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Separation of elements

Sn: permutations of 1, 2, . . . , n
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Separation of elements

Sn: permutations of 1, 2, . . . , n

Let n ≥ 2. Choose w ∈ Sn (uniform distribution).
What is the probability ρ2(n) that 1, 2 are in the
same cycle of w?
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The “fundamental bijection”

Write w as a product of disjoint cycles, least
element of each cycle first, decreasing order of
least elements:

(6, 8)(4)(2, 7, 3)(1, 5).
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The “fundamental bijection”

Write w as a product of disjoint cycles, least
element of each cycle first, decreasing order of
least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining ŵ ∈ Sn

(one-line form):

68427315.
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The “fundamental bijection”

Write w as a product of disjoint cycles, least
element of each cycle first, decreasing order of
least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining ŵ ∈ Sn

(one-line form):

68427315.

The map f : Sn → Sn, f(w) = ŵ, is a bijection
(Foata ).

Products of Cycles – p.



Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

ŵ = 68427315
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Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

ŵ = 68427315

Note. 1 and 2 are in the same cycle of w
⇔ 1 precedes 2 in ŵ.
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Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

ŵ = 68427315

Note. 1 and 2 are in the same cycle of w
⇔ 1 precedes 2 in ŵ.

⇒ Theorem. ρ2(n) = 1/2
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α-separation

Let α = (α1, . . . , αk) be a composition of m, i.e.,
αi ≥ 1,

∑
αi = m.

Let n ≥ m. Define w ∈ Sn to be α-separated if
1, 2, . . . , α1 are in the same cycle C1 of w,
α1 + 1, α1 + 2, . . . , α1 + α2 are in the same cycle
C2 6= C1 of w, etc.
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α-separation

Let α = (α1, . . . , αk) be a composition of m, i.e.,
αi ≥ 1,

∑
αi = m.

Let n ≥ m. Define w ∈ Sn to be α-separated if
1, 2, . . . , α1 are in the same cycle C1 of w,
α1 + 1, α1 + 2, . . . , α1 + α2 are in the same cycle
C2 6= C1 of w, etc.

Example. w = (1,2, 10)(3, 12, 7)(4, 6,5, 9)(8, 11)
is (2, 1, 2)-separated.
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Generalization ofρ2(n) = 1/2

Let ρα(n) be the probability that a random
permutation w ∈ Sn is α-separated,
α = (α1, . . . , αk),

∑
αi = m.
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Generalization ofρ2(n) = 1/2

Let ρα(n) be the probability that a random
permutation w ∈ Sn is α-separated,
α = (α1, . . . , αk),

∑
αi = m.

Similar argument gives:

Theorem.

ρα(n) =
(α1 − 1)! · · · (αk − 1)!

m!
.
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Conjecture of M. Bóna

Conjecture (Bóna ). Let u, v be random n-cycles
in Sn, n odd . The probability π2(n) that uv is
(2)-separated (i.e., 1 and 2 appear in the same
cycle of uv) is 1/2.
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Conjecture of M. Bóna

Conjecture (Bóna ). Let u, v be random n-cycles
in Sn, n odd . The probability π2(n) that uv is
(2)-separated (i.e., 1 and 2 appear in the same
cycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

π(1,1)(n) = 1 −
1

2
=

1

2
.
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n = 3 and evenn

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated
(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated
(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated
(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated
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n = 3 and evenn

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated
(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated
(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated
(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?
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n = 3 and evenn

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated
(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated
(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated
(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?

Probability π2(n) that uv is (2)-separated:

n 2 4 6 8 10
π2(n) 0 7/18 9/20 33/70 13/27
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Theorem on(2)-separation

Theorem. We have

π2(n) =






1
2 , n odd

1
2 −

2
(n−1)(n+2) , n even.
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Sketch of proof

Let w ∈ Sn have cycle type λ ⊢ n, i.e.,

λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n,

cycle lengths λi > 0.
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Sketch of proof

Let w ∈ Sn have cycle type λ ⊢ n, i.e.,

λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n,

cycle lengths λi > 0.

type((1, 3)(2, 9, 5, 4)(7)(6, 8)) = (4, 2, 2, 1)
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qλ

Given type(w) = λ, let qλ be the probability that
w is 2-separated.
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qλ

Given type(w) = λ, let qλ be the probability that
w is 2-separated.

Easy:

qλ =

∑(
λi

2

)
(
n
2

) =

∑
λi(λi − 1)

n(n − 1)
.
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qλ

Given type(w) = λ, let qλ be the probability that
w is 2-separated.

Easy:

qλ =

∑(
λi

2

)
(
n
2

) =

∑
λi(λi − 1)

n(n − 1)
.

E.g., q(1,1,...,1) = 0.
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aλ

Let aλ be the number of pairs (u, v) of n-cycles in
Sn for which uv has type λ (a connection
coefficient ).
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aλ

Let aλ be the number of pairs (u, v) of n-cycles in
Sn for which uv has type λ (a connection
coefficient ).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.
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aλ

Let aλ be the number of pairs (u, v) of n-cycles in
Sn for which uv has type λ (a connection
coefficient ).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.

Easy: π2(n) = 1
(n−1)!2

∑
λ⊢n aλqλ.
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The key lemma

Let n!/zλ = #{w ∈ Sn : type(w) = λ}. E.g.,

n!

z(1,1,...,1)
= 1,

n!

z(n)
= (n − 1)!.

Lemma (Boccara , 1980).

aλ =
n!(n − 1)!

zλ

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.
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A “formula” for π2(n)

π2(n) =
1

(n − 1)!2

∑

λ⊢n

n!

zλ

(
∑

i

λi(λi − 1)

n(n − 1)

)

·(n − 1)!

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx

=
1

n − 1

∑

λ⊢n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.
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The exponential formula

How to extract information?
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The exponential formula

How to extract information?

Answer: generating functions.
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The exponential formula

How to extract information?

Answer: generating functions.

Let pr(x) = xr
1 + xr

2 + · · · ,

pλ(x) = pλ1
(x)pλ2

(x) · · · .

“Exponential formula, permutation version”

exp
∑

r≥1

1

r
pr(x) =

∑

λ

z−1
λ pλ(x).
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The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).
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The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).

Compare

π2(n) =
1

n − 1

∑

λ⊢n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.
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The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).

Compare

π2(n) =
1

n − 1

∑

λ⊢n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.

Bad:
∑

λi(λi − 1)
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A trick

Straightforward: Let ℓ(λ) = number of parts.

2−ℓ(λ)+1

(
∂2

∂a2
−

∂2

∂a∂b

)
pλ(a, b)|a=b=1 =

∑
λi(λi−1).
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A trick

Straightforward: Let ℓ(λ) = number of parts.

2−ℓ(λ)+1

(
∂2

∂a2
−

∂2

∂a∂b

)
pλ(a, b)|a=b=1 =

∑
λi(λi−1).

Exponential formula gives:

∑
(n − 1)π2(n)tn = 2

∫ 1

0

(
∂2

∂a2
−

∂2

∂a∂b

)

exp

[
∑

k≥1

1

k

(
ak + bk

2

)
(xk − (x − 1)k)tk

]∣∣∣∣∣
a=b=1

dx.
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Miraculous integral

Get:

∑
(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3
dx

=
1

t2
log(1 − t2) +

3

2
+

−1
2 + t

(1 − t)2
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Miraculous integral

Get:

∑
(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3
dx

=
1

t2
log(1 − t2) +

3

2
+

−1
2 + t

(1 − t)2

(coefficient of tn)/(n − 1):

π2(n) =

{
1
2 , n odd

1
2 −

2
(n−1)(n+2) , n even.
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Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated for
random n-cycles u, v
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Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated for
random n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).
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Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated for
random n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).

Previous technique for π2(n) extends to πα(n).
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π(1m)(n)

Theorem. Let n ≥ m ≥ 2. Then π(1m)(n) is given
by





1

m!
, n − m odd

1

m!
+

2

(m − 2)!(n − m + 1)(n + m)
, n − m even
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A general result

Recall: ρα(n) = probability that a random
permutation w ∈ Sn is α-separated
= (α1 − 1)! · · · (αj − 1)!/m!.
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A general result

Recall: ρα(n) = probability that a random
permutation w ∈ Sn is α-separated
= (α1 − 1)! · · · (αj − 1)!/m!.

Theorem. Let α be a composition. Then there
exist rational functions Rα(n) and Sα(n) of n such
that for n sufficiently large,

πα(n) =

{
Rα(n), n even
Sα(n), n odd.
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A general result

Recall: ρα(n) = probability that a random
permutation w ∈ Sn is α-separated
= (α1 − 1)! · · · (αj − 1)!/m!.

Theorem. Let α be a composition. Then there
exist rational functions Rα(n) and Sα(n) of n such
that for n sufficiently large,

πα(n) =

{
Rα(n), n even
Sα(n), n odd.

Moreover, πα(n) = ρα(n) + O(1/n).
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Not the whole story

π(2,2,2) =






1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd
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Not the whole story

π(2,2,2) =






1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =






1
120 −

n4+2n3−38n2−39n+234
5(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1
120 −

3n2+3n−58
10(n−2)(n+3)(n−4)(n+5) , n odd
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Not the whole story

π(2,2,2) =






1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =






1
120 −

n4+2n3−38n2−39n+234
5(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1
120 −

3n2+3n−58
10(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture for denominators and degree
of “error term.”
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The function σα(n)

E.g., σ3211(n) = probability that no cycle of a
product uv of two random n-cycles u, v ∈ Sn

contains elements from two (or more) of the sets
{1, 2, 3}, {4, 5}, {6}, {7}.
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The function σα(n)

E.g., σ3211(n) = probability that no cycle of a
product uv of two random n-cycles u, v ∈ Sn

contains elements from two (or more) of the sets
{1, 2, 3}, {4, 5}, {6}, {7}.

σ32(n) = π32(n) + 3π221(n) + π311(n)

+4π2111(n) + π11111(n).
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The function σα(n)

E.g., σ3211(n) = probability that no cycle of a
product uv of two random n-cycles u, v ∈ Sn

contains elements from two (or more) of the sets
{1, 2, 3}, {4, 5}, {6}, {7}.

σ32(n) = π32(n) + 3π221(n) + π311(n)

+4π2111(n) + π11111(n).

Möbius inversion on Π5 gives:

π32(n) = σ32(n) − 3σ221(n) − σ311(n)

+5σ2111(n) − 2σ11111(n).
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Some data

n even ⇒

σ31(n) =
1

4
+

n2 + n − 8

(n − 1)(n + 2)(n − 3)(n + 4)

σ22(n) =
2

3

(
1

4
+

n2 + n − 8

(n − 1)(n + 2)(n − 3)(n + 4)

)

n odd ⇒ σ31(n) =
1

4
+

1

(n − 2)(n + 3)

σ22(n) =
2

3

(
1

4
+

1

(n − 2)(n + 3)

)
.
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A conjecture

Conjecture. Let α and β be compositions of m
with the same number k of parts. Then

σα(n)∏
αi!

=
σβ(n)∏

βi!
.
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A conjecture

Conjecture. Let α and β be compositions of m
with the same number k of parts. Then

σα(n)∏
αi!

=
σβ(n)∏

βi!
.

Implies all previous conjectures.
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Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011:
conjecture is true.
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Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011:
conjecture is true.

Moreover, for α a composition of m with k parts,

σα(n) =
1∏

αi! · (n − 1)m−1

[
m−k∑

j=0

(−1)j

(
m−k

k

)(
n+j+1

m

)

(j + 1)
(
n+k+j

j+1

) +
(−1)n−m

(
n−1
k−2

)

(m − k + 1)
(

n+m
m−k+1

)
]
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Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011:
conjecture is true.

Moreover, for α a composition of m with k parts,

σα(n) =
1∏

αi! · (n − 1)m−1

[
m−k∑

j=0

(−1)j

(
m−k

k

)(
n+j+1

m

)

(j + 1)
(
n+k+j

j+1

) +
(−1)n−m

(
n−1
k−2

)

(m − k + 1)
(

n+m
m−k+1

)
]

Determines σα(n) and πα(n) for all α.
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A basic bijection

Proof by Bernardi-Morales begins with a
standard bijection between products
uv = n-cycle and bipartite unicellular
edge-labelled maps on an (orientable) surface.
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A basic bijection

Proof by Bernardi-Morales begins with a
standard bijection between products
uv = n-cycle and bipartite unicellular
edge-labelled maps on an (orientable) surface.

Genus g of surface given by

g =
1

2
(n + 1 − κ(u) − κ(v)),

where κ denotes number of cycles.
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An example for g = 1

(1, 2, 3, 4)(5)(6, 7)(8, 9)(10)(11) ·(1, 7, 8)(2, 5, 6)(3, 11, 10)(4, 9)

= (1, 5, 6, 8, 4, 7, 2, 11, 10, 3, 9)

8

10

7

8

1 2

3
11

9

4

6 7
5
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Tree-rooted maps

There is a (difficult) bijection with bipartite
tree-rooted maps .
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Tree-rooted maps

There is a (difficult) bijection with bipartite
tree-rooted maps .
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Tree-rooted maps

There is a (difficult) bijection with bipartite
tree-rooted maps .
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Generalizations

How can we generalize the product uv of two
n-cycles?
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Generalizations

How can we generalize the product uv of two
n-cycles?

Most successful generalization: product of
n-cycle and (n − j)-cycle.
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n-cycle times(n − j)-cycle

Let λ ⊢ n, 0 ≤ j < n. Let aλ,j be the number of
pairs (u, v) ∈ Sn × Sn for which u is an n-cycle, v
is an (n − j)-cycle, and uv has type λ.
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n-cycle times(n − j)-cycle

Let λ ⊢ n, 0 ≤ j < n. Let aλ,j be the number of
pairs (u, v) ∈ Sn × Sn for which u is an n-cycle, v
is an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =
n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

∏

i

(
xλi − (x − 1)λi

)
dx.
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The casej = 1

αλ,1 =
n!(n − 2)!

zλ

∫ 1

0

d

dx

∏

i

(
xλi − (x − 1)λi

)
dx

=

{
2n!(n−2)!

zλ

, λ odd type
0, λ even type.
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The casej = 1

αλ,1 =
n!(n − 2)!

zλ

∫ 1

0

d

dx

∏

i

(
xλi − (x − 1)λi

)
dx

=

{
2n!(n−2)!

zλ

, λ odd type
0, λ even type.

In other words, if u is an n-cycle and v is an
(n − 1)-cycle, then uv is equidistributed on odd
permutations.
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The casej = 1

αλ,1 =
n!(n − 2)!

zλ

∫ 1

0

d

dx

∏

i

(
xλi − (x − 1)λi

)
dx

=

{
2n!(n−2)!

zλ

, λ odd type
0, λ even type.

In other words, if u is an n-cycle and v is an
(n − 1)-cycle, then uv is equidistributed on odd
permutations.

Bijective proof known (A. Machì , 1992).
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Explicit formula

Let u ∈ Sn be a random n-cycle and v ∈ Sn a
random (n − 1)-cycle. Let πα(n, n − 1) be the
probability that uv is α-separated.

Theorem. Let
∑

αi = m. Then

πα(n, n − 1) =
(α1 − 1)! · · · (αℓ − 1)!

(m − 2)!

×

(
1

m(m − 1)
+ (−1)n−m 1

n(n − 1)

)
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