The White House

This photo shows the South side of the Mansion; visitors tour the the 'South Lawn'. To the west (left of photo) is the Old Executive Office Building (not shown); to the south is the National Mall (also not shown).

Photo Courtesy of the Washington, D.C. Convention & Visitor Center

go to the White House page

-or-

go to main tour page

Sarah Whitehouse, Γ-(Co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, Warwick University, 1994.

The module Lie_n

Let V be a complex vector space with basis x_1, \ldots, x_n . Let Lie_n be the part of the free Lie algebra $\mathcal{L}(V)$ that is of degree one in each x_i .

$$\dim \operatorname{Lie}_n = (n-1)!$$

Basis:
$$[\cdots [[x_1, x_{w(2)}], x_{w(3)}], \dots, x_{w(n)}],$$

where w permutes $2, 3, \ldots, n$.

The symmetric group \mathfrak{S}_n acts on Lie_n by permuting variables.

$$(1,2) \cdot [[x_1, x_3], x_2] = [[x_2, x_3], x_1]$$
$$= -[[x_1, x_2], x_3] + [[x_1, x_3], x_2]$$

For any function $f:\mathfrak{S}_n\to\mathbb{C}$, recall that

$$\operatorname{ch} f = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} f(w) p_{\rho(w)},$$

where if w has ρ_i *i*-cycles then

$$p_{\rho(w)} = p_1^{\rho_1} p_2^{\rho_2} \cdots,$$

with $p_k = \sum_i x_i^k$.

In particular, if χ^{λ} is the irreducible character of \mathfrak{S}_n indexed by $\lambda \vdash n$, then

$$\operatorname{ch} \chi^{\lambda} = s_{\lambda},$$

the **Schur function** indexed by λ .

$$C_n$$
 = subgroup of \mathfrak{S}_n
generated by $(1, 2, \dots, n)$

Theorem. As an \mathfrak{S}_n -module,

$$\operatorname{Lie}_n \cong \operatorname{ind}_{C_n}^{\mathfrak{S}_n} e^{2\pi i/n}.$$

Hence

$$\operatorname{ch}(\operatorname{Lie}_n) = \frac{1}{n} \sum_{d|n} \mu(d) p_d^{n/d}.$$

Theorem. Let χ^{λ} be the irreducible character of \mathfrak{S}_n indexed by $\lambda \vdash n$. Then

$$\langle \operatorname{Lie}_n, \chi^{\lambda} \rangle = \#\operatorname{SYT} T \text{ of shape } \lambda,$$

 $\operatorname{maj}(T) \equiv 1 \pmod{n},$

where

$$\operatorname{maj}(T) = \sum_{i+1 \text{ below } i} i.$$

$$ch Lie_4 = s_{31} + s_{211}$$

Other occurrences of Lien

 Π_n = lattice of partitions of [n], ordered by refinement

 $\tilde{H}_i(\Pi_n) = i$ th (reduced) homology group (over \mathbb{Q} , say) of (order complex of) Π_n

As \mathfrak{S}_n -modules,

$$\tilde{H}_i(\Pi_n) \cong \begin{cases} 0, & i \neq n-3\\ \operatorname{sgn} \otimes \operatorname{Lie}_n, & i = n-3. \end{cases}$$

 $\mathcal{T}_n^0 = \text{set of rooted trees}$ with endpoints labelled $1, 2, \dots, n$, and no vertex with exactly one child

Note: Schröder (1870) showed (the fourth of his *vier combinatorische Probleme*) that

$$\sum_{n>1} \# \mathcal{T}_n^0 \frac{x^n}{n!} = (1 + 2x - e^x)^{\langle -1 \rangle},$$

where
$$F(F^{\langle -1 \rangle}) = F^{\langle -1 \rangle}(F(x)) = x$$
.

For $T, T' \in \mathcal{T}_n^0$, define $T \leq T'$ if T can be obtained from T' by contracting internal edges.

Theorem. As \mathfrak{S}_n -modules,

$$\tilde{H}_i(\mathcal{T}_n^0) \cong \begin{cases} 0, & i \neq n-3\\ \operatorname{sgn} \otimes \operatorname{Lie}_n, & i = n-3. \end{cases}$$

A "hidden" action of \mathfrak{S}_n on Lie_{n-1} (Kontsevich)

Let \mathcal{L}_n be the free Lie algebra on n generators x_1, \ldots, x_n , and let

 $\langle , \rangle = \text{nondegenerate inner product}$ on \mathcal{L}_n satisfying $\langle [a,b],c \rangle = \langle a,[b,c] \rangle.$

For $\ell \in \text{Lie}_{n-1}$ and $w \in \mathfrak{S}_n$, let

$$\langle \ell, x_n \rangle^w = \langle \ell^w, x_{w(n)} \rangle \xrightarrow{\text{straighten}} \langle \ell', x_n \rangle.$$

So the map $w : \operatorname{Lie}_{n-1} \to \operatorname{Lie}_{n-1}$ defined by $w(\ell) = \ell'$ defines an \mathfrak{S}_n action on Lie_{n-1} , the Whitehouse module W_n for \mathfrak{S}_n or the cyclic Lie operad. (Explicit description of action of (n-1,n) by H. Barcelo.)

$$\dim W_n = \dim \operatorname{Lie}_{n-1} = (n-2)!$$

$$W_n \cong \operatorname{ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} \operatorname{Lie}_{n-1} - \operatorname{Lie}_n.$$

$$\operatorname{ch} W_n = \frac{p_1}{n-1} \sum_{d|(n-1)} \mu(d) p_d^{(n-1)/d} - \frac{1}{n} \sum_{d|n} \mu(d) p_d^{n/d}$$

$$\langle W_n, \chi^{\lambda} \rangle = \# \text{SYT } T \text{ of shape } \lambda,$$

 $\text{maj}(T) \equiv 1 \pmod{n-1}$
 $-\# \text{SYT } T \text{ of shape } \lambda,$
 $\text{maj}(T) \equiv 1 \pmod{n}$

(Not a priori clear that this is ≥ 0 .)

$$s_2$$
, s_{111} , s_{22} , s_{311}
 $s_{42} + s_{3111} + s_{222}$
 $s_{511} + s_{421} + s_{331} + s_{3211} + s_{22111}$
 $\cdots + 2s_{422} + \cdots$

Getzler-Kapranov:

$$W_n \otimes M^{n-1,1} = \text{Lie}_n,$$

where M^{λ} is the irreducible \mathfrak{S}_n -module indexed by λ .

Other occurrences of W_n

• Nonmodular partitions (Sundaram)

$$\Sigma_n = \{ \pi \in \Pi_n : \pi \text{ has at least two nonsingleton blocks} \}$$

Theorem. As \mathfrak{S}_n -modules,

$$\tilde{H}_i(\Sigma_n) \cong \begin{cases} 0, & i \neq n-4\\ \operatorname{sgn} \otimes W_n, & i = n-4. \end{cases}$$

 Σ_5

• Homeomorphically irreducible trees (Hanlon, after Robinson-Whitehouse)

 $\mathcal{T}_n = \text{set of free (unrooted) trees}$ with endpoints labelled $1, 2, \ldots, n$, and no vertex of degree two

For $T, T' \in \mathcal{T}_n$, define $T \leq T'$ if T can be obtained from T' by contracting internal edges.

Theorem. As \mathfrak{S}_n -modules,

$$\tilde{H}_i(\mathcal{T}_n) \cong \begin{cases} 0, & i \neq n-4 \\ \operatorname{sgn} \otimes W_n, & i = n-4. \end{cases}$$

• Partitions with block size at most k, $(n-1)/2 \le k \le n-2$ (Sundaram)

 $\Pi_{n,\leq k}$ = poset of partitions of $\{1,\ldots,n\}$ with block size at most k

Assume $(n-1)/2 \le k \le n-2$.

Note:

$$\tilde{H}_i(\Pi_{4,\leq 2}; \mathbb{Z}) \cong \begin{cases} 0, & i \neq 0 \\ \mathbb{Z}^2, & i = 0. \end{cases}$$

Theorem (Sundaram):

$$\tilde{H}_i(\Pi_{n,\leq k}; \mathbb{Z}) \cong \begin{cases} 0, & i \neq n-4 \\ \mathbb{Z}^{(n-2)!}, & i = n-4. \end{cases}$$

Moreover, as \mathfrak{S}_n -modules,

$$\tilde{H}_{n-4}(\Pi_{n, \leq k}; \mathbb{Q}) \cong \operatorname{sgn} \otimes W_n.$$

• Not 2-connected graphs (Babson *et al.*, Turchin)

G = loopless graph without multiple edges on the vertex set $\{1, \ldots, n\}$. Identify G with its set of edges.

G is **2-connected** if it is connected, and removing any vertex keeps it connected.

 $\Delta_n = \text{simplicial complex of not 2-}$ connected graphs on $1, \ldots, n$.

$$\tilde{H}_1(\Delta_3; \mathbb{Z}) \cong \mathbb{Z}$$

Theorem (Babson-Björner-Linusson-Shareshian-Welker, Turchin):

$$\tilde{H}_i(\Delta_n; \mathbb{Z}) \cong \begin{cases} 0, & i \neq 2n - 5 \\ \mathbb{Z}^{(n-2)!}, & i = 2n - 5 \end{cases}$$

Moreover, as \mathfrak{S}_n -modules,

$$\tilde{H}_{2n-5}(\Delta_n; \mathbb{Q}) \cong W_n.$$

General technique:

$$G$$
 acts on Δ , $w \in G$
 $\Delta^w = \{ F \in \Delta : w \cdot F = F \}$

Hopf trace formula \Longrightarrow

$$\tilde{\chi}(\Delta^w) = \sum_{\substack{\text{character value at } w \\ \text{of } G \text{ acting on } \tilde{H}_i(\Delta)}} (-1)^i \underbrace{\text{tr}(w, \tilde{H}_i(\Delta))}_{\substack{\text{character value at } w \\ \text{of } G \text{ acting on } \tilde{H}_i(\Delta)}}$$

Use topological or combinatorial techniques such as lexicographic shellability to show that $\tilde{H}_i(\Delta)$ vanishes except for one value of i.

NOTE: Explicit \mathfrak{S}_n -equivariant isomorphisms (up to sign) between the cyclic Lie operad, the cohomology of the tree complex \mathcal{T}_n , and the cohomology of the complex Δ_n of not 2-connected graphs were constructed by M. Wachs.

• A q-analogue of a trivial \mathfrak{S}_n -action (Hanlon-Stanley)

For
$$w \in \mathfrak{S}_n$$
 and $q \in \mathbb{C}$, let
$$\ell(w) = \text{\#inversions of } w$$
$$\Gamma_n(q) = \sum_{w \in \mathfrak{S}_n} q^{\ell(w)} w \in \mathbb{C}\mathfrak{S}_n$$

 $\Gamma_n(q)$ acts on \mathbb{CS}_n by left multiplication.

Theorem (Zagier, Varchenko):

$$\det \Gamma_n(q) = \prod_{k=2}^n \left(1 - q^{k(k-1)}\right)^{n!(n-k+1)/k(k-1)}$$

Proof (sketch). Let

$$T_n(q) = \sum_{j=1}^n q^{j-1}(n, n-1, \dots, n-j+1).$$

Easy:

$$\Gamma_n(q) = T_2(q)T_3(q)\cdots T_n(q).$$

Let $a \ge b$ and

$$[a,b] = (a,a-1,\ldots,b) \in \mathfrak{S}_n.$$

Let

$$G_n = (1-q^n[n-1,1])(1-q^{n-1}[n-1,2])\cdots(1-q^2)$$

$$H_n^{-1} = (1-q^{n-1}[n,1])(1-q^{n-2}[n,2])\cdots(1-q[n,n-1]).$$

Duchamps et al.: $T_n = G_n H_n$.

Theorem. Let
$$\zeta = e^{2\pi i/n(n-1)}$$
. Then as \mathfrak{S}_n -modules we have $\ker \Gamma_n(\zeta) \cong W_n$.

Transparencies available at:

http://www-math.mit.edu/ ~rstan/trans.html

REFERENCES

- 1. E. Babson, A. Björner, S. Linusson, J. Shareshian, and V. Welker, Complexes of not *i*-connected graphs, MSRI preprint No. 1997-054, 31 pp.
- 2. G. Denham, Hanlon and Stanley's conjecture and the Milnor figre of a braid arrangement, preprint.
- 3. G. Duchamps, A. A. Klyachko, D. Krob, and J.-Y. Thibon, Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, preprint.
- 4. E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology, in *Geometry*, *Topology*, and *Physics*, International Press, Cambridge, Massachusetts, 1995, pp. 167–201.
- 5. P. Hanlon, Otter's method and the homology of homeomorphically irreducible k-trees, J. Combinatorial Theory (A) 74 (1996), 301–320.
- 6. P. Hanlon and R. Stanley, A q-deformation of a trivial symmetric group action, Trans. Amer. Math. Soc., to appear.
- 7. M. Kontsevich, Formal (non)-commutative symplectic geometry, in *The Gelfand Mathematical Seminar*, 1990–92 (L. Corwin et al., eds.), Birkhäuser, Boston, 1993, pp. 173–187.
- 8. O. Mathieu, Hidden Σ_{n+1} -actions, Comm. Math. Phys. **176** (1996), 467–474.
- 9. C. A. Robinson, The space of fully-grown trees, Sonder-forschungsbereich 343, Universität Bielefeld, preprint 92-083, 1992.
- 10. C. A. Robinson and S. Whitehouse, The tree representation of Σ_{n+1} , J. Pure Appl. Algebra 111 (1996), 245–253.
- 11. V. Schechtman and A. Varchendo, Arrangements of hyperplanes and Lie algebra homology, *Inventiones math.* **106** (1991), 139–194.

- 12. E. Schröder, Vier combinatorische Probleme, Z. für Math. Physik 15 (1870), 361–376.
- 13. S. Sundaram, Homotopy of non-modular partitions and the Whitehouse module, *J. Algebraic Combinatorics*, to appear.
- 14. S. Sundaram, On the topology of two partition posets with forbidden block sizes, preprint, 1 May 1998.
- 15. V. Turchin, Homology of the complex of 2-connected graphs, Uspekhi Mat. Nauk **52** (1997), no. 2, 189–190; English transl. in Russian Math. Surveys **52** (1997), no. 2.
- 16. V. Turchin, Homology isomorphism of the complex of 2-connected graphs and the graph-complex of trees, *Amer. Math. Soc. Transl.* (2) **185** (1998), 147–153.
- 17. A. Varchenko, Bilinear form of real configuration of hyperplanes, Advances in Math. 97 (1993), 110–144.
- 18. S. Whitehouse, Γ-(Co)homology of commutative algebras and some related representations of the symmetric group, Ph.D. thesis, Warwick University, 1994.
- 19. S. Whitehouse, The Eulerian representations of Σ_n as restrictions of representations of Σ_{n+1} , J. Pure Appl. Algebra 115 (1996), 309–321.
- 20. D. Zagier, Realizability of a model in infinite statistics, Comm. Math. Phys. 147 (1992), 199–210.