
18.336 Pset 2 Solutions

Problem 1: Crank-Nicolson

We'll analyze it for a general α �rst. As usual, we look at a Fourier eigenmode: let vn
m = gneimθ

and solve for the ampli�cation factor g(θ, ∆x,∆t). Then:

g = 1− a∆t

[
αg

2i sin θ

2∆x
+ (1− α)

2i sin θ

2∆x

]
,

and thus:

g =
1− iaλ(1− α) sin θ

1 + iaλα sin θ

where λ = ∆t/∆x. Therefore, |g|2 ≤ 1 when:

1 + a2λ2(1− α2) sin2 θ ≤ 1 + a2λ2α2 sin2 θ

and thus when α ≥ 0.5. In particular:

(a) For Crank-Nicolson (α = 0.5), it is unconditionally stable and |g| = 1.

(b) It is also unconditionally stable for 0.5 < α ≤ 1, where it is a dissipative �rst-order implicit
scheme.

Problem 2: Consistency and Stability

(a) We want to show that the following scheme is consistent with ut + aux = 0.

vn+1
m − vn

m

∆t
+

a

2

(
vn+1

m+1 − vn+1
m

∆x

)
+

a

2

(
vn

m − vn
m−1

∆x

)
= 0.

We plug in a smooth function u(x, t) and expand around u[m∆x, (n + 1
2 )∆t] ≡ u(0). Thus,

for example, vn+1
m+1 = u(0) + u

(0)
x ∆x + u

(0)
t

∆t
2 + u

(0)
xt

∆x∆t
2 + u

(0)
xx

∆x2

2 + u
(0)
tt

∆t2

8 + O(∆3). We
therefore obtain on the left-hand side:

u
(0)
t +

a

2

(
u(0)

x + u
(0)
xt

∆t

2
+ u(0)

xx

∆x

2

)
+

a

2

(
u(0)

x − u
(0)
xt

∆t

2
− u(0)

xx

∆x

2

)
+ O(∆2)

where the ∆x and ∆t terms cancel and we are left with u
(0)
t + au

(0)
x + O(∆2), and thus the

scheme is consistent: it is second-order accurate compared to the exact PDE at [m∆x, (n +
1
2 )∆t].

(b) We want to show that this scheme is consistent with ut + auxxx = 0:

vn+1
m − vn

m

∆t
+ a

vn
m+2 − 3vn

m+1 + 3vn
m − vn

m−1

∆x3
= 0.

Again, we Taylor expand for a smooth u(x, t), this time around u(m∆x, n∆t) ≡ u(0). Note

that vn
m+p = u([m+p]∆x, n∆t) = u(0)+u

(0)
x p∆x+u

(0)
xx

p2∆x2

2 +u
(0)
xxx

p3∆x3

6 +O(∆x4). Plugging

this in, we �nd that (only) the u(0), u
(0)
x , and u

(0)
xx terms cancel and we are left with:

u
(0)
t + O(∆t) + au(0)

xxx + O(∆x),

i.e. a consistent approximation that is �rst-order in time and space.
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Figure 1: u(x, t) vs. x for t = 0, 0.08, 0.16, · · · , 0.96 (i.e. for ∆t = 0.08), for three initial conditions:
(left) u1 = sin(x); (middle) u2 = (1− |x|) · (|x| ≤ 1); (right) u3 = sin(πx).

To analyze the stability, we plug in vn
m = gneimθ as usual, and �nd (via the usual bino-

mial expansion formula):

g = 1 + aνeiθ/2(eiθ/2 − e−iθ/2)3 = 1 + 8iaνeiθ/2 sin3(θ/2),

and thus:
|g|2 = 1 + 64a2ν2 sin6(θ/2)− 16aν sin4(θ/2),

which simpli�es to:
|g|2 = 1− 16aν

(
1− 4aν sin2(θ/2)

)
sin4(θ/2).

If ν = ∆t/∆x3 is constant, then for stability we must have |g|2 ≤ 1 for all θ (and in particular
for the worst case of θ = π), which from this expression is obviously only true when aν ≥ 0
and aν ≤ 1

4 . Q.E.D.

Problem 3: Instability

We want to implement the time-stepping scheme:

un+1
m = un

m − aλ

2
(
un

m+1 − un
m−1

)
.
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Given a vector u in Matlab that stores u(x, t) for some t and x = −1,−1 + ∆x, . . . , 3 − ∆x, this
time-step u(x, t) → u(x, t + ∆t), with periodic boundaries, is given via the Matlab command:

u = u + C * ([u(2:end),u(1)] - [u(end),u(1:end-1)]);

for C given by −aλ/2. We then construct our initial conditions via:

x = [-1:0.1:2.9];

u1 = sin(x);

u2 = (abs(x) <= 1) .* (1 - abs(x));

u3 = sin(pi * x);

Note that we only go up to x = 2.9, since x = 3 is equivalent to x = −1 by the boundary
conditions�we only want to store that point once.

(a) For each initial condition, we plotted u(x, t) vs. x for t = 0, 0.08, 0.16, · · · , 0.96 (i.e. for
∆t = 0.08). This is shown in Fig. 1. We can clearly see two features. First, the curves are
propagating to the right, as they should. Second, the curves are blowing up like crazy at
the points of discontinuity, and the curves are blowing up more slowly elsewhere. Third, the
most discontinuous function u1 blows up the fastest (u2 only has discontinuous slope, and
u3is smooth).

(b) The L2 norm vs. time-step n is plotted in Fig. 2 on a semilog scale. Clearly, all three initial
conditions result in norms that asymptote to straight lines�a straight line on a log scale
corresponds to an exponential divergence gn for some g's.

(c) As we showed in class, this scheme has g(θ) = 1− iaλ sin θ. The two discontinuous functions
u1 and u2 (note that u1 is discontinuous at the boundaries) contain all Fourier, and therefore
they should diverge (eventually) according to the worst Fourier component, θ = π/2. Thus,
they diverge as |1− iaλ|n ∼ 1.2806n. This can be seen in Fig. 2, where the u1 and u2 curves
clearly match the slope of the 1.2806n line. On the other hand, the u3 = sin(πx) has only one

Fourier component at θ = π∆x (unlike u1, u3 has the correct periodicity). Thus, it diverges
as |g(π∆x)|n ∼ 1.0301n. Our calculated curve clearly matches this slope in Fig. 2.

(d) Clearly, either u1 or u2 has to diverge the fastest, since they both contain the θ = π/2 Fourier
component that results in the largest g(θ). These both diverge at the same asymptotic
rate, but the constant factors di�er. Which one of those two diverges �rst (i.e. with the
biggest constant factor) depends on the magnitude of the π/2 Fourier component, which is
determined by the magnitude of the discontinuity. Since u1 is discontinuous and u2 only has
a discontinuous slope, u1 has the bigger Fourier component at θ = π/2 and thus diverges �rst,
as we can clearly see in Fig. 2 as well as in Fig. 1.
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Figure 2: L2 norm vs. time step n for three initial conditions u1, u2, and u3, on a semilog scale
(straight line = exponential divergence). Also shown, for reference, are the predicted |g(π/2)|n ∼
1.2806n and |g(π∆x)|n ∼ 1.0301n divergences.
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