The X-Descent Set of a Permutation

Richard P. Stanley M.I.T. and U. Miami

October 21, 2022

The Descent Set of a Permutation

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

descent set of *w*: **Des**(*w*) = $\{1 \le i \le n-1 : a_i > a_{i+1}\}$

The Descent Set of a Permutation

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

descent set of w: $Des(w) = \{1 \le i \le n-1 : a_i > a_{i+1}\}$

Want a generating function for

$$\boldsymbol{\beta}_{\boldsymbol{n}}(\boldsymbol{S}) := \#\{w \in \mathfrak{S}_{\boldsymbol{n}} : D(w) = \boldsymbol{S}\},\$$

i.e.,

$$\sum_{w\in\mathfrak{S}_n}Y_{\mathrm{Des}(w)}=\sum_{S\subseteq[n-1]}\beta_n(S)Y_S,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for some (linearly independent) algebraic entities Y_S , for $S \subseteq [n-1] := \{1, 2, ..., n-1\}.$

Best choice here of Y_S

Fix *n*. For $S \subseteq [n-1]$, define

$$\mathbf{F}_{\mathbf{S}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \mathbf{S}}} x_{i_1} x_{i_2} \cdots x_{i_n},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

known as (Gessel's) fundamental quasisymmetric function.

Best choice here of Y_S

Fix *n*. For $S \subseteq [n-1]$, define

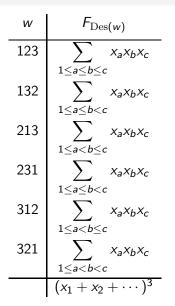
$$\mathbf{F}_{\mathbf{S}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \mathbf{S}}} x_{i_1} x_{i_2} \cdots x_{i_n},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

known as (Gessel's) fundamental quasisymmetric function.

Theorem.
$$\sum_{w \in \mathfrak{S}_n} F_{\mathrm{Des}(w)} = (x_1 + x_2 + \cdots)^n = p_1^n$$

The case *n* = 3



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

$\boldsymbol{X} \subseteq \boldsymbol{\mathcal{E}_n} := \{(i,j) : 1 \le i \le n, \ 1 \le j \le n, \ i \ne j\}$

 $\mathbf{X} \subseteq \mathbf{\mathcal{E}}_{\mathbf{n}} := \{(i,j) : 1 \le i \le n, \ 1 \le j \le n, \ i \ne j\}$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le k \le n-1$ for which $(a_k, a_{k+1}) \in X$

 $\mathbf{X} \subseteq \mathbf{\mathcal{E}}_{\mathbf{n}} := \{(i,j) : 1 \le i \le n, \ 1 \le j \le n, \ i \ne j\}$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le k \le n-1$ for which $(a_k, a_{k+1}) \in X$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

X-descent set XDes(*w***)**: set of X-descents

 $\mathbf{X} \subseteq \mathbf{\mathcal{E}}_{\mathbf{n}} := \{(i,j) : 1 \le i \le n, \ 1 \le j \le n, \ i \ne j\}$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le k \le n-1$ for which $(a_k, a_{k+1}) \in X$

X-descent set XDes(*w***)**: set of X-descents

Example. (a) $X = \{(i,j) : n-1 \ge i > j \ge 1\}$: XDes = Des (the ordinary descent set)

(b)
$$X = \{(i,j) \in [n] \times [n] : i \neq j\}$$
: XDes $(w) = [n-1]$

Symmetric functions

Symmetric function: $f = f(x_1, x_2, ...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of *n*: $\lambda = (\lambda_1, \lambda_2, ...), \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \sum \lambda_i = n$, denoted $\lambda \vdash n$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Symmetric functions

Symmetric function: $f = f(x_1, x_2, ...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of *n*: $\lambda = (\lambda_1, \lambda_2, ...), \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \sum \lambda_i = n$, denoted $\lambda \vdash n$

Example. Power sums: $p_k = \sum_i x_i^k$ (with $p_0 = 1$),

$$p_{\lambda}=p_{\lambda_1}p_{\lambda_2}\cdots,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

a \mathbb{Q} -basis for the space of symmetric functions

Symmetric functions

Symmetric function: $f = f(x_1, x_2, ...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of *n*: $\lambda = (\lambda_1, \lambda_2, ...), \lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \sum \lambda_i = n$, denoted $\lambda \vdash n$

Example. Power sums: $p_k = \sum_i x_i^k$ (with $p_0 = 1$),

$$p_{\lambda}=p_{\lambda_1}p_{\lambda_2}\cdots,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

a \mathbb{Q} -basis for the space of symmetric functions

Schur functions s_{λ} : another Q-basis, not defined here

A generating function for the XDescent set

Define
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}.$$

A generating function for the XDescent set

Define
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{\mathrm{XDes}(w)}$$
.

Example. n = 3, $X = \{(1,3), (2,1), (3,1), (3,2)\}$

W	XDes(w)
123	Ø
132	$\{1,2\}$
213	$\{1,2\}$
231	{2}
312	$\{1\}$
321	$\{1,2\}$

 $U_X = F_{\emptyset} + F_1 + F_2 + 3F_{1,2} = p_1^3 - p_2p_1 + p_3 = s_3 + s_{21} + 2s_{111}$

▲□▶▲□▶▲□▶▲□▶ = のへで

First easy theorem

Theorem. (a) U_X is a p-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

First easy theorem

Theorem. (a) U_X is a p-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathbf{m} = x_1^2 x_2^3 x_4^2$ (where n = 7). Recall

$$\boldsymbol{U}_{\boldsymbol{X}} = \sum_{w \in \mathfrak{S}_n} F_{\mathrm{XDes}(w)}$$

$$\boldsymbol{F}_{\boldsymbol{S}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \boldsymbol{S}}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

First easy theorem

Theorem. (a) U_X is a *p*-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathbf{m} = x_1^2 x_2^3 x_4^2$ (where n = 7). Recall

$$\boldsymbol{U}_{\boldsymbol{X}} = \sum_{w \in \mathfrak{S}_n} F_{\mathrm{XDes}(w)}$$

$$\boldsymbol{F_{S}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in S}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Let $w = a_1 a_2 \cdots a_7$. Thus m appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Let $w = a_1 a_2 \cdots a_7$. Thus m appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Let $w = a_1 a_2 \cdots a_7$. Thus m appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w = a_1a_2 \cdot a_3a_4a_5 \cdot a_6a_7 = u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\text{XDes}(w')}$, where $w' = u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $w = a_1 a_2 \cdots a_7$. Thus m appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w = a_1a_2 \cdot a_3a_4a_5 \cdot a_6a_7 = u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\text{XDes}(w')}$, where $w' = u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

Also $x_1^2 x_2^3 x_4^2 = \mathfrak{m}$ appears in $F_{\text{XDes}(w'')}$, where $w'' = u_3 u_2 u_1$. Generalizing shows that the coefficient of $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ in U_X is an integer multiple of $m_1! m_2! \cdots$, where $m_i = \#\{j : \alpha_j = i\}$.

(日)(1)(

Let $w = a_1 a_2 \cdots a_7$. Thus m appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w = a_1a_2 \cdot a_3a_4a_5 \cdot a_6a_7 = u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\text{XDes}(w')}$, where $w' = u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

Also $x_1^2 x_2^3 x_4^2 = \mathfrak{m}$ appears in $F_{\text{XDes}(w'')}$, where $w'' = u_3 u_2 u_1$. Generalizing shows that the coefficient of $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ in U_X is an integer multiple of $m_1! m_2! \cdots$, where $m_i = \#\{j : \alpha_j = i\}$.

Well-known and easy that this implies U_X is *p*-integral (given that U_X is a symmetric function). \Box

ω: linear transformation on symmetric functions given by $ω(p_λ) = (-1)^{n-\ell(\lambda)} p_λ$ for λ ⊢ n, where $ℓ(λ) = #{i : λ_i > 0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ω: linear transformation on symmetric functions given by $ω(p_λ) = (-1)^{n-\ell(λ)} p_λ$ for λ ⊢ n, where $ℓ(λ) = #{i : λ_i > 0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. $\omega^2 = 1$

ω: linear transformation on symmetric functions given by $ω(p_λ) = (-1)^{n-ℓ(λ)} p_λ$ for λ ⊢ n, where $ℓ(λ) = #{i : λ_i > 0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

ω: linear transformation on symmetric functions given by $ω(p_λ) = (-1)^{n-ℓ(λ)} p_λ$ for λ ⊢ n, where $ℓ(λ) = #{i : λ_i > 0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

Proof.

ω: linear transformation on symmetric functions given by $ω(p_λ) = (-1)^{n-ℓ(λ)} p_λ$ for λ ⊢ n, where $ℓ(λ) = #{i : λ_i > 0}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

Proof. Exercise.

Special case

record set $\operatorname{rec}(w)$ for $w = a_1 \cdots a_n \in \mathfrak{S}_n$: $\operatorname{rec}(w) = \{0 \le i \le n-1 : a_i > a_j \text{ for all } j < i\}$. Thus always $0 \in \operatorname{rec}(w)$.

record partition $\mathbf{rp}(w)$: if $\operatorname{rec}(w) = \{r_0, \ldots, r_j\}_<$, then $\operatorname{rp}(w)$ is the numbers $r_1 - r_0, r_2 - r_1, \ldots, n - r_j$ arranged in decreasing order.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Special case

record set $\operatorname{rec}(w)$ for $w = a_1 \cdots a_n \in \mathfrak{S}_n$: $\operatorname{rec}(w) = \{0 \le i \le n-1 : a_i > a_j \text{ for all } j < i\}$. Thus always $0 \in \operatorname{rec}(w)$.

record partition $\mathbf{rp}(w)$: if $\operatorname{rec}(w) = \{r_0, \ldots, r_j\}_{<}$, then $\operatorname{rp}(w)$ is the numbers $r_1 - r_0, r_2 - r_1, \ldots, n - r_j$ arranged in decreasing order.

Theorem (conjectured by **RS**, proved by **I. Gessel**). Let X have the property that if $(i, j) \in X$ then i > j. Then

$$U_X = \sum_{\substack{w \in \mathfrak{S}_n \\ \text{XDes}(w) = \emptyset}} p_{\text{rp}(w)}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

In particular, U_X is p-positive.

An example

$n = 4, X = \{(2, 1), (3, 2), (4, 3)\}$		
W	rp(<i>w</i>)	
1234	1111	
134 2	211	
14 23	31	
23 1 4	211	
234 1	211	
24 13	31	
3 12 4	31	
3 1 4 2	22	
34 12	31	
4 123	4	
4 231	4	

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

An example

$n = 4, X = \{(2, 1), (3, 2), (4, 3)\}$		
W	rp(<i>w</i>)	
1234	1111	
134 2	211	
14 23	31	
23 1 4	211	
234 1	211	
24 13	31	
3 12 4	31	
3 1 4 2	22	
34 12	31	
4 123	4	
4 231	4	

 $\Rightarrow U_X = p_1^4 + 3p_2p_1^2 + 4p_3p_1 + p_2^2 + 2p_4$

A generalization

Theorem (D. Grinberg) Suppose that $(i, j) \in X \Rightarrow (j, i) \notin X$. Then U_X is p-positive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A generalization

Theorem (D. Grinberg) Suppose that $(i, j) \in X \Rightarrow (j, i) \notin X$. Then U_X is p-positive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

In fact, Grinberg has a combinatorial interpretation of the coefficients (not given here).

Connection with chromatic symmetric functions

- **P**: partial ordering of [n]
- $\mathbf{Y}_{\mathbf{P}} = \{(i,j) : i >_{\mathbf{P}} j\}$

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if $i \parallel j$ in P

 X_G : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Connection with chromatic symmetric functions

- **P**: partial ordering of [n]
- $\mathbf{Y}_{\mathbf{P}} = \{(i,j) : i >_{\mathbf{P}} j\}$

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if $i \parallel j$ in P

 X_G : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $U_{Y_P} = \omega X_{inc(P)}$

Succession-free permutations

Let
$$X = \{(1,2), (2,3), \dots, (n-1,n)\}$$
 (successions).

 $f_n = \#\{w \in \mathfrak{S}_n : \text{XDes}(w) = \emptyset\} \text{ (succession-free permutations)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Succession-free permutations

Let
$$X = \{(1,2), (2,3), \dots, (n-1,n)\}$$
 (successions).

 $f_n = \#\{w \in \mathfrak{S}_n : \text{XDes}(w) = \emptyset\} \text{ (succession-free permutations)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Known result.
$$\sum_{n\geq 0} f_{n+1} \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Succession-free permutations

Let
$$X = \{(1,2), (2,3), \dots, (n-1,n)\}$$
 (successions).

 $f_n = \#\{w \in \mathfrak{S}_n : \text{XDes}(w) = \emptyset\} \text{ (succession-free permutations)}$

Known result.
$$\sum_{n\geq 0} f_{n+1} \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Theorem. $U_X = \sum_{i=1}^n f_i s_{i,1^{n-i}}$

(generating function for $w \in \mathfrak{S}_n$ by positions of successions, i.e, the succession set of w)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Succession-free permutations

Let
$$X = \{(1,2), (2,3), \dots, (n-1,n)\}$$
 (successions).

 $f_n = \#\{w \in \mathfrak{S}_n : \text{XDes}(w) = \emptyset\} \text{ (succession-free permutations)}$

Known result.
$$\sum_{n\geq 0} f_{n+1} \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Theorem. $U_X = \sum_{i=1}^n f_i s_{i,1^{n-i}}$

(generating function for $w \in \mathfrak{S}_n$ by positions of successions, i.e, the succession set of w)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example.
$$n = 4$$
: $U_X = 11s_4 + 3s_{31} + s_{211} + s_{1111}$

Theorem.
$$U_X = \sum_{i=1}^{n} f_i s_{i,1^{n-i}}$$

-

Theorem.
$$U_X = \sum_{i=1}^n f_i s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Theorem.
$$U_X = \sum_{i=1}^n f_i s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Left-hand side: $\#\{w \in \mathfrak{S}_n : XDes(w) = S\}$

Theorem.
$$U_X = \sum_{i=1}^n f_i s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Left-hand side: $\#\{w \in \mathfrak{S}_n : XDes(w) = S\}$

Right-hand side: Use

$$s_{i,1^{n-i}} = \sum_{S \in \binom{[n-1]}{n-i}} F_S.$$

To show: $f_i = \#\{w \in \mathfrak{S}_n : XDes(w) = S\}$ if #S = n - i.

Conclusion of proof

To show: $f_i = \#\{w \in \mathfrak{S}_n : \operatorname{XDes}(w) = S\}$ if #S = n - i.

Conclusion of proof

To show: $f_i = \#\{w \in \mathfrak{S}_n : \operatorname{XDes}(w) = S\}$ if #S = n - i.

Will define a bijection (for fixed n and i)

$$\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S, \ \#S = n-i\} \rightarrow \{u \in \mathfrak{S}_i : \mathrm{XDes}(u) = \emptyset\}.$$

(日)

Conclusion of proof

To show: $f_i = \#\{w \in \mathfrak{S}_n : \operatorname{XDes}(w) = S\}$ if #S = n - i.

Will define a bijection (for fixed *n* and *i*)

 $\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S, \ \#S = n-i\} \rightarrow \{u \in \mathfrak{S}_i : \mathrm{XDes}(u) = \emptyset\}.$

Example. w = 5641237, so $S = \{1, 4, 5\}$, n = 7, i = 4. Factor w:

 $w = 56 \cdot 4 \cdot 123 \cdot 7.$

Let $123 \rightarrow 1$, $4 \rightarrow 2$, $56 \rightarrow 3$, $7 \rightarrow 4$: get

 $w \rightarrow 3214 = u.$

A *q*-analogue for $X = \{(1, 2), (2, 3), \dots, (n - 1, n)\}$

Let $U_X(q) = \sum_{w \in \mathfrak{S}_n} q^{\operatorname{asc}(w^{-1})} F_{\operatorname{XDes}(w)}$, where asc denotes the number of (ordinary) ascents.

Thus $U_X(q)$ is the generating function for $w \in \mathfrak{S}_n$ by succession set and by $\operatorname{asc}(w^{-1})$. Define

$$f_n(q) = \sum_{\substack{w \in \mathfrak{S}_n \\ \text{XDes}(w) = \emptyset}} q^{\operatorname{asc}(w^{-1})}$$

A *q*-analogue for $X = \{(1, 2), (2, 3), \dots, (n - 1, n)\}$

Let $U_X(q) = \sum_{w \in \mathfrak{S}_n} q^{\operatorname{asc}(w^{-1})} F_{\operatorname{XDes}(w)}$, where asc denotes the number of (ordinary) ascents.

Thus $U_X(q)$ is the generating function for $w \in \mathfrak{S}_n$ by succession set and by $\operatorname{asc}(w^{-1})$. Define

$$f_n(q) = \sum_{\substack{w \in \mathfrak{S}_n \\ \text{XDes}(w) = \emptyset}} q^{\operatorname{asc}(w^{-1})}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem.
$$U_X(q)=\sum_{i=1}^n q^{n-i}f_i(q)s_{i,1^{n-i}}$$

n

Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$. A **Hamiltonian path** in X is a permutation $a_1a_2 \cdots a_n \in \mathfrak{S}_n$ such that $(a_i, a_{i+1}) \in X$ for $1 \leq i \leq n-1$. Define

ham(X) = # Hamiltonian paths in X

Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$. A **Hamiltonian path** in X is a permutation $a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ such

that $(a_i, a_{i+1}) \in X$ for $1 \le i \le n-1$. Define

ham(X) = # Hamiltonian paths in X

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

NOTE.

w ∈ 𝔅_n is a Hamiltonian path in X if and only XDes(w) = [n − 1].

Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$. A **Hamiltonian path** in X is a permutation $a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ such

that $(a_i, a_{i+1}) \in X$ for $1 \le i \le n-1$. Define

ham(X) = # Hamiltonian paths in X

Note.

- w ∈ 𝔅_n is a Hamiltonian path in X if and only XDes(w) = [n − 1].
- w is a Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Proof. Recall
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$$
. Since $w \in \mathfrak{S}_n$ is a Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$,

$$\operatorname{ham}(\overline{X}) = \#\{w \in \mathfrak{S}_n : \operatorname{XDes}(w) = \emptyset\}.$$

Note

$$[x_1^n] \mathcal{F}_{\mathcal{S}} = \begin{cases} 1, & \mathcal{S} = \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

Also for $\lambda \vdash n$, $[x_1^n]p_{\lambda} = 1$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Proof. Recall
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$$
. Since $w \in \mathfrak{S}_n$ is a Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$,

$$\operatorname{ham}(\overline{X}) = \#\{w \in \mathfrak{S}_n : \operatorname{XDes}(w) = \emptyset\}.$$

Note

$$[x_1^n]F_S = \begin{cases} 1, & S = \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

Also for $\lambda \vdash n$, $[x_1^n]p_{\lambda} = 1$.

Take coefficient of x_1^n on both sides of

$$U_X = \sum_{w \in \mathfrak{S}_n} F_{\text{XDes}(w)} = \sum_{\lambda} c_{\lambda} p_{\lambda}. \quad \Box$$

Simple corollary

Corollary. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$ as before. Then

$$\operatorname{ham}(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Simple corollary

Corollary. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$ as before. Then

$$\operatorname{ham}(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Proof. Recall $\omega p_{\lambda} = (-1)^{n-\ell(\lambda)} p_{\lambda}$ and $\omega U_X = U_{\overline{X}}$. Now apply ω to $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$ and use previous theorem:

$$\operatorname{ham}(\overline{X}) = \sum_{\lambda} c_{\lambda}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Berge's theorem

Theorem (C. Berge). ham(X) \equiv ham(\overline{X}) (mod 2) Proof (D. Grinberg). Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove: $\sum (-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda} \pmod{2}$.

Berge's theorem

Theorem (C. Berge). $ham(X) \equiv ham(\overline{X}) \pmod{2}$ Proof (D. Grinberg). Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove: $\sum (-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda} \pmod{2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Obvious since $(-1)^{n-\ell(\lambda)} = \pm 1$. \Box

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

Theorem (D. Grinberg). Let X be a tournament. Then

$$U_X = \sum_w 2^{\mathrm{nsc}(w)} p_{
ho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i, j) \in X$ or $(j, i) \in X$.

Theorem (D. Grinberg). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Special case of a result for any X.

A corollary

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$U_X \in \mathbb{Z}[p_1, 2p_3, 2p_5, 2p_7, \dots].$$

A corollary

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\mathrm{nsc}(w)} p_{\rho(w)},$$

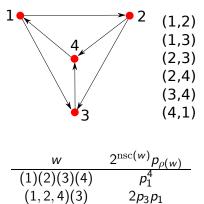
where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$U_X \in \mathbb{Z}[p_1, 2p_3, 2p_5, 2p_7, \dots].$$

Note. Thus U_X can be written uniquely as a linear combination of Schur's "shifted Schur functions" P_{λ} , where λ has distinct parts. Can anything worthwhile be said about the coefficients?

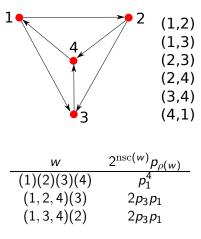
An example



 $2p_3p_1$

(1, 3, 4)(2)

An example



 $\Rightarrow U_X = p_1^4 + 4p_3p_1 = 5P_4 - 2P_{3,1}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An application to Hamiltonian paths

Observation (repeated). Let $U_x = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$\operatorname{ham}(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

An application to Hamiltonian paths

Observation (repeated). Let $U_x = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$\operatorname{ham}(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

$$\operatorname{ham}(X) = \operatorname{ham}(\overline{X}) = \sum_{w} 2^{\operatorname{nsc}(w)}$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$\operatorname{ham}(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$\operatorname{ham}(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Since $c_{1^n} = 1$ for all X (immediate from $U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$), we conclude:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$\operatorname{ham}(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Since $c_{1^n} = 1$ for all X (immediate from $U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$), we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number of Hamiltionian paths.

Further applications to Hamiltonian paths?

Conjecture (L. Lovász, 1969) Every finite connected vertex-transitive (undirected) graph contains a Hamiltonian path.

Further applications to Hamiltonian paths?

Conjecture (L. Lovász, 1969) Every finite connected vertex-transitive (undirected) graph contains a Hamiltonian path.

We can convert an undirected graph to a directed graph by replacing each edge with two directed edges, one in each direction. But how to deal with vertex-transitivity?

The final slide

