The White House

This photo shows the South side of the Mansion; visitors tour the the 'South Lawn'. To the west (left of photo) is the Old Executive Office Building (not shown); to the south is the National Mall (also not shown).

Photo Courtesy of the Washington, D.C. Convention \& Visitor Center
go to the White House page
-or-
go to main tour page

Sarah Whitehouse, Г-(Co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, Warwick University, 1994.

The module Lien

Let V be a complex vector space with basis x_{1}, \ldots, x_{n}. Let Lie ${ }_{n}$ be the part of the free Lie algebra $\mathcal{L}(V)$ that is of degree one in each x_{i}.

$$
\operatorname{dim} \operatorname{Lie}_{n}=(n-1)!
$$

Basis: $\left[\cdots\left[\left[x_{1}, x_{w(2)}\right], x_{w(3)}\right], \ldots, x_{w(n)}\right]$, where w permutes $2,3, \ldots, n$.

The symmetric group \mathfrak{S}_{n} acts on Lie_{n} by permuting variables.

$$
\begin{aligned}
& (1,2) \cdot\left[\left[x_{1}, x_{3}\right], x_{2}\right]=\left[\left[x_{2}, x_{3}\right], x_{1}\right] \\
& \quad=-\left[\left[x_{1}, x_{2}\right], x_{3}\right]+\left[\left[x_{1}, x_{3}\right], x_{2}\right]
\end{aligned}
$$

For any function $f: \mathfrak{S}_{n} \rightarrow \mathbb{C}$, recall that

$$
\operatorname{ch} f=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} f(w) p_{\rho(w)}
$$

where if w has $\rho_{i} i$-cycles then

$$
p_{\rho(w)}=p_{1}^{\rho_{1}} p_{2}^{\rho_{2}} \cdots,
$$

with $p_{k}=\sum_{i} x_{i}^{k}$.
In particular, if χ^{λ} is the irreducible character of \mathfrak{S}_{n} indexed by $\lambda \vdash n$, then

$$
\operatorname{ch} \chi^{\lambda}=s_{\lambda}
$$

the Schur function indexed by λ.

$$
\begin{aligned}
& C_{n}=\text { subgroup of } \mathfrak{S}_{n} \\
& \quad \text { generated by }(1,2, \ldots, n)
\end{aligned}
$$

Theorem. As an \mathfrak{S}_{n}-module,

$$
\operatorname{Lie}_{n} \cong \operatorname{ind}_{C_{n}}^{\mathfrak{S}_{n}} e^{2 \pi i / n}
$$

Hence

$$
\operatorname{ch}\left(\operatorname{Lie}_{n}\right)=\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d}
$$

Theorem. Let χ^{λ} be the irreducible character of \mathfrak{S}_{n} indexed by $\lambda \vdash n$. Then

$$
\begin{gathered}
\left\langle\operatorname{Lie}_{n}, \chi^{\lambda}\right\rangle=\# \text { SYT } T \text { of shape } \lambda, \\
\operatorname{maj}(T) \equiv 1(\bmod n)
\end{gathered}
$$

where

$$
\operatorname{maj}(T)=\sum_{i+1 \text { below } i} i
$$

$$
\operatorname{ch} \mathrm{Lie}_{4}=s_{31}+s_{211}
$$

Other occurrences of Lie_{n}

$\Pi_{n}=$ lattice of partitions of $[n]$,
ordered by refinement
$\tilde{H}_{i}\left(\Pi_{n}\right)=i$ th (reduced) homology group
(over \mathbb{Q}, say) of (order complex of) Π_{n}

As \mathfrak{S}_{n}-modules,
$\tilde{H}_{i}\left(\Pi_{n}\right) \cong\left\{\begin{array}{r}0, i \neq n-3 \\ \operatorname{sgn} \otimes \operatorname{Lie}_{n}, i=n-3 .\end{array}\right.$

$$
\mathcal{T}_{n}^{0}=\text { set of rooted trees }
$$

with endpoints labelled $1,2, \ldots, n$, and no vertex with exactly one child

Note: Schröder (1870) showed (the fourth of his vier combinatorische Probleme) that

$$
\sum_{n \geq 1} \# \mathcal{T}_{n}^{0} \frac{x^{n}}{n!}=\left(1+2 x-e^{x}\right)^{\langle-1\rangle}
$$

where $F\left(F^{\langle-1\rangle}\right)=F^{\langle-1\rangle}(F(x))=x$.
For $T, T^{\prime} \in \mathcal{T}_{n}^{0}$, define $T \leq T^{\prime}$ if T can be obtained from T^{\prime} by contracting internal edges.

Theorem. As \mathfrak{S}_{n}-modules,
$\tilde{H}_{i}\left(\mathcal{T}_{n}^{0}\right) \cong\left\{\begin{array}{r}0, i \neq n-3 \\ \operatorname{sgn} \otimes \operatorname{Lie}_{n}, i=n-3 .\end{array}\right.$

A "hidden" action of \mathfrak{S}_{n} on Lie_{n-1} (Kontsevich)

Let \mathcal{L}_{n} be the free Lie algebra on n generators x_{1}, \ldots, x_{n}, and let
$\langle\rangle=$, nondegenerate inner product on \mathcal{L}_{n} satisfying

$$
\langle[a, b], c\rangle=\langle a,[b, c]\rangle .
$$

For $\ell \in \operatorname{Lie}_{n-1}$ and $w \in \mathfrak{S}_{n}$, let $\left\langle\ell, x_{n}\right\rangle^{w}=\left\langle\ell^{w}, x_{w(n)}\right\rangle^{\text {straighten }}\left\langle\ell^{\prime}, x_{n}\right\rangle$.

So the map $w: \operatorname{Lie}_{n-1} \rightarrow \operatorname{Lie}_{n-1}$ defined by $w(\ell)=\ell^{\prime}$ defines an \mathfrak{S}_{n} action on Lie_{n-1}, the Whitehouse module W_{n} for \mathfrak{S}_{n} or the cyclic Lie operad. (Explicit description of action of ($n-1, n$) by H. Barcelo.)

$$
\operatorname{dim} W_{n}=\operatorname{dim} \operatorname{Lie}_{n-1}=(n-2)!
$$

$$
W_{n} \cong \operatorname{ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_{n}} \operatorname{Lie}_{n-1}-\operatorname{Lie}_{n} .
$$

$$
\begin{gathered}
\operatorname{ch} W_{n}=\frac{p_{1}}{n-1} \sum_{d \mid(n-1)} \mu(d) p_{d}^{(n-1) / d} \\
-\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d}
\end{gathered}
$$

$$
\left\langle W_{n}, \chi^{\lambda}\right\rangle=\# \text { SYT } T \text { of shape } \lambda,
$$

$$
\operatorname{maj}(T) \equiv 1(\bmod n-1)
$$

$$
\text { -\#SYT T of shape } \lambda,
$$

$$
\operatorname{maj}(T) \equiv 1(\bmod n)
$$

(Not a priori clear that this is ≥ 0.)

$$
\begin{gathered}
s_{2}, \quad s_{111}, \quad s_{22}, \quad s_{311} \\
s_{42}+s_{3111}+s_{222} \\
s_{511}+s_{421}+s_{331}+s_{3211}+s_{22111} \\
\cdots+2 s_{422}+\cdots
\end{gathered}
$$

Getzler-Kapranov:

$$
W_{n} \otimes M^{n-1,1}=\mathrm{Lie}_{n}
$$

where M^{λ} is the irreducible \mathfrak{S}_{n}-module indexed by λ.

Other occurrences of W_{n}

- Nonmodular partitions (Sundaram)

$$
\begin{gathered}
\Sigma_{n}=\left\{\pi \in \Pi_{n}: \pi\right. \text { has at least two } \\
\text { nonsingleton blocks }\}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Theorem. As } \mathfrak{S}_{n} \text {-modules, } \\
& \tilde{H}_{i}\left(\Sigma_{n}\right) \cong\left\{\begin{array}{r}
0, i \neq n-4 \\
\operatorname{sgn} \otimes W_{n}, i=n-4
\end{array}\right.
\end{aligned}
$$

- Homeomorphically irreducible trees (Hanlon, after Robinson-Whitehouse)

$$
\mathcal{T}_{n}=\text { set of free (unrooted) trees }
$$ with endpoints labelled $1,2, \ldots, n$, and no vertex of degree two

For $T, T^{\prime} \in \mathcal{T}_{n}$, define $T \leq T^{\prime}$ if T can be obtained from T^{\prime} by contracting internal edges.

Theorem. As \mathfrak{S}_{n}-modules,
$\tilde{H}_{i}\left(\mathcal{T}_{n}\right) \cong\left\{\begin{array}{r}0, i \neq n-4 \\ \operatorname{sgn} \otimes W_{n}, \\ i=n-4 .\end{array}\right.$

- Partitions with block size at most k, $(n-1) / 2 \leq k \leq n-2$ (Sundaram)

$\Pi_{n, \leq k}=$ poset of partitions of $\{1, \ldots, n\}$ with block size at most k

Assume $(n-1) / 2 \leq k \leq n-2$.

Note:

$$
\tilde{H}_{i}\left(\Pi_{4, \leq 2} ; \mathbb{Z}\right) \cong\left\{\begin{aligned}
0, & i \neq 0 \\
\mathbb{Z}^{2}, & i=0 .
\end{aligned}\right.
$$

Theorem (Sundaram):

$\tilde{H}_{i}\left(\Pi_{n, \leq k} ; \mathbb{Z}\right) \cong\left\{\begin{aligned} 0, & i \neq n-4 \\ \mathbb{Z}^{(n-2)!}, & i=n-4 .\end{aligned}\right.$
Moreover, as \mathfrak{S}_{n}-modules,

$$
\tilde{H}_{n-4}\left(\Pi_{n, \leq k} ; \mathbb{Q}\right) \cong \operatorname{sgn} \otimes W_{n}
$$

- Not 2-connected graphs (Babson et al., Turchin)
$G=$ loopless graph without multiple edges on the vertex set $\{1, \ldots, n\}$. Identify G with its set of edges.
G is 2 -connected if it is connected, and removing any vertex keeps it connected.
$\Delta_{n}=$ simplicial complex of not 2 connected graphs on $1, \ldots, n$.

$$
\tilde{H}_{1}\left(\Delta_{3} ; \mathbb{Z}\right) \cong \mathbb{Z}
$$

Theorem (Babson-Björner-Linusson-ShareshianWelker, Turchin):
$\tilde{H}_{i}\left(\Delta_{n} ; \mathbb{Z}\right) \cong\left\{\begin{aligned} 0, & i \neq 2 n-5 \\ \mathbb{Z}^{(n-2)!}, & i=2 n-5\end{aligned}\right.$
Moreover, as \mathfrak{S}_{n}-modules,

$$
\tilde{H}_{2 n-5}\left(\Delta_{n} ; \mathbb{Q}\right) \cong W_{n}
$$

General technique:

$$
\begin{gathered}
G \text { acts on } \Delta, \quad w \in G \\
\Delta^{w}=\{F \in \Delta: w \cdot F=F\}
\end{gathered}
$$

Hopf trace formula \Longrightarrow

$$
\tilde{\chi}\left(\Delta^{w}\right)=\sum(-1)^{i} \underbrace{\operatorname{tr}\left(w, \tilde{H}_{i}(\Delta)\right)}_{\begin{array}{c}
\text { character value at } w \\
\text { of } G \text { acting on } \tilde{H}_{i}(\Delta)
\end{array}}
$$

Use topological or combinatorial techniques such as lexicographic shellability to show that $\tilde{H}_{i}(\Delta)$ vanishes except for one value of i.

Note: Explicit \mathfrak{S}_{n}-equivariant isomorphisms (up to sign) between the cyclic Lie operad, the cohomology of the tree complex \mathcal{T}_{n}, and the cohomology of the complex Δ_{n} of not 2-connected graphs were constructed by M. Wachs.

- A q-analogue of a trivial \mathfrak{S}_{n}-action (Hanlon-Stanley)

For $w \in \mathfrak{S}_{n}$ and $q \in \mathbb{C}$, let

$$
\begin{gathered}
\ell(w)=\# \text { inversions of } w \\
\Gamma_{n}(q)=\sum_{w \in \mathfrak{S}_{n}} q^{\ell(w)} w \in \mathbb{C} \mathfrak{S}_{n}
\end{gathered}
$$

$\Gamma_{n}(q)$ acts on $\mathbb{C} \mathfrak{S}_{n}$ by left multiplication.

Theorem (Zagier, Varchenko):

$$
\operatorname{det} \Gamma_{n}(q)=\prod_{k=2}^{n}\left(1-q^{k(k-1)}\right)^{n!(n-k+1) / k(k-1)}
$$

Proof (sketch). Let

$$
T_{n}(q)=\sum_{j=1}^{n} q^{j-1}(n, n-1, \ldots, n-j+1)
$$

Easy:

$$
\Gamma_{n}(q)=T_{2}(q) T_{3}(q) \cdots T_{n}(q)
$$

Let $a \geq b$ and

$$
[a, b]=(a, a-1, \ldots, b) \in \mathfrak{S}_{n}
$$

Let

$$
\begin{gathered}
G_{n}= \\
\left(1-q^{n}[n-1,1]\right)\left(1-q^{n-1}[n-1,2]\right) \cdots\left(1-q^{2}\right) \\
H_{n}^{-1}= \\
\left(1-q^{n-1}[n, 1]\right)\left(1-q^{n-2}[n, 2]\right) \cdots(1-q[n, n-1])
\end{gathered}
$$

Duchamps et al.: $T_{n}=G_{n} H_{n}$.

$$
\begin{aligned}
& \text { Theorem. Let } \zeta=e^{2 \pi i / n(n-1)} \text {. Then } \\
& \text { as } \mathfrak{S}_{n} \text {-modules we have } \\
& \operatorname{ker} \Gamma_{n}(\zeta) \cong W_{n}
\end{aligned}
$$

Transparencies available at:

$$
\begin{gathered}
\text { http://www-math.mit.edu/ } \\
\text { ~rstan/trans.html }
\end{gathered}
$$

REFERENCES

1. E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, Complexes of not i-connected graphs, MSRI preprint No. 1997-054, 31 pp.
2. G. Denham, Hanlon and Stanley's conjecture and the Milnor figre of a braid arrangement, preprint.
3. G. Duchamps, A. A. Klyachko, D. Krob, and J.-Y. Thibon, Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, preprint.
4. E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, in Geometry, Topology, and Physics, International Press, Cambridge, Massachusetts, 1995, pp. 167-201.
5. P. Hanlon, Otter's method and the homology of homeomorphically irreducible k-trees, J. Combinatorial Theory (A) 74 (1996), 301-320.
6. P. Hanlon and R. Stanley, A q-deformation of a trivial symmetric group action, Trans. Amer. Math. Soc., to appear.
7. M. Kontsevich, Formal (non)-commutative symplectic geometry, in The Gelfand Mathematical Seminar, 1990-92 (L. Corwin et al., eds.), Birkhäuser, Boston, 1993, pp. 173187.
8. O. Mathieu, Hidden Σ_{n+1}-actions, Comm. Math. Phys. 176 (1996), 467-474.
9. C. A. Robinson, The space of fully-grown trees, Sonderforschungsbereich 343, Universität Bielefeld, preprint 92083, 1992.
10. C. A. Robinson and S. Whitehouse, The tree representation of Σ_{n+1}, J. Pure Appl. Algebra 111 (1996), 245-253.
11. V. Schechtman and A. Varchendo, Arrangements of hyperplanes and Lie algebra homology, Inventiones math. 106 (1991), 139-194.
12. E. Schröder, Vier combinatorische Probleme, Z. für Math. Physik 15 (1870), 361-376.
13. S. Sundaram, Homotopy of non-modular partitions and the Whitehouse module, J. Algebraic Combinatorics, to appear.
14. S. Sundaram, On the topology of two partition posets with forbidden block sizes, preprint, 1 May 1998.
15. V. Turchin, Homology of the complex of 2-connected graphs, Uspekhi Mat. Nauk 52 (1997), no. 2, 189-190; English transl. in Russian Math. Surveys 52 (1997), no. 2.
16. V. Turchin, Homology isomorphism of the complex of 2connected graphs and the graph-complex of trees, Amer. Math. Soc. Transl. (2) 185 (1998), 147-153.
17. A. Varchenko, Bilinear form of real configuration of hyperplanes, Advances in Math. 97 (1993), 110-144.
18. S. Whitehouse, Γ-(Co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, Warwick University, 1994.
19. S. Whitehouse, The Eulerian representations of Σ_{n} as restrictions of representations of Σ_{n+1}, J. Pure Appl. Algebra 115 (1996), 309-321.
20. D. Zagier, Realizability of a model in infinite statistics, Comm. Math. Phys. 147 (1992), 199-210.
