

Products of Cycles

Richard P. Stanley

M.I.T.

Products of Cycles – p.

Had Elegant Research Breakthroughs

Which Include Lovely Formulas

Separation of elements

\mathfrak{S}_n : permutations of $1, 2, \ldots, n$

Separation of elements

$$\mathfrak{S}_n$$
: permutations of $1, 2, \ldots, n$

Let $n \ge 2$. Choose $w \in \mathfrak{S}_n$ (uniform distribution). What is the probability $\rho_2(n)$ that 1, 2 are in the same cycle of w?

The "fundamental bijection"

Write *w* as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

The "fundamental bijection"

Write w as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_n$ (one-line form):

68427315.

The "fundamental bijection"

Write w as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_n$ (one-line form):

68427315.

The map $f: \mathfrak{S}_n \to \mathfrak{S}_n$, $f(w) = \hat{w}$, is a bijection (Foata).

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Note. 1 and 2 are in the same cycle of $w \Leftrightarrow 1$ precedes 2 in \widehat{w} .

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Note. 1 and 2 are in the same cycle of $w \Leftrightarrow 1$ precedes 2 in \widehat{w} .

 \Rightarrow Theorem. $\rho_2(n) = 1/2$

α -separation

Let $\alpha = (\alpha_1, \dots, \alpha_k)$ be a composition of m, i.e., $\alpha_i \ge 1$, $\sum \alpha_i = m$.

Let $n \ge m$. Define $w \in \mathfrak{S}_n$ to be α -separated if $1, 2, \ldots, \alpha_1$ are in the same cycle C_1 of w, $\alpha_1 + 1, \alpha_1 + 2, \ldots, \alpha_1 + \alpha_2$ are in the same cycle $C_2 \neq C_1$ of w, etc.

α -separation

Let $\alpha = (\alpha_1, \dots, \alpha_k)$ be a composition of m, i.e., $\alpha_i \ge 1$, $\sum \alpha_i = m$.

Let $n \ge m$. Define $w \in \mathfrak{S}_n$ to be α -separated if $1, 2, \ldots, \alpha_1$ are in the same cycle C_1 of w, $\alpha_1 + 1, \alpha_1 + 2, \ldots, \alpha_1 + \alpha_2$ are in the same cycle $C_2 \neq C_1$ of w, etc.

Example. w = (1, 2, 10)(3, 12, 7)(4, 6, 5, 9)(8, 11)is (2, 1, 2)-separated.

Generalization of $ho_2(n) = 1/2$

Let $\rho_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_n$ is α -separated, $\alpha = (\alpha_1, \dots, \alpha_k), \sum \alpha_i = m.$

Generalization of $ho_2(n) = 1/2$

Let $\rho_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_n$ is α -separated, $\alpha = (\alpha_1, \dots, \alpha_k), \sum \alpha_i = m.$

Similar argument gives:

Theorem.

$$\rho_{\alpha}(n) = \frac{(\alpha_1 - 1)! \cdots (\alpha_k - 1)!}{m!}.$$

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random *n*-cycles in \mathfrak{S}_n , *n* odd. The probability $\pi_2(n)$ that uv is (2)-separated (i.e., 1 and 2 appear in the same cycle of uv) is 1/2.

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random *n*-cycles in \mathfrak{S}_n , *n* odd. The probability $\pi_2(n)$ that uv is (2)-separated (i.e., 1 and 2 appear in the same cycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

$$\pi_{(1,1)}(n) = 1 - \frac{1}{2} = \frac{1}{2}$$

n = 3 and even n

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

n = 3 and even n

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

What about *n* even?

n = 3 and even n

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

What about *n* even?

Probability $\pi_2(n)$ that uv is (2)-separated:

				8	
$\pi_2(n)$	0	7/18	9/20	33/70	13/27

Theorem on (2)-separation

Theorem. We have

$$\pi_2(n) = \begin{cases} \frac{1}{2}, n \text{ odd} \\ \frac{1}{2} - \frac{2}{(n-1)(n+2)}, n \text{ even.} \end{cases}$$

Products of Cycles – p. ²

Sketch of proof

Let $w \in \mathfrak{S}_n$ have cycle type $\lambda \vdash n$, i.e.,

 $\lambda = (\lambda_1, \lambda_2, \dots), \ \lambda_1 \ge \lambda_2 \ge \dots \ge 0, \ \sum \lambda_i = n,$

cycle lengths $\lambda_i > 0$.

Let $w \in \mathfrak{S}_n$ have cycle type $\lambda \vdash n$, i.e.,

 $\lambda = (\lambda_1, \lambda_2, \dots), \ \lambda_1 \ge \lambda_2 \ge \dots \ge 0, \ \sum \lambda_i = n,$

cycle lengths $\lambda_i > 0$.

type((1,3)(2,9,5,4)(7)(6,8)) = (4,2,2,1)

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Easy:

$$q_{\lambda} = \frac{\sum \binom{\lambda_i}{2}}{\binom{n}{2}} = \frac{\sum \lambda_i (\lambda_i - 1)}{n(n-1)}.$$

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Easy:

$$q_{\lambda} = \frac{\sum \binom{\lambda_i}{2}}{\binom{n}{2}} = \frac{\sum \lambda_i (\lambda_i - 1)}{n(n-1)}.$$

E.g., $q_{(1,1,\dots,1)} = 0$.

 \boldsymbol{u})

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

Uχ

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

E.g., $a_{(1,1,1)} = a_3 = 2$, $a_{(2,1)} = 0$.

$$a_{\lambda}$$

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

E.g.,
$$a_{(1,1,1)} = a_3 = 2$$
, $a_{(2,1)} = 0$.

Easy:
$$\pi_2(n) = \frac{1}{(n-1)!^2} \sum_{\lambda \vdash n} a_\lambda q_\lambda$$
.

The key lemma

Let
$$n!/z_{\lambda} = \#\{w \in \mathfrak{S}_n : \operatorname{type}(w) = \lambda\}$$
. E.g.,

$$\frac{n!}{z_{(1,1,\dots,1)}} = 1, \quad \frac{n!}{z_{(n)}} = (n-1)!.$$

Lemma (Boccara, 1980).

$$a_{\lambda} = \frac{n!(n-1)!}{z_{\lambda}} \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

A "formula" for $\pi_2(n)$

$$\pi_{2}(n) = \frac{1}{(n-1)!^{2}} \sum_{\lambda \vdash n} \frac{n!}{z_{\lambda}} \left(\sum_{i} \frac{\lambda_{i}(\lambda_{i}-1)}{n(n-1)} \right)$$
$$\cdot (n-1)! \int_{0}^{1} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx$$
$$= \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1} \left(\sum_{i} \lambda_{i}(\lambda_{i}-1) \right)$$
$$\cdot \int_{0}^{1} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx.$$

Products of Cycles – p. ²

The exponential formula

How to extract information?

The exponential formula

How to extract information?

Answer: generating functions.

The exponential formula

How to extract information?

Answer: generating functions.

Let $p_r(x) = x_1^r + x_2^r + \cdots$,

$$\boldsymbol{p}_{\boldsymbol{\lambda}}(\boldsymbol{x}) = p_{\lambda_1}(\boldsymbol{x})p_{\lambda_2}(\boldsymbol{x})\cdots$$

"Exponential formula, permutation version"

$$\exp\sum_{r\geq 1}\frac{1}{r}p_r(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

The "bad" factor

 $\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$

The "bad" factor

$$\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

Compare

$$\pi_2(n) = \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1} \left(\sum_i \lambda_i (\lambda_i - 1) \right)$$
$$\cdot \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Products of Cycles – p. 7

The "bad" factor

$$\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

Compare

$$\pi_2(n) = \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1} \left(\sum_i \lambda_i (\lambda_i - 1) \right)$$

 $\cdot \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$

Bad: $\sum \lambda_i (\lambda_i - 1)$

A trick

Straightforward: Let $\ell(\lambda)$ = number of parts.

$$2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_{\lambda}(a,b)|_{a=b=1} = \sum \lambda_i (\lambda_i - 1).$$

A trick

Straightforward: Let $\ell(\lambda)$ = number of parts.

$$2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_{\lambda}(a,b)|_{a=b=1} = \sum \lambda_i (\lambda_i - 1).$$

Exponential formula gives:

$$\sum (n-1)\pi_2(n)t^n = 2\int_0^1 \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a\partial b}\right)$$

$$\exp\left|\sum_{k\geq 1} \frac{1}{k} \left(\frac{a^k + b^k}{2}\right) (x^k - (x-1)^k) t^k\right| = dx.$$

Miraculous integral

Get:

$$\sum (n-1)\pi_2(n)t^n = \int_0^1 \frac{t^2(1-2x-2tx+2tx^2)}{(1-t(x-1))(1-tx)^3} dx$$
$$= \frac{1}{t^2}\log(1-t^2) + \frac{3}{2} + \frac{-\frac{1}{2}+t}{(1-t)^2}$$

Miraculous integral

Get:

$$\sum (n-1)\pi_2(n)t^n = \int_0^1 \frac{t^2(1-2x-2tx+2tx^2)}{(1-t(x-1))(1-tx)^3} dx$$

= $\frac{1}{t^2} \log(1-t^2) + \frac{3}{2} + \frac{-\frac{1}{2}+t}{(1-t)^2}$
(coefficient of t^n)/(n-1):

$$\pi_2(n) = \begin{cases} \frac{1}{2}, & n \text{ odd} \\ \frac{1}{2} - \frac{2}{(n-1)(n+2)}, & n \text{ even.} \end{cases}$$

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Some simple relations hold, e.g.,

$$\pi_3(n) = \pi_4(n) + \pi_{3,1}(n).$$

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Some simple relations hold, e.g.,

$$\pi_3(n) = \pi_4(n) + \pi_{3,1}(n).$$

Previous technique for $\pi_2(n)$ extends to $\pi_\alpha(n)$.

 $\pi_{(1^m)}(n)$

Theorem. Let $n \ge m \ge 2$. Then $\pi_{(1^m)}(n)$ is given by

Products of Cycles – p. 2

Recall: $\rho_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / m!.$

Recall: $\rho_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / m!.$

Theorem. Let α be a composition. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n) = \begin{cases} R_{\alpha}(n), & n \text{ even} \\ S_{\alpha}(n), & n \text{ odd.} \end{cases}$$

Recall: $\rho_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / m!.$

Theorem. Let α be a composition. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Moreover, $\pi_{\alpha}(n) = \rho_{\alpha}(n) + O(1/n)$.

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

$$\pi_{(4,2)} = \begin{cases} \frac{1}{120} - \frac{n^4 + 2n^3 - 38n^2 - 39n + 234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{120} - \frac{3n^2 + 3n - 58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

$$\pi_{(4,2)} = \begin{cases} \frac{1}{120} - \frac{n^4 + 2n^3 - 38n^2 - 39n + 234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{120} - \frac{3n^2 + 3n - 58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Obvious conjecture for denominators and degree of "error term."

The function $\sigma_{\alpha}(n)$

E.g., $\sigma_{3211}(n)$ = probability that no cycle of a product uv of two random n-cycles $u, v \in \mathfrak{S}_n$ contains elements from two (or more) of the sets $\{1, 2, 3\}, \{4, 5\}, \{6\}, \{7\}.$

E.g., $\sigma_{3211}(n)$ = probability that no cycle of a product uv of two random n-cycles $u, v \in \mathfrak{S}_n$ contains elements from two (or more) of the sets $\{1, 2, 3\}, \{4, 5\}, \{6\}, \{7\}.$

$$\sigma_{32}(n) = \pi_{32}(n) + 3\pi_{221}(n) + \pi_{311}(n) + 4\pi_{2111}(n) + \pi_{11111}(n).$$

E.g., $\sigma_{3211}(n)$ = probability that no cycle of a product uv of two random n-cycles $u, v \in \mathfrak{S}_n$ contains elements from two (or more) of the sets $\{1, 2, 3\}, \{4, 5\}, \{6\}, \{7\}.$

$$\sigma_{32}(n) = \pi_{32}(n) + 3\pi_{221}(n) + \pi_{311}(n) + 4\pi_{2111}(n) + \pi_{11111}(n).$$

Möbius inversion on Π_5 gives:

$$\pi_{32}(n) = \sigma_{32}(n) - 3\sigma_{221}(n) - \sigma_{311}(n) + 5\sigma_{2111}(n) - 2\sigma_{11111}(n).$$

Some data

$n \text{ even} \Rightarrow$

$$\sigma_{31}(n) = \frac{1}{4} + \frac{n^2 + n - 8}{(n-1)(n+2)(n-3)(n+4)}$$

$$\sigma_{22}(n) = \frac{2}{3} \left(\frac{1}{4} + \frac{n^2 + n - 8}{(n-1)(n+2)(n-3)(n+4)} \right)$$

$$n \text{ odd } \Rightarrow \sigma_{31}(n) = \frac{1}{4} + \frac{1}{(n-2)(n+3)}$$

$$\sigma_{22}(n) = \frac{2}{3} \left(\frac{1}{4} + \frac{1}{(n-2)(n+3)} \right).$$

Conjecture. Let α and β be compositions of m with the same number k of parts. Then

Conjecture. Let α and β be compositions of m with the same number k of parts. Then

$$\frac{\sigma_{\alpha}(n)}{\prod \alpha_i!} = \frac{\sigma_{\beta}(n)}{\prod \beta_i!}.$$

Implies all previous conjectures.

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.

Moreover, for α a composition of m with k parts,

$$\sigma_{\alpha}(n) = \frac{1}{\prod \alpha_i! \cdot (n-1)_{m-1}}$$

$$\left[\sum_{j=0}^{m-k} (-1)^j \frac{\binom{m-k}{k}\binom{n+j+1}{m}}{(j+1)\binom{n+k+j}{j+1}} + \frac{(-1)^{n-m}\binom{n-1}{k-2}}{(m-k+1)\binom{n+m}{m-k+1}}\right]$$

Products of Cycles – p. 2

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.

Moreover, for α a composition of m with k parts,

$$\sigma_{\alpha}(n) = \frac{1}{\prod \alpha_i! \cdot (n-1)_{m-1}}$$

$$\left[\sum_{j=0}^{m-k} (-1)^j \frac{\binom{m-k}{k}\binom{n+j+1}{m}}{(j+1)\binom{n+k+j}{j+1}} + \frac{(-1)^{n-m}\binom{n-1}{k-2}}{(m-k+1)\binom{n+m}{m-k+1}}\right]$$

Determines $\sigma_{\alpha}(n)$ and $\pi_{\alpha}(n)$ for all α .

Proof by Bernardi-Morales begins with a standard bijection between products uv = n-cycle and bipartite unicellular edge-labelled maps on an (orientable) surface.

Proof by Bernardi-Morales begins with a standard bijection between products uv = n-cycle and bipartite unicellular edge-labelled maps on an (orientable) surface.

Genus *g* of surface given by

$$g = \frac{1}{2}(n+1-\kappa(u)-\kappa(v)),$$

where κ denotes number of cycles.

An example for g = 1

$(1, 2, 3, 4)(5)(6, 7)(8, 9)(10)(11) \cdot (1, 7, 8)(2, 5, 6)(3, 11, 10)(4, 9)$ = (1, 5, 6, 8, 4, 7, 2, 11, 10, 3, 9)

Tree-rooted maps

There is a (difficult) bijection with bipartite **tree-rooted maps**.

Tree-rooted maps

There is a (difficult) bijection with bipartite **tree-rooted maps**.

Tree-rooted maps

There is a (difficult) bijection with bipartite **tree-rooted maps**.

How can we generalize the product uv of two n-cycles?

How can we generalize the product uv of two n-cycles?

Most successful generalization: product of n-cycle and (n - j)-cycle.

n-cycle times (n - j)-cycle

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

n-cycle times (n - j)-cycle

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

Theorem (Boccara).

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}\,j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ & 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ & 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

In other words, if u is an n-cycle and v is an (n-1)-cycle, then uv is equidistributed on odd permutations.

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ & 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

In other words, if u is an n-cycle and v is an (n-1)-cycle, then uv is equidistributed on odd permutations.

Bijective proof known (A. Machì, 1992).

Let $u \in \mathfrak{S}_n$ be a random *n*-cycle and $v \in \mathfrak{S}_n$ a random (n-1)-cycle. Let $\pi_{\alpha}(n, n-1)$ be the probability that uv is α -separated.

Theorem. Let $\sum \alpha_i = \boldsymbol{m}$. Then

$$\pi_{\alpha}(n, n-1) = \frac{(\alpha_1 - 1)! \cdots (\alpha_{\ell} - 1)!}{(m-2)!}$$

$$\times \left(\frac{1}{m(m-1)} + (-1)^{n-m} \frac{1}{n(n-1)}\right)$$

