
Wishful Thinking as a Proof
Technique
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First example

P : finite p-element poset

ω : P → {1, 2, . . . , p}: any bijection (labeling)

(P, ω)-partition: a map σ : P → N such that

s ≤ t ⇒ σ(s) ≥ σ(t)

s < t, ω(s) > ω(t) ⇒ σ(s) > σ(t).

AP,ω: set of all (P, ω)-partitions σ
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An equivalence relation

Define labelings ω, ω′ to be equivalent if
AP,ω = AP,ω′.

How many equivalence classes?
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An equivalence relation

Define labelings ω, ω′ to be equivalent if
AP,ω = AP,ω′.

How many equivalence classes?

Easy result: the number of equivalence classes
is the number ao(HP ) of acyclic orientations of
the Hasse diagram HP of P .
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Number of acyclic orientations

For any (finite) graph G, we can ask for the
number ao(G) of acyclic orientations.
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Number of acyclic orientations

For any (finite) graph G, we can ask for the
number ao(G) of acyclic orientations.

No obvious formula.
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Deletion-contraction

A function f from graphs to an abelian group
(such as Z) is a deletion-contraction invariant
or Tutte-Grothendieck invariant if for any edge
e, not a loop or isthmus,

f(G) = f(G− e)± f(G/e).
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e, not a loop or isthmus,

f(G) = f(G− e)± f(G/e).

Wishful thought: could ao(G) be a
deletion-contraction invariant?
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Conclusion

Deletion-contraction invariants (of matroids)
extensively studied by Brylawski. Routine to
show that if G has p vertices, then

ao(G) = (−1)pχG(−1),

where χG is the chromatic polynomial of G.
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Second example

Sn: symmetric group on {1, 2, . . . , n}

si: the adjacent transposition (i, i+ 1),
1 ≤ i ≤ n− 1

ℓ(w): length (number of inversions) of w ∈ Sn,
and the least p such that w = si1 · · · sip

reduced decomposition of w: a sequence
(c1, c2, . . . , cp) ∈ [n− 1]p, where p = ℓ(w), such
that

w = sc1sc2 · · · scp.
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More definitions

R(w): set of reduced decompositions of w

r(w) = #R(w)

w0: the longest element n, n− 1, . . . , 1 in Sn, of

length
(
n
2

)

Example. w0 = 321 ∈ S3:

R(w0) = {(1, 2, 1), (2, 1, 2)}, r(w0) = 2.
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A conjecture

f(n) := r(w0) for w0 ∈ Sn

P. Edelman (∼1983) computed

f(3) = 2, f(4) = 24, f(5) = 28 · 3.

Earlier J. Goodman and R. Pollack computed
these and f(6) = 211 · 11 · 13.
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A conjecture

f(n) := r(w0) for w0 ∈ Sn

P. Edelman (∼1983) computed

f(3) = 2, f(4) = 24, f(5) = 28 · 3.

Earlier J. Goodman and R. Pollack computed
these and f(6) = 211 · 11 · 13.

Conjecture. f(n) = f δn, the number of standard
Young tableaux (SYT) of the staircase shape
δn = (n− 1, n− 2, . . . , 1).
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An explicit formula

Hook length formula ⇒

f(n) =

(
n
2

)
!

1n−13n−25n−3 · · · (2n− 3)1
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An analogy

Maximal chains in distributive lattices J(P )
correspond to linear extensions of P .

Maximal chains in the weak order W (Sn)
correspond to reduced decompositions of w0.
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A quasisymmetric function

L(P ): set of linear extensions v = a1a2 · · · ap of
P (regarded as a permutations of the elements
1, 2, . . . , p of P )

Useful to consider

FP =
∑

v=a1···an∈L(P )

∑

1≤i1≤···≤ip
ij<ij+1 if aj>aj+1

xi1 · · ·xip.
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An analogy

Analogously, define for w ∈ Sn

Fw =
∑

(c1,...,cp)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if cj>cj+1

xi1 · · · xip.
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An analogy

Analogously, define for w ∈ Sn

Fw =
∑

(c1,...,cp)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if cj>cj+1

xi1 · · · xip.

Compare

FP =
∑

v=a1···an∈L(P )

∑

1≤i1≤···≤ip
ij<ij+1 if aj>aj+1

xi1 · · · xip.
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More wishful thinking

What is the nicest possible property of Fw?
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More wishful thinking

What is the nicest possible property of Fw?
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The nicest property

Theorem. Fw is a symmetric function.
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The nicest property

Theorem. Fw is a symmetric function.

By considering the coefficient of x1x2 · · ·xp
(p = ℓ(w)):

Proposition. If Fw =
∑

λ⊢p cw,λsλ, then

r(w) =
∑

λ⊢p

cw,λf
λ.
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Consequences

By a simple argument involving highest and
lowest terms in Fw:

Theorem. There exists a partition λ ⊢ ℓ(w) such
that Fw = sλ if and only if w is 2143-avoiding
(vexillary).
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Consequences

By a simple argument involving highest and
lowest terms in Fw:

Theorem. There exists a partition λ ⊢ ℓ(w) such
that Fw = sλ if and only if w is 2143-avoiding
(vexillary).

Corollary Fw0
= sλ, so r(w0) = f δn−1.
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Consequences

By a simple argument involving highest and
lowest terms in Fw:

Theorem. There exists a partition λ ⊢ ℓ(w) such
that Fw = sλ if and only if w is 2143-avoiding
(vexillary).

Corollary Fw0
= sλ, so r(w0) = f δn−1.

Much further work by Edelman, Greene, et al.
For instance, cw,λ ≥ 0.
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Third example

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

Wishful Thinking as a Proof Technique – p. 17



Third example

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8
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Third example

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression
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Third example

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression

good: 1,2,3,4,5,6,7,8.
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Third example

New York Times Numberplay blog (March 25,
2013): Let S ⊂ Z, #S = 8. Can you two-color S
such that there is no monochromatic three-term
arithmetic progression?

bad: 1,2,3,4,5,6,7,8

1,4,7 is a monochromatic 3-term progression

good: 1,2,3,4,5,6,7,8.

Finally proved by Noam Elkies.
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Compatible pairs

Elkies’ proof is related to the following question:

Let 1 ≤ i < j < k ≤ n and 1 ≤ a < b < c ≤ n.

{i, j, k} and {a, b, c} are compatible if there exist
integers x1 < x2 < · · · < xn such that xi, xj, xk is
an arithmetic progression and xa, xb, xc is an
arithmetic progression.
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An example

Example. {1, 2, 3} and {1, 2, 4} are not

compatible. Similarly 124 and 134 are not

compatible.
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An example

Example. {1, 2, 3} and {1, 2, 4} are not

compatible. Similarly 124 and 134 are not

compatible.

123 and 134 are compatible, e.g.,

(x1, x2, x3, x4) = (1, 2, 3, 5).
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}.

Not {123, 124}, for instance.
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Elkies’ question

What subsets S ⊆
(
[n]
3

)
have the property that

any two elements of S are compatible?

Example. When n = 4 there are eight such
subsets S:

∅, {123}, {124}, {134}, {234},

{123, 134}, {123, 234}, {124, 234}.

Not {123, 124}, for instance.

Let Mn be the collection of all such S ⊆
(
[n]
3

)
, so

for instance #M4 = 8.
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Conjecture of Elkies

Conjecture. #Mn = 2(
n−1

2 ).
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Conjecture of Elkies

Conjecture. #Mn = 2(
n−1

2 ).

Proof (with Fu Liu).
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A poset on Mn

Let Qn be the subposet of [n]× [n]× [n] (ordered
componentwise) defined by

Qn = {(i, j, k) : i+ j < n+ 1 < j + k}.

Propposition (J. Propp, essentially) There is a
simple bijection from the lattice J(Qn) of order
ideals of Qn to Mn.
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The case n = 4

Q4

Q4J (    )

133 124

134 224

φ

123 134

234123,134

124 123,234

124,234
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More wishful thinking

Let Ln be a known “reasonable” distributive

lattice with 2(
n−1

2 ) elements. Is it true that
J(Qn) ∼= Ln?
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More wishful thinking

Let Ln be a known “reasonable” distributive

lattice with 2(
n−1

2 ) elements. Is it true that
J(Qn) ∼= Ln?

Only one possibility for Ln: the lattice of all
semistandard Young tableaux of shape
δn−1 = (n− 2, n− 1, . . . , 1) and largest part at
most n− 1, ordered component-wise.
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L4

11
2

12
2

11
3

13
2

12
3

22
3

23
3

13
3

L 4
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#Ln

#Ln = sδn−2
(1, . . . , 1
︸ ︷︷ ︸

n−1

)

= 2(
n−1

2 ),

by hook-content formula or

sδn−2
(x1, . . . , xn−1) =

∏

1≤i<j≤n−1

(xi + xj).
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Proof.

To show J(Qn) ∼= Ln, check that their posets of
join-irreducibles are isomorphic.
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Proof.

To show J(Qn) ∼= Ln, check that their posets of
join-irreducibles are isomorphic.

D: set of all proved theorems.

Q: Elkies’ conjecture
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Proof.

To show J(Qn) ∼= Ln, check that their posets of
join-irreducibles are isomorphic.

D: set of all proved theorems.

Q: Elkies’ conjecture

Then Q∈D.
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The last slide
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The last slide
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The last slide
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Thanks!

Karen Collins
Patricia Hersh

Caroline Klivans
Alexander Postnikov

Avisha Lalla
Alejandro Morales

Sergi Elizalde
Clara Chan

Satomi Okazaki
Shan-Yuan Ho
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