Wishful Thinking as a Proof Technique

First example

\boldsymbol{P} : finite p-element poset
$\boldsymbol{\omega}: P \rightarrow\{1,2, \ldots, p\}:$ any bijection (labeling)
$(\boldsymbol{P}, \boldsymbol{\omega})$-partition: a map $\sigma: P \rightarrow \mathbb{N}$ such that

$$
\begin{aligned}
s \leq t & \Rightarrow \sigma(s) \geq \sigma(t) \\
s<t, \omega(s)>\omega(t) & \Rightarrow \sigma(s)>\sigma(t)
\end{aligned}
$$

$\mathcal{A}_{\boldsymbol{P}, \omega}$: set of all (P, ω)-partitions σ

An equivalence relation

Define labelings ω, ω^{\prime} to be equivalent if $\mathcal{A}_{P, \omega}=\mathcal{A}_{P, \omega^{\prime}}$.

How many equivalence classes?

An equivalence relation

Define labelings ω, ω^{\prime} to be equivalent if $\mathcal{A}_{P, \omega}=\mathcal{A}_{P, \omega^{\prime}}$.

How many equivalence classes?
Easy result: the number of equivalence classes is the number $\mathbf{a o}\left(H_{P}\right)$ of acyclic orientations of the Hasse diagram \boldsymbol{H}_{P} of P.

Number of acyclic orientations

For any (finite) graph G, we can ask for the number ao (G) of acyclic orientations.

Number of acyclic orientations

For any (finite) graph G, we can ask for the number ao (G) of acyclic orientations.

No obvious formula.

Deletion-contraction

A function f from graphs to an abelian group (such as \mathbb{Z}) is a deletion-contraction invariant or Tutte-Grothendieck invariant if for any edge e, not a loop or isthmus,

$$
f(G)=f(G-e) \pm f(G / e)
$$

Deletion-contraction

A function f from graphs to an abelian group (such as \mathbb{Z}) is a deletion-contraction invariant or Tutte-Grothendieck invariant if for any edge e, not a loop or isthmus,

$$
f(G)=f(G-e) \pm f(G / e)
$$

Wishful thought: could ao (G) be a deletion-contraction invariant?

Deletion-contraction

A function f from graphs to an abelian group (such as \mathbb{Z}) is a deletion-contraction invariant or Tutte-Grothendieck invariant if for any edge e, not a loop or isthmus,

$$
f(G)=f(G-e) \pm f(G / e)
$$

Wishful thought: could ao (G) be a deletion-contraction invariant?

It is!

Deletion-contraction

A function f from graphs to an abelian group (such as \mathbb{Z}) is a deletion-contraction invariant or Tutte-Grothendieck invariant if for any edge e, not a loop or isthmus,

$$
f(G)=f(G-e) \pm f(G / e)
$$

Wishful thought: could ao (G) be a deletion-contraction invariant?

It is!

Conclusion

Deletion-contraction invariants (of matroids) extensively studied by Brylawski. Routine to show that if G has p vertices, then

$$
\mathrm{ao}(G)=(-1)^{p} \chi_{G}(-1)
$$

where χ_{G} is the chromatic polynomial of G.

Second example

$\mathfrak{S}_{n}:$ symmetric group on $\{1,2, \ldots, n\}$ s_{i} : the adjacent transposition $(i, i+1)$,
$1 \leq i \leq n-1$
$\ell(\boldsymbol{w})$: length (number of inversions) of $w \in \mathfrak{S}_{n}$, and the least p such that $w=s_{i_{1}} \cdots s_{i_{p}}$ reduced decomposition of w : a sequence $\left(c_{1}, c_{2}, \ldots, c_{p}\right) \in[n-1]^{p}$, where $p=\ell(w)$, such that

$$
w=s_{c_{1}} s_{c_{2}} \cdots s_{c_{p}}
$$

More definitions

$\boldsymbol{R}(\boldsymbol{w})$: set of reduced decompositions of w
$\boldsymbol{r}(\boldsymbol{w})=\# R(w)$
\boldsymbol{w}_{0} : the longest element $n, n-1, \ldots, 1$ in \mathfrak{S}_{n}, of length $\binom{n}{2}$

Example. $w_{0}=321 \in \mathfrak{S}_{3}$:
$R\left(w_{0}\right)=\{(1,2,1),(2,1,2)\}, r\left(w_{0}\right)=2$.

A conjecture

$\boldsymbol{f}(\boldsymbol{n}):=r\left(w_{0}\right)$ for $w_{0} \in \mathfrak{S}_{n}$
P. Edelman (~ 1983) computed

$$
f(3)=2, f(4)=2^{4}, f(5)=2^{8} \cdot 3
$$

Earlier J. Goodman and R. Pollack computed these and $f(6)=2^{11} \cdot 11 \cdot 13$.

A conjecture

$\boldsymbol{f}(\boldsymbol{n}):=r\left(w_{0}\right)$ for $w_{0} \in \mathfrak{S}_{n}$
P. Edelman (~ 1983) computed

$$
f(3)=2, \quad f(4)=2^{4}, f(5)=2^{8} \cdot 3
$$

Earlier J. Goodman and R. Pollack computed these and $f(6)=2^{11} \cdot 11 \cdot 13$.

Conjecture. $f(n)=f^{\delta_{n}}$, the number of standard Young tableaux (SYT) of the staircase shape $\delta_{n}=(n-1, n-2, \ldots, 1)$.

An explicit formula

Hook length formula \Rightarrow

$$
f(n)=\frac{\binom{n}{2}!}{1^{n-1} 3^{n-2} 5^{n-3} \cdots(2 n-3)^{1}}
$$

An analogy

Maximal chains in distributive lattices $J(P)$ correspond to linear extensions of P.

Maximal chains in the weak order $W\left(\mathfrak{S}_{n}\right)$ correspond to reduced decompositions of w_{0}.

A quasisymmetric function

$\mathcal{L}(\boldsymbol{P})$: set of linear extensions $v=a_{1} a_{2} \cdots a_{p}$ of P (regarded as a permutations of the elements $1,2, \ldots, p$ of $P)$

Useful to consider

$$
F_{P}=\sum_{v=a_{1} \cdots a_{n} \in \mathcal{L}(P)} \sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{p} \\ i_{j}<i_{j+1} \text { if } a_{j}>a_{j+1}}} x_{i_{1}} \cdots x_{i_{p}}
$$

An analogy

Analogously, define for $w \in \mathfrak{S}_{n}$

$$
\boldsymbol{F}_{\boldsymbol{w}}=\sum_{\left(c_{1}, \ldots, c_{p}\right) \in R(w)} \sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{p} \\ i_{j}<i_{j+1} \text { if } c_{j}>c_{j+1}}} x_{i_{1}} \cdots x_{i_{p}}
$$

An analogy

Analogously, define for $w \in \mathfrak{S}_{n}$

$$
\boldsymbol{F}_{\boldsymbol{w}}=\sum_{\left(c_{1}, \ldots, c_{p}\right) \in R(w)} \sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{p} \\ i_{j}<i_{j+1} \text { if }}}
$$

Compare

$$
F_{P}=\sum_{v=a_{1} \cdots a_{n} \in \mathcal{L}(P)} \sum_{\substack{1 \leq i_{1} \leq \cdots \leq i_{p} \\ i_{j}<i_{j+1} \text { if } a_{j}>a_{j+1}}} x_{i_{1}} \cdots x_{i_{p}}
$$

More wishful thinking

What is the nicest possible property of F_{w} ?

More wishful thinking

What is the nicest possible property of F_{w} ?

The nicest property

Theorem. F_{w} is a symmetric function.

The nicest property

Theorem. F_{w} is a symmetric function.
By considering the coefficient of $x_{1} x_{2} \cdots x_{p}$ $(p=\ell(w))$:

Proposition. If $F_{w}=\sum_{\lambda \vdash p} c_{w, \lambda} s_{\lambda}$, then

$$
r(w)=\sum_{\lambda \vdash p} c_{w, \lambda} f^{\lambda}
$$

Consequences

By a simple argument involving highest and lowest terms in F_{w} :

Theorem. There exists a partition $\lambda \vdash \ell(w)$ such that $F_{w}=s_{\lambda}$ if and only if w is 2143-avoiding (vexillary).

Consequences

By a simple argument involving highest and lowest terms in F_{w} :

Theorem. There exists a partition $\lambda \vdash \ell(w)$ such that $F_{w}=s_{\lambda}$ if and only if w is 2143-avoiding (vexillary).

Corollary $F_{w_{0}}=s_{\lambda}$, so $r\left(w_{0}\right)=f^{\delta_{n-1}}$.

Consequences

By a simple argument involving highest and lowest terms in F_{w} :

Theorem. There exists a partition $\lambda \vdash \ell(w)$ such that $F_{w}=s_{\lambda}$ if and only if w is 2143-avoiding (vexillary).

Corollary $F_{w_{0}}=s_{\lambda}$, so $r\left(w_{0}\right)=f^{\delta_{n-1}}$.
Much further work by Edelman, Greene, et al. For instance, $c_{w, \lambda} \geq 0$.

Third example

New York Times Numberplay blog (March 25, 2013): Let $\boldsymbol{S} \subset \mathbb{Z}, \# S=8$. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

Third example

New York Times Numberplay blog (March 25,

 2013): Let $\boldsymbol{S} \subset \mathbb{Z}, \# S=8$. Can you two-color S such that there is no monochromatic three-term arithmetic progression?bad: $1,2,3,4,5,6,7,8$

Third example

New York Times Numberplay blog (March 25, 2013): Let $\boldsymbol{S} \subset \mathbb{Z}, \# S=8$. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
bad: $1,2,3,4,5,6,7,8$
$1,4,7$ is a monochromatic 3 -term progression

Third example

New York Times Numberplay blog (March 25, 2013): Let $\boldsymbol{S} \subset \mathbb{Z}, \# S=8$. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
bad: $1,2,3,4,5,6,7,8$
$1,4,7$ is a monochromatic 3 -term progression
good: 1, 2, 3, 4, 5, 6, 7, 8 .

Third example

New York Times Numberplay blog (March 25, 2013): Let $\boldsymbol{S} \subset \mathbb{Z}, \# S=8$. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
bad: $1,2,3,4,5,6,7,8$
$1,4,7$ is a monochromatic 3-term progression
good: 1, 2, 3, 4, 5, 6, 7, 8 .
Finally proved by Noam Elkies.

Compatible pairs

Elkies' proof is related to the following question: Let $1 \leq i<j<k \leq n$ and $1 \leq a<b<c \leq n$.
$\{i, j, k\}$ and $\{a, b, c\}$ are compatible if there exist integers $x_{1}<x_{2}<\cdots<x_{n}$ such that x_{i}, x_{j}, x_{k} is an arithmetic progression and x_{a}, x_{b}, x_{c} is an arithmetic progression.

An example

Example. $\{1,2,3\}$ and $\{1,2,4\}$ are not compatible. Similarly 124 and 134 are not compatible.

An example

Example. $\{1,2,3\}$ and $\{1,2,4\}$ are not compatible. Similarly 124 and 134 are not compatible.

123 and 134 are compatible, e.g.,

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,2,3,5)
$$

Elkies' question

What subsets $\mathcal{S} \subseteq\binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?

Elkies' question

What subsets $\mathcal{S} \subseteq\binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?
Example. When $n=4$ there are eight such subsets \mathcal{S} :

$$
\begin{gathered}
\emptyset,\{123\},\{124\},\{134\},\{234\}, \\
\{123,134\},\{123,234\},\{124,234\} .
\end{gathered}
$$

Not $\{123,124\}$, for instance.

Elkies' question

What subsets $\mathcal{S} \subseteq\binom{[n]}{3}$ have the property that any two elements of \mathcal{S} are compatible?
Example. When $n=4$ there are eight such subsets \mathcal{S} :

$$
\begin{gathered}
\emptyset,\{123\},\{124\},\{134\},\{234\}, \\
\{123,134\},\{123,234\},\{124,234\} .
\end{gathered}
$$

Not $\{123,124\}$, for instance.
Let M_{n} be the collection of all such $\mathcal{S} \subseteq\binom{[n]}{3}$, so for instance $\# M_{4}=8$.

Conjecture of Elkies

Conjecture. $\# M_{n}=2^{\binom{n-1}{2}}$.

Conjecture of Elkies

Conjecture. $\# M_{n}=2^{\binom{n-1}{2}}$.
Proof (with Fu Liu).

Conjecture of Elkies

Conjecture. $\# M_{n}=2^{\binom{n-1}{2}}$.
Proof (with Fu Liu 刘拂).

A poset on M_{n}

Let Q_{n} be the subposet of $[n] \times[n] \times[n]$ (ordered componentwise) defined by

$$
\boldsymbol{Q}_{n}=\{(i, j, k): i+j<n+1<j+k\} .
$$

Propposition (J. Propp, essentially) There is a simple bijection from the lattice $J\left(Q_{n}\right)$ of order ideals of Q_{n} to M_{n}.

The case $n=4$

More wishful thinking

Let L_{n} be a known "reasonable" distributive lattice with $2^{\binom{n-1}{2}}$ elements. Is it true that $J\left(Q_{n}\right) \cong L_{n}$?

More wishful thinking

Let L_{n} be a known "reasonable" distributive lattice with $\left.2 \begin{array}{c}(n-1 \\ 2\end{array}\right)$ elements. Is it true that $J\left(Q_{n}\right) \cong L_{n}$?

Only one possibility for L_{n} : the lattice of all semistandard Young tableaux of shape $\boldsymbol{\delta}_{n-1}=(n-2, n-1, \ldots, 1)$ and largest part at most $n-1$, ordered component-wise.

L_{4}

$\# L_{n}$

$$
\begin{aligned}
\# L_{n} & =s_{\delta_{n-2}}(\underbrace{1, \ldots, 1}_{n-1}) \\
& =2^{\binom{n-1}{2}},
\end{aligned}
$$

by hook-content formula or

$$
s_{\delta_{n-2}}\left(x_{1}, \ldots, x_{n-1}\right)=\prod_{1 \leq i<j \leq n-1}\left(x_{i}+x_{j}\right)
$$

Proof.

To show $J\left(Q_{n}\right) \cong L_{n}$, check that their posets of join-irreducibles are isomorphic.

Proof.

To show $J\left(Q_{n}\right) \cong L_{n}$, check that their posets of join-irreducibles are isomorphic.
D : set of all proved theorems.
Q : Elkies' conjecture

Proof.

To show $J\left(Q_{n}\right) \cong L_{n}$, check that their posets of join-irreducibles are isomorphic.
D : set of all proved theorems.
Q : Elkies' conjecture Then $\mathbf{Q} \in \mathrm{D}$.

The last slide

The last slide

The last slide

AIL GOOD THINES MUST COME TOANEND..

Except if you remember these days as one of the best things in your life

Thanks!

Karen Collins

Patricia Hersh

Caroline Klivans
Alexander Postnikov Avisha Lalla Alejandro Morales Sergi Elizalde Clara Chan
Satomi Okazaki
Shan-Yuan Ho

