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It is an remarkable fact that (almost) any function can be expressed as an infinite
sum of cosines, the Fourier cosine series. For a function f (x) defined on x ∈ [0,π], one
can write f (x) as

f (x) =
a0

2
+

∞

∑
k=1

ak cos(kx)

for some coefficients ak. We can compute the a` very simply: for any given `, we inte-
grate both sides against cos(`x). This works because of orthogonality:

∫
π

0 cos(kx)cos(`x)dx
can easily be shown to be zero unless k = ` (just do the integral). Plugging the above
sum into

∫
π

0 f (x)cos(`x)dx therefore gives zero for k 6= ` and
∫

π

0 cos2(`x) = π/2 for
k = `, resulting in the equation

a` =
2
π

∫
π

0
f (x) cos(`x)dx.

Fourier claimed (without proof) in 1822 that any function f (x) can be expanded in
terms of cosines in this way, even discontinuous functions. This turned out to be false
for various badly behaved f (x), and controversy over the exact conditions for conver-
gence of the Fourier series lasted for well over a century, until the question was finally
settled by Carleson (1966) and Hunt (1968): any function f (x) where

∫
| f (x)|1+ε dx

is finite for some ε > 0 has a Fourier series that converges almost everywhere to f (x)
[except possibly at isolated points of discontinuities]. At points where f (x) has a jump
discontinuity, the Fourier series converges to the midpoint of the jump. So, as long
as one does not care about crazy divergent functions or the function value exactly at
points of discontinuity (which usually has no practical significance), Fourier’s remark-
able claim is essentially true.

Example
To illustrate the convergence of the cosine series, let’s consider an example. Let’s try
f (x) = x, which seems impossible to expand in cosines because cosines all have zero
slope at x = 0 whereas f ′(0) = 1. Nevertheless, it has a convergent cosine series that
can be computed via integration by parts:

ak =
2
π

∫
π

0
xcos(kx)dx =

2
πk

xsin(kx)
∣∣∣∣π
0
− 2

πk

∫
π

0
sin(kx)dx =

{
0 k even
− 4

πk2 k odd
.
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Figure 1: Fourier cosine series (blue lines) for the function f (x) = x (dashed black
lines), truncated to a finite number of terms (from 1 to 5), showing that the series
indeed converges everywhere to f (x).

We divided by 0 for k = 0 in the above integral, however, so we have to compute a0
separately: a0 = 2

π

∫
π

0 xdx = π . The resulting cosine-series expansion is plotted in
figure 1, truncated to 1, 2, 3, or 5 terms in the series. Already by just five terms, you
can see that the cosine series is getting quite close to f (x) = x. Mathematically, we can
see that the series coefficients ak decrease as 1/k2 asymptotically, so higher-frequency
terms have smaller and smaller contributions.
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General convergence rate
Actually, this 1/k2 decline of ak is typical for any function f (x) that does not have zero
slope at x = 0 and x = π like the cosine functions, as can be seen via integration by
parts:

ak =
2
π

∫
π

0
f (x)cos(kx)dx =

2
πk

f (x)sin(kx)
∣∣∣∣π
0
− 2

πk

∫
π

0
f ′(x)sin(kx)dx

=
2

πk2 f ′(x)cos(kx)
∣∣∣∣π
0
− 2

πk2

∫
π

0
f ′′(x)cos(kx)dx

=− 2
πk2 [ f ′(0)± f ′(π)]− 2

πk3 f ′′(x)sin(kx)
∣∣∣∣π
0
+

2
πk3

∫
π

0
f ′′′(x)sin(kx)dx

=− 2
πk2 [ f ′(0)± f ′(π)]+

2
πk4 [ f ′′′(0)± f ′′′(π)]−·· · ,

where the ± is − for even k and + for odd k. Thus, we can see that, unless f (x) has
zero first derivative at the boundaries, ak decreases as 1/k2 asymptotically. If f (x) has
zero first derivative, then ak decreases as 1/k4 unless f (x) has zero third derivative
at the boundaries (like cosine). If f (x) has zero first and third derivatives, then ak
decreases like 1/k6 unless f (x) has zero fifth derivative, and so on. (Of course, in all
of the above we assumed that f (x) was infinitely differentiable in the interior of the
integration region.) If all of the odd derivatives of f (x) are zero at the endpoints, then
ak decreases asymptotically faster than any polynomial in 1/k — typically in this case,
ak decreases exponentially fast.1

1Technically, to get ak decreasing exponentially fast (or occasionally faster), we need f (x) to have zero
odd derivatives at the endpoints and be an “analytic” function (i.e., having a convergent Taylor series) in a
neighborhood of [0,π] in the complex x plane . Analyzing this properly requires complex analysis (18.04),
however.
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