as a function of ω1 (e.g. by changing L1) while keeping ω2
fixed. For κ = 0, we just get two straight lines (blue dashed)
corresponding to the two pendula swinging separately. When
κ 6= 0, however, the two (solid red) lines couple at the point
where the eigenvalues cross, leading to what is called an
avoided crossing or an anti-crossing.

Suppose we start with L1� L2 so that the frequencies are
very different. If we start pendulum 1 swinging, pendulum 2
should barely move. Now, suppose that we start increase L1
as the pendula are swinging. If we are able to change the
system slowly enough, a remarkable thing happens when L1
goes through L2: all of the energy transfers to pendulum 2,
so that pendulum 1 (almost) stops swinging! Precisely this
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Figure 2: Eigenvalues of the coupled pendula, as a function
of ω1 for fixed ω2 = 2π , for κ = 0 (dashed blue) and κ =
1/10 (solid red). For κ 6= 0, the two pendula couple where
their eigenvalues cross, leading to an avoided crossing or anti-
crossing.

behavior is shown in figure 3(top), a numerical simulation
of the ODE with Matlab. What is happening is that the sys-
tem follows the eigenvectors as they change continuously: it
starts out in the ω1 eigenvalue (where pendulum 1 is swing-
ing alone) and then follows it around the anti-crossing into
the ω2 eigenvalue (where the pendulum 2 is swinging alone).
Figure 3(top) shows the corresponding eigenvalues ω as a
function of time—the system adiabatically follows the upper
eigenvalue curve. This is quite a general result, and is known
as the adiabatic theorem.

3 Generalization and proof
Let’s cast the problem in a more general form. It turns out
that a second-order ODE is inconvenient, but we can always
convert each second-order ODE into two first-order ODEs.

3.1 Real-symmetric first-order formulation
It will be convenient to write things in the form:

~̇x = iA~x (1)

where A is an N ×N matrix. If A is a constant, the time-
harmonic modes~x =~ueiωtsatisfy the eigenproblem

ω~u = A~u.

If we are looking at systems without gain or dissipation, then
ω must be real: the solution oscillates, without exponential
growth or decay. This gives us a hint that A may have a special
form: we can usually write the problem in a form where A is
real-symmetric: A is equal to its transpose.1 Real-symmetric

1More generally, A is typically Hermitian: A is equal to the complex con-
jugate of its transpose. Here, we simplify life by sticking with real A.
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Figure 3: Top: pendula amplitudes when the length L1 of
one pendulum is varied from about 1.6L2 to about 0.18L2.
As L1 passes through L2 and the frequencies are equal, al-
most all of the energy of oscillation adiabatically transfers to
the second pendulum. Bottom: The corresponding frequency
eigenvalues ω/2π = 1/period of the coupled-oscillator sys-
tem, showing the slight avoided crossing from the weak cou-
pling (κ = 1/80). The oscillator adiabatically “follows” the
upper eigenvalue curve.

matrices have three very nice properties: there are N linearly
independent eigenvectors ~un with eigenvalues ωn (the matrix
is never defective); the eigenvalues are purely real, and the
eigenvectors can be chosen real and orthogonal: ~un ·~um = 0
for n 6= m, and for convenience we will choose~un ·~un = 1.

For example, it is a simple exercise to show that our two
coupled harmonic-oscillator equations above can be written
in this real-symmetric form, by introducing two auxiliary vari-
ables αk and writing:

θ̇1 = iω̃1α1− iκ̃α2

θ̇2 = iω̃2α2− iκ̃α1

α̇1 = iω̃1θ1− iκ̃θ2

α̇2 = iω̃2θ2− iκ̃θ1

where ω̃2
k + κ̃2 = ωk and κ̃(ω̃1 + ω̃2) = c = κω̄2.

3.2 Coupled-mode equations
Now, we want to consider a case where A(t) is not constant,
but is some slowly varying function of time. The trick is
that, since it is almost constant, we can almost have harmonic
modes. So, we define the “instantaneous” harmonic modes
~un(t) to satisfy the eigenproblem at time t:

A(t)~un(t) = λn(t)~un(t).

At every time we therefore have a complete set of eigenvectors
that are continuously changing, and we use this set as a basis
for our solution vector~x(t):

~x(t) = ∑
n

cn(t)~un(t)ei
∫ t

λn(t ′)dt ′ . (2)

Why did we choose this particular form? Consider what hap-
pens if A is a constant. In this case, the eigenvectors are con-
stants and ~uneiλnt is an exact solution of the equations, and
thus the coefficients cn(t) are constants.

If A is changing slowly, then cn(t) will almost be constant,
and we can exploit this to understand the system. In fact, the
adiabatic theorem tells us that, in the limit as we change A
more and more slowly, the cn exactly approach constants.

Now, how do we solve for cn(t)? The cn(0) are given by
our initial conditions ~x(0), and to get the equation for cn at
other times we just substitute eq. (2) into eq. (1):

~̇x = ∑
n

[
ċn~un + cn~̇un + iλncn~un

]
ei
∫ t

λndt ′

= iA(t)~x = ∑
n

iλ ncn~unei
∫ t

λndt ′ ,

where on the first line we have used the product rule and the
fact that d

dt
∫ t

λndt ′ = λn(t), and on the second line we have
used the eigen-equation for ~un. Now, however, a lovely thing
has happened: the iλn terms on the two lines cancel. In what’s
left over, we can take the dot product of both sides with~um for
some m to pick out the ċm term (recalling the orthogonality
above):

ċm =−∑
n

cn~um ·~̇unei
∫ t (λn−λm). (3)

Thus, we have arrived a set of ordinary differential equations
for the cn: the coupled-mode equations, which tell us how
one “eigenmode” n couples to other “eigenmodes” m as the
system evolves. These equations are much nicer than our
original equations, however, because we can evaluate them
approximately in the case where A is slowly varying, in which
case ~̇un is small and cn is nearly constant.

Before we continue, let’s make one simplification. It turns
out that the n=m term in eq. (3) is zero. The reason is simple:
~um ·~̇um = 1

2
d
dt (~um ·~um) by the product rule, but~um ·~um = 1 is a

constant by our choice of normalization.2 So, we chan change
eq. (3) to use ∑n6=m.

There is another simplification that we could make: it turns
out that we could write ~̇un in terms of~un and dA/dt, but that’s
not necessary for our analysis so we skip it here.

3.3 Adiabatic theorem
Suppose that we start out with some initial condition cn(0)
and consider ∆cn(t) = cn(t)− cn(0). We would like to show
that, as A changes more and more slowly, ∆cn→ 0. To quan-
tify how slowly A changes, let’s write A as a function A(t/T )
for some timescale T — the larger T is, the more slowly
A changes. Furthermore, we’ll change variables from t to
τ = t/T , so that d

dt =
1
T

d
dτ

. Eq. (3) now becomes:

d(∆cm)

dτ
=− ∑

n6=m
[cn(0)+∆cn(τ)]~um ·

d~un

dτ
eiT

∫
τ (λn−λm)dτ ′ .

(4)
Notice that T now only appears in the exponent.

2More generally, if we had complex-Hermitian A,~u would not be real and
our dot product would be of the form ~u∗m ·~um = 1. In this case, ~u∗m ·~̇um is
purely imaginary, and this imaginary part gives us something called “Berry’s
phase” [1, 2].
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Now, let’s assume that ∆cn is small for all n, and expand
the solution in powers of ∆cn. We’ll calculate ∆cm to lowest
order, and show a posteriori that it indeed goes to zero for
large T , thus justifying our power expansion. (That is, if the
lowest-order term goes to zero for large T , the higher-order
terms will go to zero even faster.)

To lowest order in ∆cn, we just solve eq. (4) where ∆cn = 0
on the right-hand side. In this case, the right-hand side is
completly known, and the zeroth order solution ∆c(0)m (τ0) at
some time τ0 is just an integral:

∆c(0)m (τ0) =− ∑
n6=m

cn(0)
∫

τ0

0
~um ·

d~un

dτ
eiT

∫
τ (λn−λm)dτ ′dτ.

If we wanted, we could then plug this solution back into
eq. (4) and integrate again to get the first-order correction,
and repeat ad nauseam. The key thing is to show that ∆c(0)m is
small, so that the series expansion converges, and in particular
to show that limT→∞ ∆c(0)m = 0.

Let’s look at each one of the integrals that we have to do in
the above ∑n6=m:

F(T ) =
∫

τ0

0
~um ·

d~un

dτ
eiT

∫
τ (λn−λm)dτ ′dτ

This may look like a mess, but it really has remarkably sim-
ple properties, that we can reveal just by a change of variables.
The key thing is the observation that we made back with the
coupled pendula: the eigenvalues (almost) never cross, be-
cause if they “tried” to there is almost always an anti-crossing
at that point. This means that λn−λm is always the same sign
and nonzero, and hence the function y(τ) =

∫
τ

0(λn− λm)dτ ′

is monotonically increasing or decreasing. This lets us do a
change of variables to τ(y). In this change of variables, the
above integral takes on the form:

F(T ) =
∫ y0

0
f (y)eiTydy, (5)

where f (y) =~um · d~un
dτ

/ dy
dτ

is just some function of y depending
only on how A (and thus un) is changing.

But eq. (5) is just a Fourier transform of f (y) (restricted
to the interval [0,y0]), where T takes the role of the “fre-
quency!” Or, if we restrict ourselves to T = 2π`/y0 for inte-
gers `, it is the `-th coefficient in a Fourier series expansion of
f (y). Either way, we know that the Fourier coefficients have
to go to zero eventually for large frequencies—the Fourier
transform/series converges whenever

∫
| f (y)|2 is finite. This

means that limT→0 F(T ) = 0, and hence ∆c(0)m → 0 for large
T (slow transitions). Q.E.D.

3.4 Smoothness and adiabaticity
Because we reduced the problem to a simple Fourier trans-
form, we can say a lot more about the problem because we
know a lot about the properties of Fourier transforms and
Fourier series. In particular, we can say how fast ∆cn → 0
as T → ∞!

The basic fact is that the rate at which a Fourier transform
or a Fourier series goes to zero for high frequencies depends

on the smoothness of the function being transformed. You
probably learned in 18.03 that the Fourier series coefficients
of a square-wave, which is discontinuous, go as ∼ 1

` for the
`-th term. And for a triangle wave, which is continuous with
discontinuous slope, the coefficients go as ∼ 1

`2 . The same
holds true in general: if k derivatives of f (y) are continuous,
the Fourier transform F(T ) goes asymptotically as 1

T k+1 . And
if f (y) is infinitely differentiable, F(T ) generally decreases
exponentially with some power of T .

So, to approach the adiabatic limit, we want not only to
change A as slowly as possible, but we also want to change it
as smoothly as possible.

4 Further reading
The adiabatic theorem has been most commonly derived in
the context of Schrodinger’s equation in quantum mechan-
ics [2, 3], where it has been extensively studied (including
cases where eigenvalues cross, or where there are a contin-
uum of eigenvalues) [4–8], but coupled-mode equations and
adiabatic theorems of the same form appear in many fields,
e.g. in electromagnetism [9, 10].
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