
18.336 Pset 3 Solutions

Problem 1: Staggered-grid Leap-frog

(a) For σ = 0, leap-frog works as follows. We �rst express un+1 in terms of un and vn+1/2 via,
after taking the spatial Fourier transform to replace the m dependence with eimθ:

ûn+1 = ûn + bλ(2i sin
θ

2
)v̂n+1/2,

where λ = ∆t/∆x as usual. Then we express vn+3/2 in terms of vn+1/2 and un+1 via:

v̂n+3/2 = v̂n+1/2 + cλ(2i sin
θ

2
)ûn+1.

This can be expressed as a produce of 2× 2matrices:(
ûn+1

v̂n+3/2

)
=

(
1 0

2icλ sin θ
2 1

) (
1 2ibλ sin θ

2
0 1

) (
ûn

v̂n+1/2

)
which, when we multiply this out, yields a G ampli�cation matrix of:(

1 2ibλ sin θ
2

2icλ sin θ
2 1− 4bcλ2 sin2 θ

2

)
with eigenvalues

g± = 1− 2bcλ2 sin2 θ

2
±

√(
1− 2bcλ2 sin2 θ

2

)2

− 1.

If the
√
· · · is imaginary, then |g±|2 = 1 and it is stable. If the

√
· · · is real, then g− < −1 and

it is unstable (for constant λ). Thus, stability requires a non-negative discriminant, which
means that we must have 1 − 2bcλ2 sin2 θ

2 ≥ −1 for all θ. This immediately gives the CFL

condition bcλ2 ≤ 1 (where equality gives the funny degenerate-eigenvalue case that we'll

usually just avoid).

(b) For σ > 0, the update equations become

ûn+1 =

(
1− σ∆t

2

)
ûn + bλ(2i sin θ

2)v̂n+1/2

1 + σ∆t
2

,

and similarly for v̂n+3/2. Our G ampli�cation matrix is then, after some algebra:

1
σ2

+

(
σ+ 0

2icλ sin θ
2 σ−

) (
σ− 2ibλ sin θ

2
0 σ+

)
=

1
σ2

+

(
σ+σ− σ+ · 2ibλ sin θ

2

σ− · 2icλ sin θ
2 σ+σ− − 4bcλ2 sin2 θ

2

)
,

where σ± ≡ 1± σ∆t
2 , leading to eigenvalues g of

g± =

[
σ+σ− − 2bcλ2 sin2 θ

2

]
±

√
[· · ·]2 − (σ+σ−)2

σ2
+

.

We want to show that bcλ2 ≤ 1 is a su�cient condition for stability when σ > 0 (this means
that our PML regions won't cause our system to go unstable, at least from a Von-Neumann
analysis). It is easy to show explicitly in this case that the

√
· · · is imaginary for all θ and

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ / π

v p /
sq

rt
(b

c)

λ sqrt(bc) = 0.2
λ sqrt(bc) = 0.4
λ sqrt(bc) = 0.6
λ sqrt(bc) = 0.8
λ sqrt(bc) = 1.0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ / π

v g /
sq

rt
(b

c)

λ sqrt(bc) = 0.2
λ sqrt(bc) = 0.4
λ sqrt(bc) = 0.6
λ sqrt(bc) = 0.8
λ sqrt(bc) = 1.0

Figure 1: Phase velocity vp (left) and group velocity vg (right) as a function of θ for various values

of
√

bcλ. Velocity is plotted in units of
√

bc, the exact PDE velocity.

su�ciently small ∆t, which makes |g|2 = σ2
− which is < 1 for su�ciently small ∆t. There is

actually an even simpler proof, however. Recall that we only need to show that |g|2 < 1+K∆t
for some K > 0 and for su�ciently small ∆t. In particular, it is clear by Taylor-expanding g
in ∆t that |g|2 = |g(σ = 0)|2 + O(∆t), and we already showed above that |g(σ = 0)|2 = 1 for
bcλ2 ≤ 1. Q.E.D. (In fact, we could have seen this even without computing G or g explicitly.)

(c) We take σ = 0, and consider individual Fourier components u = ei(θm−φn), v = Aei(θm−φn),
for frequencies ω∆t = φ, β∆x = θ. Plugging these into the update equations, we get

eiφ

(
1

Aeiφ/2

)
= G

(
1

Aeiφ/2

)
and thus we can immediately see that g = eiφ (recall that |g| = 1 so φ is real, which is good
because it means that group-velocity is a useful concept). We could �nd A via the eigenvectors
of G, but this is unnecessary in order to �nd the velocities.1 In particular, from the expression
for g above we immediately �nd, with some trigonometric simpli�cation:

φ(θ) = ± tan−1


√

1−
(
1− 2bcλ2 sin2 θ

2

)2(
1− 2bcλ2 sin2 θ

2

)


= ± cos−1

(
1− 2bcλ2 sin2 θ

2

)
= ±2 sin−1

(√
bcλ sin

θ

2

)
The ± corresponds to left- and right-propagating waves, which have equal and opposite ve-
locity. The phase velocity is vp = (φ/θ)/λ and the group velocity is vg = (dφ/dθ)/λ, where

2

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

u(
x,

10
)

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

x

u(
x,

51
3)

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4
u(

x,
51

0)

Figure 2: Pulse u(x, t) location at t = 10 (top), t = 510 (middle), and t = 513 (bottom). Leap-frog
result is shown as blue-solid line, whereas a theoretical Gaussian envelope is shown as black-dashed
lines. For the top (t = 10), the envelope is simply �tted to the data. For the bottom two,
the envelope location is predicted from the group velocity. (Envelope width in bottom two, and
amplitude in all three, are simply �tted for comparison.)

the derivative is

dφ

dθ
= ±

√
bcλ cos θ

2√
1− bcλ2 sin2 θ

2

.

Clearly, for θ → 0 we get both vp and vg approaching the �exact� velocity
√

bc from the PDE,

whereas for θ → π we get vg → 0. These are shown in Fig. 1 for several values of
√

bcλ. As

we might expect, as
√

bcλ approaches 1 (the stability limit), the velocities approach
√

bc (the
exact velocity).

Problem 2: PML, Matlab, and You

For this problem, I used the pset3prob2.m �le to implement the leap-frog scheme; this �le is posted
on the web site. Note that there is one crucial thing that many people overlook: for the ut equation
we are evaluating at m∆x and must use σm, whereas for the vt equation we are evaluating at
(m + 1

2)∆x and must therefore use σm+1/2; this matters in part (c), where it leads us to use
di�erent σ values for the u and v equations.

(a) At t = 10, the center of the right-traveling u(x, t) pulse is at about x = 15 (determined by
�tting a Gaussian envelope to the data, although you could also predict this analytically given
some understanding of how the source works), as shown in Fig. 2(top). In order to calculate
the appropriate group velocity, we need to know what θ is. This can be easily determined
by the temporal frequency φ = ω∆t, by inverting the dispersion relation from problem 1. In

3

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6
x 10

−4

u(
x,

30
)

0 2 4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

x

|u
(x

,3
0)

|

Figure 3: Computed u(x, 30) for quadratic-σ PML layer (blue-solid lines), on both a linear scale
(top) and absolute values on a semilog scale (bottom). Black-dashed lines show the theoretical 10−4

attenuated Gaussian pulse envelope for the exact PDE. The o�set in x is due to the fact that the
computed u(x, 30) is dominated by numerical re�ections, not by the attenuated transmitted �eld.

particular, we get:

θ(φ) = 2 sin−1

(
sin(φ/2)√

bcλ

)
and from this we �nd θ ≈ 0.50102 for ω = 5, and thus vg = 0.99384. This means that the
pulse center at t = 510 should be at 11.92 ≈ 15+0.99384 ·500 mod 20, where the mod 20 is
to account for the periodic boundary conditions (x wraps around every time it changes by 20).
We show the resulting data in Fig. 2(middle), along with a Gaussian located at the predicted
location from the group velocity. It looks reasonable, but is a bit hard to tell because the
pulses are overlapping. So, we do a third run at t = 513 to separate the pulses, which is shown
in Fig. 2(bottom). The predicted pulse center seems to coincide very well with the actual
pulse center. Note that the pulse has broadened and distorted somewhat due to dispersion!

(b) In the exact PDE, if we set σ = σ0 in the PML region of length L, pulses travelling through the

PML would be attenuated by e−σ0L/
√

bc. Thus, if we want 10−4 attenuation for L/
√

bc = 1,
we should set σ0 = 4 ln 10 ≈ 9.2103. If we do this numerically, however, we �nd that at t = 30
there is a substantial re�ected wave, with max |u(x, t)| only about 0.2565 of max |u(x, 10)|
(the incident amplitude). Much less than 10−4!

(c) For a general σ(x), the attenuation in the exact PDE would be exp(−
∫ L

0
σ(x)dx/

√
bc). In

the case of the quadratic σ(x),
∫ L

0
σ(x) = 2

∫ L/2

0
σ2x

2dx = σ2L
3/12, and thus we should

set σ2 = 48 ln 10 ≈ 110.52 to get 10−4 re�ection theoretically. Numerically, we do much

better than before: at t = 30 the amplitude max |u(x, t)| is attenuated by about 0.0013 from
the incident value. Nevertheless, this is still a factor of 10 worse than the theoretical 10−4

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

x

er
ro

r
|u

 −
 u

0|

µ = 1
µ = 10

Figure 4: Absolute error in u(x, 0.5) as computed by Crank-Nicolson with �xed µ compared to the
analytical Fourier-series solution, for µ = 1 and µ = 10 with ∆x = 0.05.

attenuation, and again it is due to numerical re�ection. To see this more clearly, we have
plotted in Fig. 3 the u(x, 30) solution (solid blue) along with the predicted Gaussian-pulse
envelope of the 10−4 attenuated right-going transmitted pulse (dashed black). On the log
scale, we can (somewhat) clearly see that the u(x, 30) solution is not Gaussian pulses: each
�pulse� is a superposition of two pulses, the attenuated transmitted pulse and, slightly ahead

of it, a much larger re�ected pulse.

Problem 3: Di�usion

The Crank-Nicolson Scheme is implemented in the �le pset3prob3.m on the web site. In particular,
it can be written in the form:

(1−A)un+1 = (1 + A)un

where A is an N ×N matrix implementing the linear operation:

Aum ≡ bµ

2
(um+1 − 2um + um−1).

So, at each time step we need to solve an equation of the form (1−A)u = w. This is sparse, so if we
were solving a very large problem we would de�nitely either use an iterative method or exploit the
fact that A is tridiagonal. However, this problem is small so we just solve it stupidly by Matlab's
backslash operator.

You might also think you have to write a program to implement the analytical solution, since
it requires an in�nite summation. However, for t 6= 0 the summation converges extremely quickly.
The terms are proportional to e−π2(2`+1)2t, which for t = 0.5 is < 10−19 for ` > 0. Thus, to machine
precision we only need the ` = 0 term!

(a) For ∆x = 0.05, we ran using the initial condition for µ = 1 and µ = 10, and the absolute error
|u− u0| is plotted in Fig. 4, where u0 is the analytical solution. The L∞ norm (max |u− u0|)
is 0.000036 for µ = 1 and 0.0057 for µ = 10, a di�erence of a factor of about 160. It is

5

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

∆x

er
ro

r
in

 u
L∞ error

L
2
 error

∆x1/2

Figure 5: L∞ and L2 error in u(x, 0.5), versus ∆x resolution, as computed by Crank-Nicolson with
�xed λ = 1. The L∞ error does not converge, while the L2 error converges as

√
∆x (exact

√
∆x

scaling shown for reference).

tempting to say that, since Crank-Nicolson has O(∆t2) error, and decreasing µ decreases ∆t
by the same amount, then we might expect the error to decrease by 100 when we decrease µ
by 10. However, matters are not so simple: if we were decrease µ further, we would �nd that
the error eventually approaches a constant, due to the fact that ∆x is �xed and we become
dominated by the spatial discretization error.

(b) For this part, we keep λ = ∆t/∆x �xed at λ = 1, so that µ = λ/∆x varies with resolution.
This still converges, more or less, since both ∆t and ∆x go to zero and Crank-Nicolson is
unconditionally stable. However, the convergence rate is much worse than the quadratic
rate one might expect for smooth initial conditions, as seen in Fig. 5. In particular, the
L∞ error max |u − u0| doesn't converge at all�it is asymptotically constant! The L2 error
(
√∑

[u(m∆x)− u0(m∆x)]2∆x) does converge, but only as
√

∆x.

6

