

Wishful Thinking as a Proof Technique

Wishful Thinking as a Proof Technique - p. 1

P: finite *p*-element poset

 $\boldsymbol{\omega} \colon P \to \{1, 2, \dots, p\}$: any bijection (labeling) ($P, \boldsymbol{\omega}$)-partition: a map $\boldsymbol{\sigma} \colon P \to \mathbb{N}$ such that

$$s \le t \implies \sigma(s) \ge \sigma(t)$$
$$s < t, \ \omega(s) > \omega(t) \implies \sigma(s) > \sigma(t).$$

 $\mathcal{A}_{P,\omega}$: set of all (P, ω) -partitions σ

An equivalence relation

Define labelings ω, ω' to be equivalent if $\mathcal{A}_{P,\omega} = \mathcal{A}_{P,\omega'}$.

How many equivalence classes?

An equivalence relation

- Define labelings ω, ω' to be equivalent if $\mathcal{A}_{P,\omega} = \mathcal{A}_{P,\omega'}$.
- How many equivalence classes?
- **Easy result:** the number of equivalence classes is the number $\mathbf{ao}(H_P)$ of **acyclic orientations** of the Hasse diagram H_P of P.

Number of acyclic orientations

For **any** (finite) graph G, we can ask for the number ao(G) of acyclic orientations.

Number of acyclic orientations

- For **any** (finite) graph G, we can ask for the number ao(G) of acyclic orientations.
- No obvious formula.

 $f(G) = f(G - e) \pm f(G/e).$

 $f(G) = f(G - e) \pm f(G/e).$

Wishful thought: could ao(G) be a deletion-contraction invariant?

 $f(G) = f(G - e) \pm f(G/e).$

Wishful thought: could ao(G) be a deletion-contraction invariant?

It is!

$$f(G) = f(G - e) \pm f(G/e).$$

Wishful thought: could ao(G) be a deletion-contraction invariant?

It is!

Deletion-contraction invariants (of matroids) extensively studied by **Brylawski**. Routine to show that if G has p vertices, then

$$\operatorname{ao}(G) = (-1)^p \chi_G(-1),$$

where χ_G is the chromatic polynomial of G.

- \mathfrak{S}_n : symmetric group on $\{1, 2, \ldots, n\}$
- *s_i*: the adjacent transposition (i, i + 1), $1 \le i \le n 1$
- $\ell(w)$: length (number of inversions) of $w \in \mathfrak{S}_n$, and the least p such that $w = s_{i_1} \cdots s_{i_p}$
- reduced decomposition of w: a sequence $(c_1, c_2, \ldots, c_p) \in [n-1]^p$, where $p = \ell(w)$, such that

$$w = s_{c_1} s_{c_2} \cdots s_{c_p}.$$

- R(w): set of reduced decompositions of w
- r(w) = #R(w)
- w_0 : the longest element n, n 1, ..., 1 in \mathfrak{S}_n , of length $\binom{n}{2}$
- **Example.** $w_0 = 321 \in \mathfrak{S}_3$: $R(w_0) = \{(1, 2, 1), (2, 1, 2)\}, r(w_0) = 2.$

A conjecture

$$f(n) := r(w_0)$$
 for $w_0 \in \mathfrak{S}_n$

P. Edelman (\sim 1983) computed

$$f(3) = 2, f(4) = 2^4, f(5) = 2^8 \cdot 3.$$

Earlier J. Goodman and R. Pollack computed these and $f(6) = 2^{11} \cdot 11 \cdot 13$.

A conjecture

$$f(n) := r(w_0)$$
 for $w_0 \in \mathfrak{S}_n$

P. Edelman (\sim 1983) computed

$$f(3) = 2, f(4) = 2^4, f(5) = 2^8 \cdot 3.$$

Earlier J. Goodman and R. Pollack computed these and $f(6) = 2^{11} \cdot 11 \cdot 13$.

Conjecture. $f(n) = f^{\delta_n}$, the number of standard Young tableaux (SYT) of the staircase shape $\delta_n = (n - 1, n - 2, ..., 1).$

An explicit formula

Hook length formula \Rightarrow

$$f(n) = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1}$$

- Maximal chains in distributive lattices J(P) correspond to linear extensions of P.
- Maximal chains in the weak order $W(\mathfrak{S}_n)$ correspond to reduced decompositions of w_0 .

A quasisymmetric function

 $\mathcal{L}(\mathbf{P})$: set of linear extensions $v = a_1 a_2 \cdots a_p$ of P (regarded as a permutations of the elements $1, 2, \ldots, p$ of P)

Useful to consider

$$F_P = \sum_{v=a_1\cdots a_n \in \mathcal{L}(P)} \sum_{\substack{1 \le i_1 \le \cdots \le i_p \\ i_j < i_{j+1} \text{ if } a_j > a_{j+1}}} x_{i_1} \cdots x_{i_p}.$$

An analogy

Analogously, define for $w \in \mathfrak{S}_n$

 $F_{w} = \sum \qquad \sum \qquad x_{i_1} \cdots x_{i_p}.$ $(c_1,...,c_p) \in R(w)$ $1 \le i_1 \le \cdots \le i_p$ $i_j < i_{j+1}$ if $c_j > c_{j+1}$

An analogy

Analogously, define for $w \in \mathfrak{S}_n$

$$F_{w} = \sum_{\substack{(c_1,...,c_p) \in R(w) \\ i_j < i_{j+1} \text{ if } c_j > c_{j+1}}} \sum_{\substack{x_{i_1} \cdots x_{i_p}}} x_{i_1} \cdots x_{i_p}.$$

Compare

$$F_P = \sum_{v=a_1\cdots a_n \in \mathcal{L}(P)} \sum_{\substack{1 \le i_1 \le \cdots \le i_p \\ i_j < i_{j+1} \text{ if } a_j > a_{j+1}}} x_{i_1} \cdots x_{i_p}.$$

More wishful thinking

What is the nicest possible property of F_w ?

More wishful thinking

What is the nicest possible property of F_w ?

The nicest property

Theorem. F_w is a symmetric function.

Theorem. F_w is a symmetric function.

By considering the coefficient of $x_1x_2 \cdots x_p$ ($p = \ell(w)$):

Proposition. If $F_w = \sum_{\lambda \vdash p} c_{w,\lambda} s_{\lambda}$, then

$$r(w) = \sum_{\lambda \vdash p} c_{w,\lambda} f^{\lambda}.$$

By a simple argument involving highest and lowest terms in F_w :

Theorem. There exists a partition $\lambda \vdash \ell(w)$ such that $F_w = s_\lambda$ if and only if w is 2143-avoiding (vexillary).

- By a simple argument involving highest and lowest terms in F_w :
- **Theorem.** There exists a partition $\lambda \vdash \ell(w)$ such that $F_w = s_\lambda$ if and only if w is 2143-avoiding (vexillary).
- Corollary $F_{w_0} = s_{\lambda}$, so $r(w_0) = f^{\delta_{n-1}}$.

By a simple argument involving highest and lowest terms in F_w :

Theorem. There exists a partition $\lambda \vdash \ell(w)$ such that $F_w = s_{\lambda}$ if and only if w is 2143-avoiding (vexillary).

Corollary $F_{w_0} = s_{\lambda}$, so $r(w_0) = f^{\delta_{n-1}}$.

Much further work by Edelman, Greene, et al. For instance, $c_{w,\lambda} \ge 0$. New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?

bad: 1, 2, 3, 4, 5, 6, 7, 8

- New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
- **bad:** 1, 2, 3, 4, 5, 6, 7, 8
- 1, 4, 7 is a monochromatic 3-term progression

- New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
- **bad:** 1, 2, 3, 4, 5, 6, 7, 8
- 1, 4, 7 is a monochromatic 3-term progression
- good: 1, 2, 3, 4, 5, 6, 7, 8.

- New York Times Numberplay blog (March 25, 2013): Let $S \subset \mathbb{Z}$, #S = 8. Can you two-color S such that there is no monochromatic three-term arithmetic progression?
- **bad:** 1, 2, 3, 4, 5, 6, 7, 8
- 1, 4, 7 is a monochromatic 3-term progression
- good: 1, 2, 3, 4, 5, 6, 7, 8.
- Finally proved by **Noam Elkies**.

Elkies' proof is related to the following question:

- Let $1 \le i < j < k \le n$ and $1 \le a < b < c \le n$.
- $\{i, j, k\}$ and $\{a, b, c\}$ are **compatible** if there exist integers $x_1 < x_2 < \cdots < x_n$ such that x_i, x_j, x_k is an arithmetic progression and x_a, x_b, x_c is an arithmetic progression.

An example

Example. $\{1, 2, 3\}$ and $\{1, 2, 4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible.

Example. $\{1, 2, 3\}$ and $\{1, 2, 4\}$ are *not* compatible. Similarly 124 and 134 are *not* compatible.

123 and 134 are compatible, e.g.,

$$(x_1, x_2, x_3, x_4) = (1, 2, 3, 5).$$

Elkies' question

What subsets $S \subseteq {\binom{[n]}{3}}$ have the property that any two elements of S are compatible?

- What subsets $S \subseteq {\binom{[n]}{3}}$ have the property that any two elements of S are compatible?
- **Example.** When n = 4 there are eight such subsets S:

 $\emptyset, \{123\}, \{124\}, \{134\}, \{234\},$

 $\{123, 134\}, \{123, 234\}, \{124, 234\}.$

Not $\{123, 124\}$, for instance.

- What subsets $S \subseteq {\binom{[n]}{3}}$ have the property that any two elements of S are compatible?
- **Example.** When n = 4 there are eight such subsets S:

 $\emptyset, \{123\}, \{124\}, \{134\}, \{234\}, \{123, 134\}, \{123, 234\}, \{124, 234\}.$

Not {123, 124}, for instance. Let M_n be the collection of all such $S \subseteq {\binom{[n]}{3}}$, so for instance $\#M_4 = 8$.

Conjecture of Elkies

Conjecture. $\#M_n = 2^{\binom{n-1}{2}}$.

Conjecture of Elkies

Conjecture.
$$\#M_n = 2^{\binom{n-1}{2}}$$
.

Proof (with Fu Liu).

Conjecture of Elkies

Conjecture.
$$\#M_n = 2^{\binom{n-1}{2}}$$
.

Proof (with Fu Liu 刘拂).

Let Q_n be the subposet of $[n] \times [n] \times [n]$ (ordered componentwise) defined by

$Q_n = \{(i, j, k) : i + j < n + 1 < j + k\}.$

Propposition (J. Propp, essentially) There is a simple bijection from the lattice $J(Q_n)$ of order ideals of Q_n to M_n .

Wishful Thinking as a Proof Technique – p. 23

Let L_n be a known "reasonable" distributive lattice with $2^{\binom{n-1}{2}}$ elements. Is it true that $J(Q_n) \cong L_n$?

- Let L_n be a known "reasonable" distributive lattice with $2^{\binom{n-1}{2}}$ elements. Is it true that $J(Q_n) \cong L_n$?
- Only one possibility for L_n : the lattice of all semistandard Young tableaux of shape $\delta_{n-1} = (n-2, n-1, ..., 1)$ and largest part at most n-1, ordered component-wise.

$$\#L_n$$

$$#L_n = s_{\delta_{n-2}}(\underbrace{1, \dots, 1}_{n-1}) = 2^{\binom{n-1}{2}},$$

by hook-content formula or

$$s_{\delta_{n-2}}(x_1, \dots, x_{n-1}) = \prod_{1 \le i < j \le n-1} (x_i + x_j).$$

Wishful Thinking as a Proof Technique - p. 26

To show $J(Q_n) \cong L_n$, check that their posets of join-irreducibles are isomorphic.

Proof.

To show $J(Q_n) \cong L_n$, check that their posets of join-irreducibles are isomorphic.

- **D**: set of all proved theorems.
- **Q**: Elkies' conjecture

Proof.

To show $J(Q_n) \cong L_n$, check that their posets of join-irreducibles are isomorphic.

D: set of all proved theorems.

Q: Elkies' conjecture

Then $\mathbf{Q} \in \mathbf{D}$.

The last slide

The last slide

ALL GOOD THINGS MUST COME TO AN END...

Except if you remember these days as one of the best things in your life

ICANHASCHEEZBURGER.COM 萎 🖇 🍣

Karen Collins Patricia Hersh **Caroline Klivans Alexander Postnikov** Avisha Lalla **Alejandro Morales** Sergi Elizalde **Clara Chan** Satomi Okazaki Shan-Yuan Ho