Products of Cycles

Richard P. Stanley
M.I.T.

Had

Elegant
Research
Breakthroughs
Which
Include
Lovely
Formulas

Separation of elements

$\mathfrak{S}_{n}:$ permutations of $1,2, \ldots, n$

Separation of elements

\mathfrak{S}_{n} : permutations of $1,2, \ldots, n$

Let $n \geq 2$. Choose $w \in \mathfrak{S}_{n}$ (uniform distribution). What is the probability $\boldsymbol{\rho}_{\mathbf{2}}(\boldsymbol{n})$ that 1, 2 are in the same cycle of w ?

The "fundamental bijection"

Write w as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

$$
(6,8)(4)(2,7,3)(1,5) .
$$

The "fundamental bijection"

Write w as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

$$
(6,8)(4)(2,7,3)(1,5) .
$$

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_{n}$ (one-line form):

$$
68427315 .
$$

The "fundamental bijection"

Write w as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

$$
(6,8)(4)(2,7,3)(1,5) .
$$

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_{n}$ (one-line form):

$$
68427315 .
$$

The map $\boldsymbol{f}: \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}, f(w)=\widehat{w}$, is a bijection (Foata).

Answer to question

$$
\begin{aligned}
w & =(6,8)(4)(2,7,3)(1,5) \\
\widehat{w} & =68427315
\end{aligned}
$$

Answer to question

$$
\begin{aligned}
w & =(6,8)(4)(2,7,3)(1,5) \\
\widehat{w} & =68427315
\end{aligned}
$$

Note. 1 and 2 are in the same cycle of w $\Leftrightarrow 1$ precedes 2 in \widehat{w}.

Answer to question

$$
\begin{aligned}
& w=(6,8)(4)(2,7,3)(1,5) \\
& \widehat{w}=68427315
\end{aligned}
$$

Note. 1 and 2 are in the same cycle of w $\Leftrightarrow 1$ precedes 2 in \widehat{w}.
\Rightarrow Theorem. $\rho_{2}(n)=1 / 2$

α-separation

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a composition of m, i.e.,
$\alpha_{i} \geq 1, \sum \alpha_{i}=m$.
Let $n \geq m$. Define $w \in \mathfrak{S}_{n}$ to be $\boldsymbol{\alpha}$-separated if
$1,2, \ldots, \alpha_{1}$ are in the same cycle C_{1} of w,
$\alpha_{1}+1, \alpha_{1}+2, \ldots, \alpha_{1}+\alpha_{2}$ are in the same cycle $C_{2} \neq C_{1}$ of w, etc.

α-separation

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a composition of m, i.e.,
$\alpha_{i} \geq 1, \sum \alpha_{i}=m$.
Let $n \geq m$. Define $w \in \mathfrak{S}_{n}$ to be $\boldsymbol{\alpha}$-separated if $1,2, \ldots, \alpha_{1}$ are in the same cycle C_{1} of w, $\alpha_{1}+1, \alpha_{1}+2, \ldots, \alpha_{1}+\alpha_{2}$ are in the same cycle $C_{2} \neq C_{1}$ of w, etc.

Example. $w=(1,2,10)(3,12,7)(4,6,5,9)(8,11)$ is $(2,1,2)$-separated.

Generalization of $\rho_{2}(n)=1 / 2$

Let $\rho_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_{n}$ is α-separated,
$\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \sum \alpha_{i}=m$.

Generalization of $\rho_{2}(n)=1 / 2$

Let $\rho_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_{n}$ is α-separated,
$\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \sum \alpha_{i}=m$.
Similar argument gives:
Theorem.

$$
\rho_{\alpha}(n)=\frac{\left(\alpha_{1}-1\right)!\cdots\left(\alpha_{k}-1\right)!}{m!} .
$$

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random n-cycles in \mathfrak{S}_{n}, n odd. The probability $\boldsymbol{\pi}_{2}(\boldsymbol{n})$ that $u v$ is (2)-separated (i.e., 1 and 2 appear in the same cycle of $u v$) is $1 / 2$.

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random n-cycles in \mathfrak{S}_{n}, n odd. The probability $\boldsymbol{\pi}_{2}(\boldsymbol{n})$ that $u v$ is (2)-separated (i.e., 1 and 2 appear in the same cycle of $u v$) is $1 / 2$.

Corollary. Probability that $u v$ is $(1,1)$-separated:

$$
\pi_{(1,1)}(n)=1-\frac{1}{2}=\frac{1}{2} .
$$

$n=3$ and even n

Example ($n=3$).
$(1,2,3)(1,3,2)=(1)(2)(3):(1,1)-$ separated
$(1,3,2)(1,2,3)=(1)(2)(3):(1,1)-$ separated
$(1,2,3)(1,2,3)=(1,3,2):(2)-$ separated
$(1,3,2)(1,3,2)=(1,2,3):(2)-$ separated

$n=3$ and even n

Example ($n=3$).

$$
\begin{aligned}
& (1,2,3)(1,3,2)=(1)(2)(3): \quad(1,1)-\text { separated } \\
& (1,3,2)(1,2,3)=(1)(2)(3):(1,1)-\text { separated } \\
& (1,2,3)(1,2,3)=(1,3,2):(2)-\text { separated } \\
& (1,3,2)(1,3,2)=(1,2,3): \quad(2)-\text { separated }
\end{aligned}
$$

What about n even?

$n=3$ and even n

Example $(n=3)$.

$$
\begin{aligned}
& (1,2,3)(1,3,2)=(1)(2)(3): \quad(1,1)-\text { separated } \\
& (1,3,2)(1,2,3)=(1)(2)(3):(1,1)-\text { separated } \\
& (1,2,3)(1,2,3)=(1,3,2):(2)-\text { separated } \\
& (1,3,2)(1,3,2)=(1,2,3):(2)-\text { separated }
\end{aligned}
$$

What about n even?
Probability $\pi_{2}(n)$ that $u v$ is (2)-separated:

n	2	4	6	8	10
$\pi_{2}(n)$	0	$7 / 18$	$9 / 20$	$33 / 70$	$13 / 27$

Theorem on (2)-separation

Theorem. We have

$$
\pi_{2}(n)=\left\{\begin{aligned}
\frac{1}{2}, & n \text { odd } \\
\frac{1}{2}-\frac{2}{(n-1)(n+2)}, & n \text { even } .
\end{aligned}\right.
$$

Sketch of proof

Let $w \in \mathfrak{S}_{n}$ have cycle type $\boldsymbol{\lambda} \vdash n$, i.e.,

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \quad \sum \lambda_{i}=n
$$

cycle lengths $\lambda_{i}>0$.

Sketch of proof

Let $w \in \mathfrak{S}_{n}$ have cycle type $\boldsymbol{\lambda} \vdash n$, i.e.,

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0, \sum \lambda_{i}=n,
$$

cycle lengths $\lambda_{i}>0$.

$$
\operatorname{type}((1,3)(2,9,5,4)(7)(6,8))=(4,2,2,1)
$$

q_{λ}

Given type $(w)=\lambda$, let $\boldsymbol{q}_{\boldsymbol{\lambda}}$ be the probability that w is 2-separated.

Given type $(w)=\lambda$, let $\boldsymbol{q}_{\boldsymbol{\lambda}}$ be the probability that w is 2 -separated.

Easy:

$$
q_{\lambda}=\frac{\sum\binom{\lambda_{i}}{2}}{\binom{n}{2}}=\frac{\sum \lambda_{i}\left(\lambda_{i}-1\right)}{n(n-1)} .
$$

Given type $(w)=\lambda$, let $\boldsymbol{q}_{\boldsymbol{\lambda}}$ be the probability that w is 2-separated.

Easy:

$$
q_{\lambda}=\frac{\sum\binom{\lambda_{i}}{2}}{\binom{n}{2}}=\frac{\sum \lambda_{i}\left(\lambda_{i}-1\right)}{n(n-1)} .
$$

E.g., $q_{(1,1, \ldots, 1)}=0$.

Let $\boldsymbol{a}_{\boldsymbol{\lambda}}$ be the number of pairs (u, v) of n-cycles in \mathfrak{S}_{n} for which $u v$ has type λ (a connection coefficient).

Let $\boldsymbol{a}_{\boldsymbol{\lambda}}$ be the number of pairs (u, v) of n-cycles in \mathfrak{S}_{n} for which $u v$ has type λ (a connection coefficient).
E.g., $a_{(1,1,1)}=a_{3}=2, \quad a_{(2,1)}=0$.

Let $\boldsymbol{a}_{\boldsymbol{\lambda}}$ be the number of pairs (u, v) of n-cycles in \mathfrak{S}_{n} for which $u v$ has type λ (a connection coefficient).
E.g., $a_{(1,1,1)}=a_{3}=2, \quad a_{(2,1)}=0$.

Easy: $\pi_{2}(n)=\frac{1}{(n-1)!^{2}} \sum_{\lambda \vdash n} a_{\lambda} q_{\lambda}$.

The key lemma

Let $\boldsymbol{n}!/ \boldsymbol{z}_{\lambda}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{type}(w)=\lambda\right\}$. E.g.,

$$
\frac{n!}{z_{(1,1, \ldots, 1)}}=1, \quad \frac{n!}{z_{(n)}}=(n-1)!
$$

Lemma (Boccara, 1980).

$$
a_{\lambda}=\frac{n!(n-1)!}{z_{\lambda}} \int_{0}^{1} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x
$$

A'formula" for $\pi_{2}(n)$

$$
\begin{aligned}
& \pi_{2}(n)= \frac{1}{(n-1)!^{2}} \sum_{\lambda \vdash n} \frac{n!}{z_{\lambda}}\left(\sum_{i} \frac{\lambda_{i}\left(\lambda_{i}-1\right)}{n(n-1)}\right) \\
& \cdot(n-1)!\int_{0}^{1} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x \\
&= \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1}\left(\sum_{i} \lambda_{i}\left(\lambda_{i}-1\right)\right) \\
& \quad \cdot \int_{0}^{1} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x .
\end{aligned}
$$

The exponential formula

How to extract information?

The exponential formula

How to extract information?
Answer: generating functions.

The exponential formula

How to extract information?
Answer: generating functions.
Let $\boldsymbol{p}_{r}(\boldsymbol{x})=x_{1}^{r}+x_{2}^{r}+\cdots$,

$$
\boldsymbol{p}_{\lambda}(\boldsymbol{x})=p_{\lambda_{1}}(x) p_{\lambda_{2}}(x) \cdots .
$$

"Exponential formula, permutation version"

$$
\exp \sum_{r \geq 1} \frac{1}{r} p_{r}(x)=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) .
$$

The "bad" factor

$$
\exp \sum_{m \geq 1} \frac{1}{m} p_{m}(x)=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) .
$$

The "bad" factor

$$
\exp \sum_{m \geq 1} \frac{1}{m} p_{m}(x)=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x)
$$

Compare

$$
\begin{aligned}
\pi_{2}(n) & =\frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1}\left(\sum_{i} \lambda_{i}\left(\lambda_{i}-1\right)\right) \\
& \cdot \int_{0}^{1} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x .
\end{aligned}
$$

The "bad" factor

$$
\exp \sum_{m \geq 1} \frac{1}{m} p_{m}(x)=\sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x)
$$

Compare

$$
\begin{aligned}
\pi_{2}(n) & =\frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1}\left(\sum_{i} \lambda_{i}\left(\lambda_{i}-1\right)\right) \\
& \cdot \int_{0}^{1} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x .
\end{aligned}
$$

Bad: $\sum \lambda_{i}\left(\lambda_{i}-1\right)$

A trick

Straightforward: Let $\ell(\boldsymbol{\lambda})=$ number of parts.

$$
\left.2^{-\ell(\lambda)+1}\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{\partial^{2}}{\partial a \partial b}\right) p_{\lambda}(a, b)\right|_{a=b=1}=\sum \lambda_{i}\left(\lambda_{i}-1\right) .
$$

A trick

Straightforward: Let $\ell(\boldsymbol{\lambda})=$ number of parts.
$\left.2^{-\ell(\lambda)+1}\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{\partial^{2}}{\partial a \partial b}\right) p_{\lambda}(a, b)\right|_{a=b=1}=\sum \lambda_{i}\left(\lambda_{i}-1\right)$.
Exponential formula gives:

$$
\sum(n-1) \pi_{2}(n) t^{n}=2 \int_{0}^{1}\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{\partial^{2}}{\partial a \partial b}\right)
$$

$$
\exp \left[\sum_{k \geq 1} \frac{1}{k}\left(\frac{a^{k}+b^{k}}{2}\right)\left(x^{k}-(x-1)^{k}\right) t^{k}\right]
$$

Miraculous integral

Get:

$$
\begin{aligned}
\sum(n-1) \pi_{2}(n) t^{n} & =\int_{0}^{1} \frac{t^{2}\left(1-2 x-2 t x+2 t x^{2}\right)}{(1-t(x-1))(1-t x)^{3}} d x \\
& =\frac{1}{t^{2}} \log \left(1-t^{2}\right)+\frac{3}{2}+\frac{-\frac{1}{2}+t}{(1-t)^{2}}
\end{aligned}
$$

Miraculous integral

Get:

$$
\begin{aligned}
\sum(n-1) \pi_{2}(n) t^{n} & =\int_{0}^{1} \frac{t^{2}\left(1-2 x-2 t x+2 t x^{2}\right)}{(1-t(x-1))(1-t x)^{3}} d x \\
& =\frac{1}{t^{2}} \log \left(1-t^{2}\right)+\frac{3}{2}+\frac{-\frac{1}{2}+t}{(1-t)^{2}}
\end{aligned}
$$

(coefficient of $\left.t^{n}\right) /(n-1)$:

$$
\pi_{2}(n)=\left\{\begin{aligned}
\frac{1}{2}, & n \text { odd } \\
\frac{1}{2}-\frac{2}{(n-1)(n+2)}, & n \text { even. }
\end{aligned}\right.
$$

Generalizations，with R．Du（杜若霞）

$\pi_{\alpha}(\boldsymbol{n})=$ probability that $u v$ is α－separated for random n－cycles u, v

Generalizations，with R．Du（杜若霞）

$\boldsymbol{\pi}_{\alpha}(\boldsymbol{n})=$ probability that $u v$ is α－separated for random n－cycles u, v

Some simple relations hold，e．g．，

$$
\pi_{3}(n)=\pi_{4}(n)+\pi_{3,1}(n)
$$

Generalizations，with R．Du（杜若霞）

$\boldsymbol{\pi}_{\alpha}(\boldsymbol{n})=$ probability that $u v$ is α－separated for random n－cycles u, v

Some simple relations hold，e．g．，

$$
\pi_{3}(n)=\pi_{4}(n)+\pi_{3,1}(n)
$$

Previous technique for $\pi_{2}(n)$ extends to $\pi_{\alpha}(n)$ ．

$\pi_{\left(1^{m}\right)}(\boldsymbol{n})$

Theorem. Let $n \geq m \geq 2$. Then $\pi_{\left(1^{m}\right)}(n)$ is given by

$$
\begin{cases}\frac{1}{m!}, & n-m \text { odd } \\ \frac{1}{m!}+\frac{2}{(m-2)!(n-m+1)(n+m)}, & n-m \text { even }\end{cases}
$$

A general result

Recall: $\boldsymbol{\rho}_{\alpha}(\boldsymbol{n})=$ probability that a random permutation $w \in \mathfrak{S}_{n}$ is α-separated
$=\left(\alpha_{1}-1\right)!\cdots\left(\alpha_{j}-1\right)!/ m!$.

A general result

Recall: $\boldsymbol{\rho}_{\alpha}(\boldsymbol{n})=$ probability that a random permutation $w \in \mathfrak{S}_{n}$ is α-separated
$=\left(\alpha_{1}-1\right)!\cdots\left(\alpha_{j}-1\right)!/ m!$.
Theorem. Let α be a composition. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$
\pi_{\alpha}(n)=\left\{\begin{array}{c}
R_{\alpha}(n), n \text { even } \\
S_{\alpha}(n), n \text { odd }
\end{array}\right.
$$

A general result

Recall: $\rho_{\alpha}(\boldsymbol{n})=$ probability that a random permutation $w \in \mathfrak{S}_{n}$ is α-separated
$=\left(\alpha_{1}-1\right)!\cdots\left(\alpha_{j}-1\right)!/ m!$.
Theorem. Let α be a composition. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$
\pi_{\alpha}(n)=\left\{\begin{array}{cc}
R_{\alpha}(n), & n \text { even } \\
S_{\alpha}(n), & n \text { odd }
\end{array}\right.
$$

Moreover, $\pi_{\alpha}(n)=\rho_{\alpha}(n)+O(1 / n)$.

Not the whole story

$$
\pi_{(2,2,2)}= \begin{cases}\frac{1}{720}-\frac{n^{2}+n-32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text { even } \\ \frac{1}{720}-\frac{n^{2}+n-26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text { odd }\end{cases}
$$

Not the whole story

$$
\begin{gathered}
\pi_{(2,2,2)}= \begin{cases}\frac{1}{720}-\frac{n^{2}+n-32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text { even } \\
\frac{1}{720}-\frac{n^{2}+n-26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text { odd }\end{cases} \\
\pi_{(4,2)}= \begin{cases}\frac{1}{120}-\frac{n^{4}+2 n^{3}-38 n^{2}-39 n+234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text { even } \\
\frac{1}{120}-\frac{3 n^{2}+3 n-58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text { odd }\end{cases}
\end{gathered}
$$

Not the whole story

$$
\begin{gathered}
\pi_{(2,2,2)}= \begin{cases}\frac{1}{720}-\frac{n^{2}+n-32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text { even } \\
\frac{1}{720}-\frac{n^{2}+n-26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text { odd }\end{cases} \\
\pi_{(4,2)}= \begin{cases}\frac{1}{120}-\frac{n^{4}+2 n^{3}-38 n^{2}-39 n+234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text { even } \\
\frac{1}{120}-\frac{3 n^{2}+3 n-58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text { odd }\end{cases}
\end{gathered}
$$

Obvious conjecture for denominators and degree of "error term."

The function $\sigma_{\alpha}(n)$

E.g., $\sigma_{3211}(\boldsymbol{n})=$ probability that no cycle of a product $u v$ of two random n-cycles $u, v \in \mathfrak{S}_{n}$ contains elements from two (or more) of the sets $\{1,2,3\},\{4,5\},\{6\},\{7\}$.

The function $\sigma_{\alpha}(n)$

E.g., $\sigma_{3211}(\boldsymbol{n})=$ probability that no cycle of a product $u v$ of two random n-cycles $u, v \in \mathfrak{S}_{n}$ contains elements from two (or more) of the sets $\{1,2,3\},\{4,5\},\{6\},\{7\}$.

$$
\begin{aligned}
\sigma_{32}(n)= & \pi_{32}(n)+3 \pi_{221}(n)+\pi_{311}(n) \\
& +4 \pi_{2111}(n)+\pi_{11111}(n)
\end{aligned}
$$

The function $\sigma_{\alpha}(n)$

E.g., $\sigma_{3211}(\boldsymbol{n})=$ probability that no cycle of a product $u v$ of two random n-cycles $u, v \in \mathbb{S}_{n}$ contains elements from two (or more) of the sets $\{1,2,3\},\{4,5\},\{6\},\{7\}$.

$$
\begin{aligned}
\sigma_{32}(n)= & \pi_{32}(n)+3 \pi_{221}(n)+\pi_{311}(n) \\
& +4 \pi_{2111}(n)+\pi_{11111}(n)
\end{aligned}
$$

Möbius inversion on Π_{5} gives:

$$
\begin{aligned}
\pi_{32}(n)= & \sigma_{32}(n)-3 \sigma_{221}(n)-\sigma_{311}(n) \\
& +5 \sigma_{2111}(n)-2 \sigma_{11111}(n) .
\end{aligned}
$$

Some data

n even \Rightarrow

$$
\begin{aligned}
\sigma_{31}(n)= & \frac{1}{4}+\frac{n^{2}+n-8}{(n-1)(n+2)(n-3)(n+4)} \\
\sigma_{22}(n)= & \frac{2}{3}\left(\frac{1}{4}+\frac{n^{2}+n-8}{(n-1)(n+2)(n-3)(n+4)}\right) \\
n \text { odd } \Rightarrow & \sigma_{31}(n)=\frac{1}{4}+\frac{1}{(n-2)(n+3)} \\
& \sigma_{22}(n)=\frac{2}{3}\left(\frac{1}{4}+\frac{1}{(n-2)(n+3)}\right)
\end{aligned}
$$

A conjecture

Conjecture. Let α and β be compositions of m with the same number k of parts. Then

$$
\frac{\sigma_{\alpha}(n)}{\prod \alpha_{i}!}=\frac{\sigma_{\beta}(n)}{\prod \beta_{i}!} .
$$

A conjecture

Conjecture. Let α and β be compositions of m with the same number k of parts. Then

$$
\frac{\sigma_{\alpha}(n)}{\prod \alpha_{i}!}=\frac{\sigma_{\beta}(n)}{\prod \beta_{i}!} .
$$

Implies all previous conjectures.

Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.

Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.
Moreover, for α a composition of m with k parts,

$$
\begin{gathered}
\sigma_{\alpha}(n)=\frac{1}{\prod \alpha_{i}!\cdot(n-1)_{m-1}} \\
{\left[\sum_{j=0}^{m-k}(-1)^{j} \frac{\binom{m-k}{k}\binom{n+j+1}{m}}{(j+1)\binom{n+k+j}{j+1}}+\frac{(-1)^{n-m}\binom{n-1}{k-2}}{(m-k+1)\binom{n+m}{m-k+1}}\right]}
\end{gathered}
$$

Bernardi-Morales

Olivier Bernardi and Alejandro Morales, 2011: conjecture is true.
Moreover, for α a composition of m with k parts,

$$
\begin{gathered}
\sigma_{\alpha}(n)=\frac{1}{\prod \alpha_{i}!\cdot(n-1)_{m-1}} \\
{\left[\sum_{j=0}^{m-k}(-1)^{j} \frac{\binom{m-k}{k}\binom{n+j+1}{m}}{(j+1)\binom{n+k+j}{j+1}}+\frac{(-1)^{n-m}\binom{n-1}{k-2}}{(m-k+1)\binom{n+m}{m-k+1}}\right]}
\end{gathered}
$$

Determines $\sigma_{\alpha}(n)$ and $\pi_{\alpha}(n)$ for all α.

A basic bijection

Proof by Bernardi-Morales begins with a standard bijection between products $u v=n$-cycle and bipartite unicellular edge-labelled maps on an (orientable) surface.

A basic bijection

Proof by Bernardi-Morales begins with a standard bijection between products $u v=n$-cycle and bipartite unicellular edge-labelled maps on an (orientable) surface.
Genus g of surface given by

$$
g=\frac{1}{2}(n+1-\kappa(u)-\kappa(v)),
$$

where κ denotes number of cycles.

An example for $g=1$

$(1,2,3,4)(5)(6,7)(8,9)(10)(11) \cdot(1,7,8)(2,5,6)(3,11,10)(4,9)$

$$
=(1,5,6,8,4,7,2,11,10,3,9)
$$

Tree-rooted maps

There is a (difficult) bijection with bipartite tree-rooted maps.

Tree-rooted maps

There is a (difficult) bijection with bipartite tree-rooted maps.

Tree-rooted maps

There is a (difficult) bijection with bipartite tree-rooted maps.

Generalizations

How can we generalize the product $u v$ of two n-cycles?

Generalizations

How can we generalize the product $u v$ of two n-cycles?

Most successful generalization: product of n-cycle and $(n-j)$-cycle.

n-cycle times $(n-j)$-cycle

Let $\boldsymbol{\lambda} \vdash n, 0 \leq j<n$. Let $\boldsymbol{a}_{\lambda, j}$ be the number of pairs $(u, v) \in \mathfrak{S}_{n} \times \mathfrak{S}_{n}$ for which u is an n-cycle, v is an $(n-j)$-cycle, and $u v$ has type λ.

n-cycle times $(n-j)$-cycle

Let $\boldsymbol{\lambda} \vdash n, 0 \leq j<n$. Let $\boldsymbol{a}_{\lambda, j}$ be the number of pairs $(u, v) \in \mathfrak{S}_{n} \times \mathfrak{S}_{n}$ for which u is an n-cycle, v is an $(n-j)$-cycle, and $u v$ has type λ.

Theorem (Boccara).

$$
a_{\lambda, j}=\frac{n!(n-j-1)!}{z_{\lambda} j!} \int_{0}^{1} \frac{d^{j}}{d x^{j}} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x .
$$

The case $j=1$

$$
\begin{aligned}
\alpha_{\lambda, 1} & =\frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{d x} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x \\
& =\left\{\begin{aligned}
\frac{2 n!(n-2)!}{z_{\lambda}}, & \lambda \text { odd type } \\
0, & \lambda \text { even type } .
\end{aligned}\right.
\end{aligned}
$$

The case $j=1$

$$
\begin{aligned}
\alpha_{\lambda, 1} & =\frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{d x} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x \\
& =\left\{\begin{array}{cc}
\frac{2 n!(n-2)!}{z_{\lambda}}, & \lambda \text { odd type } \\
0, & \lambda \text { even type } .
\end{array}\right.
\end{aligned}
$$

In other words, if u is an n-cycle and v is an ($n-1$)-cycle, then $u v$ is equidistributed on odd permutations.

The case $j=1$

$$
\begin{aligned}
\alpha_{\lambda, 1} & =\frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{d x} \prod_{i}\left(x^{\lambda_{i}}-(x-1)^{\lambda_{i}}\right) d x \\
& =\left\{\begin{aligned}
\frac{2 n!(n-2)!}{z_{\lambda}}, & \lambda \text { odd type } \\
0, & \lambda \text { even type } .
\end{aligned}\right.
\end{aligned}
$$

In other words, if u is an n-cycle and v is an ($n-1$)-cycle, then $u v$ is equidistributed on odd permutations.

Bijective proof known (A. Machì, 1992).

Explicit formula

Let $\boldsymbol{u} \in \mathfrak{S}_{n}$ be a random n-cycle and $\boldsymbol{v} \in \mathbb{S}_{n}$ a random $(n-1)$-cycle. Let $\boldsymbol{\pi}_{\alpha}(\boldsymbol{n}, \boldsymbol{n}-1)$ be the probability that $u v$ is α-separated.

Theorem. Let $\sum \alpha_{i}=\boldsymbol{m}$. Then

$$
\begin{aligned}
& \pi_{\alpha}(n, n-1)=\frac{\left(\alpha_{1}-1\right)!\cdots\left(\alpha_{\ell}-1\right)!}{(m-2)!} \\
& \quad \times\left(\frac{1}{m(m-1)}+(-1)^{n-m} \frac{1}{n(n-1)}\right)
\end{aligned}
$$

