G: simple graph with d vertices

V: vertex set of G

E: edge set of G

Coloring of G:

any $\boldsymbol{\kappa}: V \to \mathbb{P} = \{1, 2, \ldots\}$

Proper coloring:

$$uv \in E \Rightarrow \kappa(u) \neq \kappa(v)$$

 $\chi_G(n)$: number of proper $\kappa: V \to [n] = \{1, 2, \dots, n\}$

(the **chromatic polynomial** of G)

 $\chi_G(n)$ is a monic polynomial in n with integer coefficients, of degree d, \ldots

variables
$$\boldsymbol{x} = (x_1, x_2, \ldots)$$

 $\boldsymbol{X}_{\boldsymbol{G}} = \sum_{\text{proper } \kappa: V \to \mathbb{P}} x^{\kappa},$

the **chromatic symmetric function** of G, where

$$x^{\kappa} = x_1^2 x_2 x_3^2 x_5$$

For any symmetric function f(x), write

$$f(1^n) = f(\underbrace{1,\ldots,1}_{n \ 1's}).$$

Thus

$$X_G(1^n) = \chi_G(n).$$

Note. $X_G(x)$ is a homogeneous symmetric function (formal power series) of degree d with integer coefficients in the variables x_1, x_2, \ldots

E.g., $X_{\text{point}} = x_1 + x_2 + x_3 + \dots = e_1$. More generally, let

$$e_k = \sum_{1 \le i_1 < \dots < i_k} x_{i_1} \cdots x_{i_k},$$

the kth elementary symmetric function. Then

$$X_{K_n} = n! e_n$$
$$X_{G+H} = X_G \cdot X_H$$

Open: If T and T' are nonisomorphic trees, does $X_T \neq X_{T'}$? (presumably no, but true for $d \leq 9$)

Acyclic orientation: an orientation \mathfrak{o} of the edges of G that contains no directed cycle.

Theorem (RS, 1973). Let a(G) denote the number of acyclic orientations of G. Then

$$a(G) = (-1)^d \chi_G(-1).$$

Easy to prove by induction, by deletioncontraction, bijectively, geometrically, etc. Write $\boldsymbol{\lambda} \vdash \boldsymbol{d}$ if λ is a **partition** of d, i.e., $\lambda = (\lambda_1, \lambda_2, \ldots)$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0, \quad \sum \lambda_i = d.$

Let

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots$$

Fundamental theorem of symmetric functions. Every symmetric function can be uniquely written as a polynomial in the e_i 's, or equivalently as a linear combination of e_{λ} 's.

Note that if $\lambda \vdash d$, then

$$e_{\lambda}(1^n)|_{n=-1} = \prod \begin{pmatrix} -1\\\lambda_i \end{pmatrix} = (-1)^d.$$

Hence if $X_G = \sum_{\lambda \vdash d} c_\lambda e_\lambda$, then $a(G) = \sum_{\lambda \vdash d} c_\lambda e_\lambda$

$$a(G) = \sum_{\lambda \vdash d} c_{\lambda}.$$

Sink of an acylic orientation (or digraph): vertex for which no edges point out (including an isolated vertex).

 $a_k(G)$: number of acyclic orientations of G with k sinks

 $\ell(\lambda)$: length (number of parts) of λ

Theorem. Let $X_G = \sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$\sum_{\substack{\lambda\vdash d\\\ell(\lambda)=k}}c_\lambda=a_k(G).$$

Proof based on quasisymmetric functions.

Open: Is there a simpler proof?

Example. Let G be the **claw** K_{13} .

Then

 $X_G = 4e_4 + 5e_{31} - 2e_{22} + e_{211}.$ Thus $a_1(G) = 1$, $a_2(G) = 5 - 2 = 3$, $a_3(G) = 1$, a(G) = 5.

When is X_G *e***-positive** (i.e., each $c_{\lambda} \geq 0$)?

Let P be a finite poset. Let 3 + 1denote the disjoint union of a 3-element chain and 1-element chain:

P is (3+1)-free if it contains no induced 3+1.

(3+1)-free

not

inc(P): incomparability graph of P(vertices are elements of P; uv is an edge if neither $u \leq v$ nor $v \leq u$)

P inc(P)

Conjecture. If P is $(\mathbf{3} + \mathbf{1})$ -free, then $X_{inc(P)}$ is *e*-positive.

True if P is 3 - free, i.e., X_G is epositive if G is the complement of a bipartite graph. More generally, X_G is e-positive if G is the complement of a
triangle-free (or $K_3 - \text{free}$) graph.

Suggests that for incomparability graphs of $(\mathbf{3} + \mathbf{1})$ -free posets, c_{λ} counts acyclic orientations of G with $\ell(\lambda)$ sinks and some further property depending on λ .

Open: What is this property?

Define a graph to be **clawfree** if it contains no induced K_{13} . Since $K_{13} =$ $\operatorname{inc}(\mathbf{3} + \mathbf{1})$ and no other poset Q has $\operatorname{inc}(Q) = K_{13}$, an incomparability graph $\operatorname{inc}(P)$ is clawfree if and only if P is (3+1)-free.

Example: X_G need not be *e*-positive for clawfree G

 $X_G = 12e_6 + 18e_{51} + 12e_{42} - 6e_{33} + 6e_{411} + 6e_{321}$

We can define the **Schur function** s_{λ} by

$$s_{\lambda} = \det \left(e_{\lambda'_i - i + j} \right)_{i,j=1}^{\ell(\lambda')},$$

where $\lambda' = (\lambda'_1, \lambda'_2, ...)$ is the **conju**gate partition to λ (i.e., diagram is transposed).

E.g.,
$$\lambda = (3, 2, 1, 1), \lambda' = (4, 2, 1),$$

 $s_{3211} = \begin{vmatrix} e_4 & e_5 & e_6 \\ e_1 & e_2 & e_3 \\ 0 & 1 & e_1 \end{vmatrix}$
 $= e_{61} + e_{421} - e_{43} - e_{511}.$

Note. e_{λ} is *s*-positive, so *e*-positive \Rightarrow *s*-positive (but not conversely).

Theorem (Gasharov). If P is $(\mathbf{3} + \mathbf{1})$ free then $X_{inc(P)}$ is s-positive.

Conjecture (Gasharov, as a question) If G is clawfree then X_G is spositive.

Refinement: Let #P = d. A *P***-tableau of shape \lambda \vdash d is a map \tau : P \rightarrow \mathbb{P} satisfying:**

(a) For all *i* we have $\lambda_i = \#\tau^{-1}(i)$.

- (b) τ is a proper coloring of inc(P), i.e., if $\tau(u) = \tau(v)$ then $u \leq v$ or $v \leq u$.
- (c) By (b) the elements of the set $\tau^{-1}(i)$ form a chain, say $u_1 < u_2 < \cdots < u_{\lambda_i}$. Similarly let the elements of $\tau^{-1}(i+1)$ be $v_1 < v_2 < \cdots < v_{\lambda_{i+1}}$. Then for all i and all $1 \leq j \leq \lambda_{i+1}$, we require that $v_j \not < u_j$.

If P is a chain then \exists simple bijection between P-tableaux of shape λ and standard Young tableaux (SYT) of shape λ . Thus a P-tableau of shape λ is a generalization of a SYT of shape λ .

 $f^{\lambda}(P)$: # *P*-tableaux of shape λ .

Theorem (Gasharov). Let P be $(\mathbf{3} + \mathbf{1})$ free and G = inc(P). Then

$$X_G = \sum_{\lambda \vdash d} f^{\lambda}(P) s_{\lambda}.$$

Proof: involution argument.

If P is a chain, RSK gives a bijective proof.

Open: Find a bijective proof of Gasharov's theorem (special case by Sundquist, Wagner, & West).

Nice graphs and *s*-positivity

A stable partition of G of type $\lambda \vdash d$ is a partition of V into stable subsets (or independent subsets or cocliques) of sizes $\lambda_1, \lambda_2, \ldots$

G is **nice** if whenever G has a stable partition of type λ and $\mu \leq \lambda$, then G has a stable partition of type μ ,

Example. K_{13} is not nice (\exists stable partition of type (3, 1) but not (2, 2)).

Proposition. If X_G is s-positive, then G is nice.

Proposition. G and all induced subgraphs are nice if and only if Gis clawfree. **Conjecture** (Griggs). If B_n is a boolean algebra of rank n (subsets of an n-set ordered by inclusion) then $inc(B_n)$ is nice.

Open: Is $X_{inc}(B_n)$ *s*-positive? Is $X_{inc}(L)$ *s*-positive for distributive lattices L (unlikely)?

Note. Modular lattices need not be nice.

Real zeros and *s***-positivity**

 $c_i = c_i(G)$: number of *i*-element stable subsets of vertices

E.g.:

Turan's theorem. If G has d vertices and no induced K_r then

 $\#E \leq f(d,r)$

for an explicit integer f(d, r). Equivalently, if $c_1(\overline{G}) = d$ and $c_r(\overline{G}) = 0$ then

 $c_2(\overline{G}) \le f(d, r).$

Open: Characterize the the vectors (c_1, c_2, \ldots, c_d) (*f*-vectors of stable set complexes).

Stable set polynomial:

$$C_G(t) = \sum_{i \ge 0} c_i(G) t^i$$

Example. $C_{K_d}(t) = 1 + dt$ $C_{dK_1}(t) = C_{\overline{K_d}}(t) = \sum {\binom{d}{i}} t^i = (1+t)^d$

Conjecture (Hamidoune). If G is clawfree, then $C_G(t)$ has only real zeros.

Theorem (consequence of Aissen-Schoenberg-Whitney, Edrei, Thoma) Let $P(t) \in \mathbb{R}[t], P(0) = 1$. Define

$$F_P(x) = \prod_i P(x_i).$$

TFAE:

Let $\alpha: V \to \mathbb{N}$.

 G^{α} : replace $v \in V$ with $K_{\alpha(v)}$, and connect a vertex of $K_{\alpha(u)}$ with one of $K_{\alpha(v)}$ if $uv \in E$.

Easy facts.

- If P is $(\mathbf{3} + \mathbf{1})$ -free and $G = \operatorname{inc}(P)$, then $G^{\alpha} = \operatorname{inc}(P^{\alpha})$ for some $(\mathbf{3} + \mathbf{1})$ free P^{α} .
- If G is clawfree, then G^{α} is clawfree.
- $\prod_i C_G(x_i) = \sum_{\alpha: V \to \mathbb{N}} X_{G^{\alpha}}$

Corollary. (a) If P is $(\mathbf{3} + \mathbf{1})$ -free and $G = \operatorname{inc}(P)$, then $C_G(t)$ has only real zeros.

(b) Let G be clawfree. If Gasharov's question whether X_G is s-positive has an affirmative answer, then Hamidoune's conjecture that $C_G(t)$ has only real zeros is true.

General question. What polynomials P(t) can be proved "combinatorially" to have only real zeros by showing that $\prod P(x_i)$ is *s*-positive or *e*-positive?

Jacobi-Trudi immanants

 $A = (a_{ij})$: $n \times n$ matrix

 $\boldsymbol{\chi}^{\boldsymbol{\lambda}}$: irreducible character of \mathfrak{S}_n indexed by $\boldsymbol{\lambda} \vdash n$

Define the **immanant**

$$\operatorname{Imm}_{\lambda}(A) = \sum_{w \in \mathfrak{S}_n} \chi^{\lambda}(w) \prod_{i=1}^n a_{i,w(i)}.$$

$$\lambda = (1^n) \Rightarrow \operatorname{Imm}_{\lambda}(A) = \det(A)$$
$$\lambda = (n) \Rightarrow \operatorname{Imm}_{\lambda}(A) = \operatorname{per}(A).$$

Let $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ and $\boldsymbol{\nu} = (\nu_1, \dots, \nu_n)$ be partitions with $\nu \subseteq \mu$.

Define

$$\begin{aligned} \boldsymbol{H}_{\boldsymbol{\mu}/\boldsymbol{\nu}} &= \boldsymbol{H}_{\boldsymbol{\mu}/\boldsymbol{\nu}}(\boldsymbol{x}) \\ &= \left[h_{\mu_i - \nu_j + j - i}(\boldsymbol{x}) \right]_{1 \leq i, j \leq n}, \end{aligned}$$

the **Jacobi-Trudi matrix** corresponding to μ/ν .

Fact: det $H_{\mu/\nu} = s_{\mu/\nu}$

 m_{λ} : monomial symmetric function

Theorem (conjectured by Goulden-Jackson, proved by Greene). $\text{Imm}_{\lambda}(H_{\mu/\nu})$ is *m*-positive.

Theorem (Haiman). $\operatorname{Imm}_{\lambda}(H_{\mu/\nu})$ is s-positive.

Haiman's proof is based on Kazhdan-Lusztig theory.

Define

$$\begin{split} \boldsymbol{F}_{\boldsymbol{\mu}/\boldsymbol{\nu}}(\boldsymbol{x},\boldsymbol{y}) &= \sum_{\boldsymbol{\lambda}\vdash n} \operatorname{Imm}_{\boldsymbol{\lambda}}(H_{\boldsymbol{\mu}/\boldsymbol{\nu}})(\boldsymbol{x})s_{\boldsymbol{\lambda}}(\boldsymbol{y}) \\ &= \sum_{\boldsymbol{w}\in\mathfrak{S}_{n}} h_{\boldsymbol{\mu}+\boldsymbol{\delta}-\boldsymbol{w}(\boldsymbol{\nu}+\boldsymbol{\delta})}(\boldsymbol{x})p_{\boldsymbol{\rho}(\boldsymbol{w})}(\boldsymbol{y}). \end{split} \\ \end{split} \\ \text{Define } E^{\boldsymbol{\theta}}_{\boldsymbol{\mu}/\boldsymbol{\nu}} \text{ for } \boldsymbol{\theta}\vdash N := |\boldsymbol{\mu}/\boldsymbol{\nu}| \text{ by} \\ F_{\boldsymbol{\mu}/\boldsymbol{\nu}}(\boldsymbol{x},\boldsymbol{y}) &= \sum_{\boldsymbol{\theta}\vdash N} s_{\boldsymbol{\theta}}(\boldsymbol{x})\boldsymbol{E}^{\boldsymbol{\theta}}_{\boldsymbol{\mu}/\boldsymbol{\nu}}(\boldsymbol{y}). \end{split}$$

Conjecture (Stembridge, equivalently). $E^{\theta}_{\mu/\nu}$ is *h*-positive.

Theorem (RS & Stembridge). *TFAE*:

- $E_{\mu/\nu}^{(N)}$ is h-positive.
- Let P be (3+1)-free and 2+2-free, i.e., a semiorder or unit interval order, and let G = inc(P). Then X_G is e-positive.