G : simple graph with d vertices
\boldsymbol{V} : vertex set of G
\boldsymbol{E} : edge set of G
Coloring of G :

$$
\text { any } \boldsymbol{\kappa}: V \rightarrow \mathbb{P}=\{1,2, \ldots\}
$$

Proper coloring:

$$
u v \in E \Rightarrow \kappa(u) \neq \kappa(v)
$$

$\chi_{G}(n)$: number of proper

$$
\kappa: V \rightarrow[n]=\{1,2, \ldots, n\}
$$

(the chromatic polynomial of G)
$\chi_{G}(n)$ is a monic polynomial in n with integer coefficients, of degree d, \ldots

$$
\begin{aligned}
& \text { variables } \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right) \\
& \text { (he chromatic symmetric function } \\
& \text { of } G \text {, where } x_{\text {proper } \kappa: V \rightarrow \mathbb{P}}^{\kappa}, x^{\kappa}=\prod_{v \in V} x_{\kappa(v)} \\
& =x_{1}^{\# \kappa^{-1}(1)} x_{2}^{\# \kappa^{-1}(2)} \cdots \\
& x^{\kappa}=x_{1}^{2} x_{2} x_{3}^{2} x_{5}
\end{aligned}
$$

For any symmetric function $f(x)$, write

$$
f\left(\mathbf{1}^{n}\right)=f(\underbrace{1, \ldots, 1}_{n 1^{\prime} \mathrm{s}}) .
$$

Thus

$$
X_{G}\left(1^{n}\right)=\chi_{G}(n)
$$

Note. $X_{G}(x)$ is a homogeneous symmetric function (formal power series) of degree d with integer coefficients in the variables x_{1}, x_{2}, \ldots
E.g., $X_{\text {point }}=x_{1}+x_{2}+x_{3}+\cdots=e_{1}$. More generally, let

$$
e_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}
$$

the k th elementary symmetric function. Then

$$
\begin{aligned}
X_{K_{n}} & =n!e_{n} \\
X_{G+H} & =X_{G} \cdot X_{H}
\end{aligned}
$$

Open: If T and T^{\prime} are nonisomorphic trees, does $X_{T} \neq X_{T^{\prime}}$? (presumably no, but true for $d \leq 9$)

Acyclic orientation: an orientation \mathfrak{o} of the edges of G that contains no directed cycle.

Theorem (RS, 1973). Let $\boldsymbol{a}(\boldsymbol{G})$ denote the number of acyclic orientations of G. Then

$$
a(G)=(-1)^{d} \chi_{G}(-1)
$$

Easy to prove by induction, by deletioncontraction, bijectively, geometrically, etc.

Write $\boldsymbol{\lambda} \vdash \boldsymbol{d}$ if λ is a partition of d, i.e., $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ where

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \quad \sum \lambda_{i}=d
$$

Let

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots
$$

Fundamental theorem of symmetric functions. Every symmetric function can be uniquely written as a polynomial in the e_{i} 's, or equivalently as a linear combination of e_{λ} 's.

Note that if $\lambda \vdash d$, then

$$
\left.e_{\lambda}\left(1^{n}\right)\right|_{n=-1}=\prod\binom{-1}{\lambda_{i}}=(-1)^{d}
$$

Hence if $X_{G}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$, then

$$
a(G)=\sum_{\lambda \vdash d} c_{\lambda} .
$$

Sink of an acylic orientation (or digraph): vertex for which no edges point out (including an isolated vertex).
$a_{k}(G)$: number of acyclic orientations of G with k sinks
$\boldsymbol{\ell}(\boldsymbol{\lambda})$: length (number of parts) of λ
Theorem. Let $X_{G}=\sum_{\lambda \vdash d} c_{\lambda} e_{\lambda}$. Then

$$
\sum_{\substack{\lambda \vdash d \\ \ell(\lambda)=k}} c_{\lambda}=a_{k}(G)
$$

Proof based on quasisymmetric functions.

Open: Is there a simpler proof?

Example. Let G be the claw K_{13}.

Then

$$
X_{G}=4 e_{4}+5 e_{31}-2 e_{22}+e_{211} .
$$

Thus $a_{1}(G)=1, a_{2}(G)=5-2=3$, $a_{3}(G)=1, a(G)=5$.

When is X_{G} e-positive (i.e., each $\left.c_{\lambda} \geq 0\right)$?

Let P be a finite poset. Let $3+1$ denote the disjoint union of a 3 -element chain and 1 -element chain:

P is $(3+1)$-free if it contains no induced $3+1$.

(3+1)-free

not
$\operatorname{inc}(\boldsymbol{P})$: incomparability graph of P (vertices are elements of $P ; u v$ is an edge if neither $u \leq v$ nor $v \leq u$)

$P \quad \operatorname{inc}(\mathbf{P})$
Conjecture. If P is $(\mathbf{3}+\mathbf{1})$-free, then $X_{\mathrm{inc}(P)}$ is e-positive.

True if P is $\mathbf{3}$ - free, i.e., X_{G} is $e-$ positive if G is the complement of a bipartite graph. More generally, X_{G} is e-positive if G is the complement of a triangle-free (or $\boldsymbol{K}_{\mathbf{3}}$ - free) graph.

Suggests that for incomparability graphs of $(\mathbf{3}+\mathbf{1})$-free posets, c_{λ} counts acyclic orientations of G with $\ell(\lambda)$ sinks and some further property depending on λ.

Open: What is this property?

Define a graph to be clawfree if it contains no induced K_{13}. Since $K_{13}=$ $\operatorname{inc}(\mathbf{3}+\mathbf{1})$ and no other poset Q has $\operatorname{inc}(Q)=K_{13}$, an incomparability graph $\operatorname{inc}(P)$ is clawfree if and only if P is $(3+1)$-free .

Example: X_{G} need not be e-positive for clawfree G

$X_{G}=12 e_{6}+18 e_{51}+12 e_{42}-6 e_{33}+6 e_{411}+6 e_{321}$

We can define the Schur function $s_{\boldsymbol{\lambda}}$ by

$$
s_{\lambda}=\operatorname{det}\left(e_{\lambda_{i}^{\prime}-i+j}\right)_{i, j=1}^{\ell\left(\lambda^{\prime}\right)},
$$

where $\boldsymbol{\lambda}^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ is the conjugate partition to λ (i.e., diagram is transposed).

$$
\text { E.g., } \begin{aligned}
\lambda & =(3,2,1,1), \lambda^{\prime}=(4,2,1), \\
s_{3211} & =\left|\begin{array}{lll}
e_{4} & e_{5} & e_{6} \\
e_{1} & e_{2} & e_{3} \\
0 & 1 & e_{1}
\end{array}\right| \\
& =e_{61}+e_{421}-e_{43}-e_{511} .
\end{aligned}
$$

Note. e_{λ} is s-positive, so e-positive $\Rightarrow s$-positive (but not conversely).

Theorem (Gasharov). If P is ($\mathbf{3}+\mathbf{1}$)free then $X_{\mathrm{inc}(P)}$ is s-positive.

Conjecture (Gasharov, as a question) If G is clawfree then X_{G} is spositive.

Refinement: Let $\# P=d$. A \boldsymbol{P} tableau of shape $\boldsymbol{\lambda} \vdash \boldsymbol{d}$ is a map $\tau: P \rightarrow \mathbb{P}$ satisfying:
(a) For all i we have $\lambda_{i}=\# \tau^{-1}(i)$.
(b) τ is a proper coloring of $\operatorname{inc}(P)$, i.e., if $\tau(u)=\tau(v)$ then $u \leq v$ or $v \leq u$.
(c) By (b) the elements of the set $\tau^{-1}(i)$ form a chain, say $u_{1}<u_{2}<\cdots<$ $u_{\lambda_{i}}$. Similarly let the elements of $\tau^{-1}(i+1)$ be $v_{1}<v_{2}<\cdots<v_{\lambda_{i+1}}$. Then for all i and all $1 \leq j \leq \lambda_{i+1}$, we require that $v_{j} \nless u_{j}$.

If P is a chain then \exists simple bijection between P-tableaux of shape λ and standard Young tableaux (SYT) of shape λ. Thus a P-tableau of shape λ is a generalization of a SYT of shape λ.

$$
f^{\lambda}(\boldsymbol{P}): \# P \text {-tableaux of shape } \lambda \text {. }
$$

Theorem (Gasharov). Let P be ($\mathbf{3}+\mathbf{1}$)free and $G=\operatorname{inc}(P)$. Then

$$
X_{G}=\sum_{\lambda \vdash d} f^{\lambda}(P) s_{\lambda}
$$

Proof: involution argument.
If P is a chain, RSK gives a bijective proof.

Open: Find a bijective proof of Gasharov's theorem (special case by Sundquist, Wagner, \& West).

Nice graphs and s-positivity
A stable partition of G of type $\lambda \vdash d$ is a partition of V into stable subsets (or independent subsets or cocliques) of sizes $\lambda_{1}, \lambda_{2}, \ldots$.

$\mu \leq \lambda:|\lambda|=|\mu|$ and
$\forall i \mu_{1}+\cdots+\mu_{i} \leq \lambda_{1}+\cdots+\lambda_{i}$
(dominance order)
G is nice if whenever G has a stable partition of type λ and $\mu \leq \lambda$, then G has a stable partition of type μ,

Example. K_{13} is not nice $(\exists$ stable partition of type $(3,1)$ but not $(2,2))$.

Proposition. If X_{G} is s-positive, then G is nice.

Proposition. G and all induced subgraphs are nice if and only if G is clawfree.

Conjecture (Griggs). If B_{n} is a boolean algebra of rank n (subsets of an n-set ordered by inclusion) then $\operatorname{inc}\left(B_{n}\right)$ is nice.

Open: Is $X_{\left.\operatorname{inc}\left(B_{n}\right)^{s} \text {-positive? Is } X_{\operatorname{inc}(L)}\right)}$ s-positive for distributive lattices L (unlikely)?

Note. Modular lattices need not be nice.

Real zeros and s-positivity

$c_{i}=c_{i}(G):$ number of i-element stable subsets of vertices
E.g.:

Turan's theorem. If G has d vertices and no induced K_{r} then

$$
\# E \leq f(d, r)
$$

for an explicit integer $f(d, r)$. Equivalently, if $c_{1}(\bar{G})=d$ and $c_{r}(\bar{G})=0$ then

$$
c_{2}(\bar{G}) \leq f(d, r)
$$

Open: Characterize the the vectors $\left(c_{1}, c_{2}, \ldots, c_{d}\right)(f$-vectors of stable set complexes).

Stable set polynomial:

$$
C_{G}(t)=\sum_{i \geq 0} c_{i}(G) t^{i}
$$

Example. $C_{K_{d}}(t)=1+d t$
$C_{d K_{1}}(t)=C_{\overline{K_{d}}}(t)=\sum\binom{d}{i} t^{i}=(1+t)^{d}$
Conjecture (Hamidoune). If G is clawfree, then $C_{G}(t)$ has only real zeros.

Theorem (consequence of Aissen-Schoen-berg-Whitney, Edrei, Thoma) Let $P(t) \in$ $\mathbb{R}[t], P(0)=1$. Define
 $$
F_{P}(x)=\prod_{i} P\left(x_{i}\right)
$$

TFAE:
(a) $F_{P}(x)$ is s-positive.
(b) $F_{P}(x)$ is e-positive.
(c) All the zeros of $P(t)$ are negative real numbers.

Let $\alpha: V \rightarrow \mathbb{N}$.

G^{α} : replace $v \in V$ with $K_{\alpha(v)}$, and connect a vertex of $K_{\alpha(u)}$ with one of $K_{\alpha(v)}$ if $u v \in E$.

$\alpha(G)$

G^{α}

Easy facts.

- If P is $(\mathbf{3}+\mathbf{1})$-free and $G=\operatorname{inc}(P)$, then $G^{\alpha}=\operatorname{inc}\left(P^{\alpha}\right)$ for some $(\mathbf{3}+\mathbf{1})$ free P^{α}.
- If G is clawfree, then G^{α} is clawfree.
- $\prod_{G} C_{G}\left(x_{i}\right)=\sum X_{G^{\alpha}}$ $\alpha: V \rightarrow \mathbb{N}$

Corollary. (a) If P is $(\mathbf{3}+\mathbf{1})$-free

 and $G=\operatorname{inc}(P)$, then $C_{G}(t)$ has only real zeros.(b) Let G be clawfree. If Gasharov's question whether X_{G} is s-positive has an affirmative answer, then Hamidoune's conjecture that $C_{G}(t)$ has only real zeros is true.

General question. What polynomials $P(t)$ can be proved "combinatorially" to have only real zeros by showing that $\prod P\left(x_{i}\right)$ is s-positive or e-positive?

Jacobi-Trudi immanants

$$
\begin{aligned}
& A=\left(a_{i j}\right): n \times n \text { matrix } \\
& \chi^{\lambda}: \text { irreducible character of } \mathfrak{S}_{n} \text { in- } \\
& \text { dexed by } \lambda \vdash n \\
& \text { Define the immanant }
\end{aligned}
$$ $\operatorname{Imm}_{\boldsymbol{\lambda}}(\boldsymbol{A})=\sum_{w \in \mathfrak{S}_{n}} \chi^{\lambda}(w) \prod_{i=1}^{n} a_{i, w(i)}$.

$$
\begin{aligned}
\lambda=\left(1^{n}\right) & \Rightarrow \operatorname{Imm}_{\lambda}(A)=\operatorname{det}(A) \\
\lambda=(n) & \Rightarrow \operatorname{Imm}_{\lambda}(A)=\operatorname{per}(A)
\end{aligned}
$$

$$
\text { Let } \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right) \text { and } \boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{n}\right)
$$ be partitions with $\nu \subseteq \mu$.

Define

$$
\begin{aligned}
\boldsymbol{H}_{\boldsymbol{\mu} / \boldsymbol{\nu}} & =\boldsymbol{H}_{\boldsymbol{\mu} / \boldsymbol{\nu}}(\boldsymbol{x}) \\
& =\left[h_{\mu_{i}-\nu_{j}+j-i}(x)\right]_{1 \leq i, j \leq n}
\end{aligned}
$$

the Jacobi-Trudi matrix correspond- ing to μ / ν.

Fact: $\operatorname{det} H_{\mu / \nu}=s_{\mu / \nu}$
m_{λ} : monomial symmetric function
Theorem (conjectured by GouldenJackson, proved by Greene). $\operatorname{Imm}_{\lambda}\left(H_{\mu / \nu}\right)$ is m-positive.

Theorem (Haiman). $\operatorname{Imm}_{\lambda}\left(H_{\mu / \nu}\right)$ is s-positive.

Haiman's proof is based on KazhdanLusztig theory.

Define

$$
\begin{aligned}
\boldsymbol{F}_{\boldsymbol{\mu} / \nu}(\boldsymbol{x}, \boldsymbol{y}) & =\sum_{\lambda \vdash n} \operatorname{Imm}_{\lambda}\left(H_{\mu / \nu}\right)(x) s_{\lambda}(y) \\
& =\sum_{w \in \mathfrak{S}_{n}} h_{\mu+\delta-w(\nu+\delta)}(x) p_{\rho(w)}(y)
\end{aligned}
$$

Define $E_{\mu / \nu}^{\theta}$ for $\theta \vdash N:=|\mu / \nu|$ by

$$
F_{\mu / \nu}(x, y)=\sum_{\theta \vdash N} s_{\theta}(x) \boldsymbol{E}_{\boldsymbol{\mu} / \nu}^{\theta}(y)
$$

Conjecture (Stembridge, equivalently). $E_{\mu / \nu}^{\theta}$ is h-positive.

Theorem (RS \& Stembridge). TFAE:

- $E_{\mu / \nu}^{(N)}$ is h-positive.
- Let P be $(\mathbf{3}+\mathbf{1})$-free and $\mathbf{2 + 2}$-free, i.e., a semiorder or unit interval order, and let $G=\operatorname{inc}(P)$. Then X_{G} is e-positive.

