18.336 Problem Set 2

Due Thursday, 9 March 2006.
Note that this problem set closely follows the notes from previous terms. (See 18.336 on OpenCourseWare for the lecture notes, which is linked to from http://math.mit.edu/ ${ }^{\sim}$ stevenj/18.336)

Problem 1: Crank-Nicolson

(a) Prove that the Crank-Nicolson scheme for $u_{t}=-a u_{x}$ is unconditionally stable. The C-N scheme for the discretized solution $u(m \Delta x, n \Delta t) \approx v_{m}^{n}$ is

$$
v_{m}^{n+1}=v_{m}^{n}-a \Delta t\left[\alpha \frac{v_{m+1}^{n+1}-v_{m-1}^{n+1}}{2 \Delta x}+(1-\alpha) \frac{v_{m+1}^{n}-v_{m-1}^{n}}{2 \Delta x}\right]
$$

where $\alpha=0.5$.
(b) For what other values of α is this unconditionally stable?

Problem 2: Consistency and Stability

(a) Show that the following scheme is consistent with $u_{t}+a u_{x}=0$.

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{\Delta t}+\frac{a}{2}\left(\frac{v_{m+1}^{n+1}-v_{m}^{n+1}}{\Delta x}+\frac{v_{m}^{n}-v_{m-1}^{n}}{\Delta x}\right)=0
$$

(b) Show that this scheme is consistent with $u_{t}+a u_{x x x}=0$:

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{\Delta t}+a \frac{v_{m+2}^{n}-3 v_{m+1}^{n}+3 v_{m}^{n}-v_{m-1}^{n}}{\Delta x^{3}}=0
$$

If $\nu=\Delta t / \Delta x^{3}$ is constant, show it is stable when $0 \leq a \nu \leq \frac{1}{4}$.

Problem 3: Instability

Use the unstable forward-time centered-space scheme (see notes, example 2, section 1.3) to solve $u_{t}=-a u_{x}$ on the interval $[-1,3]$, with periodic boundary conditions $u(x, t)=u(x+4, t)$, for the following three sets of initial data:

- $u_{1}(x, 0)=\sin x$
- $u_{2}(x, 0)= \begin{cases}1-|x|, & |x| \leq 1 \\ 0, & \text { otherwise. }\end{cases}$
- $u_{3}(x, 0)=\sin (\pi x)$

Use $a=1, \Delta x=0.1$, and $\Delta t / \Delta x=\lambda=0.8$.
(a) For each initial condition, plot $u(x, t)$ versus x for $0 \leq t \leq 1$ (one plot per initial condition, with one curve per time step).
(b) Compute \& plot the L_{2} norm for $0 \leq t \leq 10$ on a semilog scale, show that each one diverges as g^{n} for some constant g ($n=$ time step).
(c) Predict g from Von-Neumann analysis as the class/notes, and compare.
(d) Which initial condition diverges most quickly, and why?

Hint: Given a vector u in Matlab that stores $u(x, t)$ for some t and $x=-1,-1+\Delta x, \ldots, 3-\Delta x$, you should be able to implement the time-step $u(x, t) \rightarrow u(x, t+\Delta t)$ via the Matlab command:

$$
u=u+C *([u(2: e n d), u(1)]-[u(e n d), u(1: e n d-1)]) ;
$$

for some constant C.

