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The Descent Set of a Permutation

w = a1a2 · · · an ∈ Sn

descent set of w : Des(w) = {1 ≤ i ≤ n − 1 : ai > ai+1}

Want a generating function for

βn(S) := #{w ∈ Sn : D(w) = S},

i.e.,
∑

w∈Sn

YDes(w) =
∑

S⊆[n−1]

βn(S)YS ,

for some (linearly independent) algebraic entities YS , for
S ⊆ [n − 1] := {1, 2, . . . , n − 1}.



Best choice here of YS

Fix n. For S ⊆ [n − 1], define

FS =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · · xin ,

known as (Gessel’s) fundamental quasisymmetric function.



Best choice here of YS

Fix n. For S ⊆ [n − 1], define

FS =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · · xin ,

known as (Gessel’s) fundamental quasisymmetric function.

Theorem.
∑

w∈Sn

FDes(w) = (x1 + x2 + · · · )n = pn1



The case n = 3

w FDes(w)

123
∑

1≤a≤b≤c

xaxbxc

132
∑

1≤a≤b<c

xaxbxc

213
∑

1≤a<b≤c

xaxbxc

231
∑

1≤a≤b<c

xaxbxc

312
∑

1≤a<b≤c

xaxbxc

321
∑

1≤a<b<c

xaxbxc

(x1 + x2 + · · · )3
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X -descent sets

X ⊆ En := {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

X -descent of w = a1 · · · an ∈ Sn: an index 1 ≤ k ≤ n − 1 for
which (ak , ak+1) ∈ X

X -descent set XDes(w): set of X -descents

Example. (a) X = {(i , j) : n − 1 ≥ i > j ≥ 1}: XDes = Des (the
ordinary descent set)

(b) X = {(i , j) ∈ [n]× [n] : i 6= j}: XDes(w) = [n − 1]



Symmetric functions

Symmetric function: f = f (x1, x2, . . . ), a power series of
bounded degree with rational coefficients, invariant under any
permutation of the xi ’s.

partition of n: λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n,
denoted λ⊢n
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Symmetric functions

Symmetric function: f = f (x1, x2, . . . ), a power series of
bounded degree with rational coefficients, invariant under any
permutation of the xi ’s.

partition of n: λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n,
denoted λ⊢n

Example. Power sums: pk =
∑

i x
k
i (with p0 = 1),

pλ = pλ1
pλ2

· · · ,

a Q-basis for the space of symmetric functions

Schur functions sλ: another Q-basis, not defined here
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FXDes(w).



A generating function for the XDescent set

Define UX =
∑

w∈Sn

FXDes(w).

Example. n = 3, X = {(1, 3), (2, 1), (3, 1), (3, 2)}

w XDes(w)

123 ∅
132 {1, 2}
213 {1, 2}
231 {2}
312 {1}
321 {1, 2}

UX = F∅ + F1 + F2 + 3F1,2 = p31 − p2p1 + p3 = s3 + s21 + 2s111



First easy theorem

Theorem. (a) UX is a p-integral symmetric function, i.e.,
UX =

∑

λ cλpλ, where cλ ∈ Z.
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Proof. Consider the coefficient of a monomial, say m = x21 x
3
2x

2
4

(where n = 7). Recall

UX =
∑

w∈Sn

FXDes(w)

FS =
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xi1xi2 · · · xin .
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Let w = a1a2 · · · a7. Thus m appears in FXDes(w) if and only if
(a1, a2), (a3, a4), (a4, a5), (a6, a7) 6∈ X .

Write w = a1a2 · a3a4a5 · a6a7 = u1u2u3 (juxtaposition of words).
Then x31x

2
2 x

2
4 appears in FXDes(w ′), where w ′ = u2u1u3.

Generalizing shows that UX is a symmetric function.
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2
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2
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3
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integer multiple of m1!m2! · · · , where mi = #{j : αj = i}.



Proof continued

Let w = a1a2 · · · a7. Thus m appears in FXDes(w) if and only if
(a1, a2), (a3, a4), (a4, a5), (a6, a7) 6∈ X .

Write w = a1a2 · a3a4a5 · a6a7 = u1u2u3 (juxtaposition of words).
Then x31x

2
2 x

2
4 appears in FXDes(w ′), where w ′ = u2u1u3.

Generalizing shows that UX is a symmetric function.

Also x21 x
3
2 x

2
4 = m appears in FXDes(w ′′), where w ′′ = u3u2u1.

Generalizing shows that the coefficient of xα1
1 xα2

2 · · · in UX is an
integer multiple of m1!m2! · · · , where mi = #{j : αj = i}.

Well-known and easy that this implies UX is p-integral (given that
UX is a symmetric function). �
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Second easy theorem

ω: linear transformation on symmetric functions given by
ω(pλ) = (−1)n−ℓ(λ)pλ for λ ⊢ n, where ℓ(λ) = #{i : λi > 0}.

Note. ω2 = 1

Theorem. Let X = En − X. Then ωUX = UX .

Proof. Exercise.



Special case

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.



Special case

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.

Theorem (conjectured by RS, proved by I. Gessel). Let X have
the property that if (i , j) ∈ X then i > j . Then

UX =
∑

w∈Sn

XDes(w)=∅

prp(w).

In particular, UX is p-positive.



An example

n = 4, X = {(2, 1), (3, 2), (4, 3)}

w rp(w)

1234 1111
1342 211
1423 31
2314 211
2341 211
2413 31
3124 31
3142 22
3412 31
4123 4
4231 4



An example

n = 4, X = {(2, 1), (3, 2), (4, 3)}

w rp(w)

1234 1111
1342 211
1423 31
2314 211
2341 211
2413 31
3124 31
3142 22
3412 31
4123 4
4231 4

⇒ UX = p41 + 3p2p
2
1 + 4p3p1 + p22 + 2p4



A generalization

Theorem (D. Grinberg) Suppose that (i , j) ∈ X ⇒ (j , i) 6∈ X.
Then UX is p-positive.



A generalization

Theorem (D. Grinberg) Suppose that (i , j) ∈ X ⇒ (j , i) 6∈ X.
Then UX is p-positive.

In fact, Grinberg has a combinatorial interpretation of the
coefficients (not given here).



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G (generalizes the
chromatic polynomial)



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G (generalizes the
chromatic polynomial)

Theorem. UYP
= ωXinc(P)
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(generating function for w ∈ Sn by positions of successions, i.e,
the succession set of w)



Succession-free permutations

Let X = {(1, 2), (2, 3), . . . , (n − 1, n)} (successions).

fn = #{w ∈ Sn : XDes(w) = ∅} (succession-free permutations)

Known result.
∑

n≥0

fn+1
xn

n!
=

e−x

(1− x)2

Theorem. UX =

n
∑

i=1

fi si ,1n−i

(generating function for w ∈ Sn by positions of successions, i.e,
the succession set of w)

Example. n = 4: UX = 11s4 + 3s31 + s211 + s1111
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Sketch of proof

Theorem. UX =
n

∑

i=1

fi si ,1n−i

Proof. For S ⊆ [n − 1], take coefficient of FS on both sides.

Left-hand side: #{w ∈ Sn : XDes(w) = S}

Right-hand side: Use

si ,1n−i =
∑

S∈([n−1]
n−i )

FS .

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .
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Conclusion of proof

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .

Will define a bijection (for fixed n and i)

{w ∈ Sn : XDes(w) = S , #S = n − i} → {u ∈ Si : XDes(u) = ∅}.

Example. w = 5641237, so S = {1, 4, 5}, n = 7, i = 4. Factor w :

w = 56 · 4 · 123 · 7.

Let 123 → 1, 4 → 2, 56 → 3, 7 → 4: get

w → 3214 = u. �



A q-analogue for X = {(1, 2), (2, 3), . . . , (n − 1, n)}

Let UX (q) =
∑

w∈Sn

qasc(w
−1)FXDes(w), where asc denotes the

number of (ordinary) ascents.

Thus UX (q) is the generating function for w ∈ Sn by succession
set and by asc(w−1). Define

fn(q) =
∑

w∈Sn

XDes(w)=∅

qasc(w
−1)



A q-analogue for X = {(1, 2), (2, 3), . . . , (n − 1, n)}

Let UX (q) =
∑

w∈Sn

qasc(w
−1)FXDes(w), where asc denotes the

number of (ordinary) ascents.

Thus UX (q) is the generating function for w ∈ Sn by succession
set and by asc(w−1). Define

fn(q) =
∑

w∈Sn

XDes(w)=∅

qasc(w
−1)

Theorem. UX (q) =

n
∑

i=1

qn−i fi (q)si ,1n−i



Digraph interpretation

We can also regard X as a digraph, with edges i → j if (i , j) ∈ X .

A Hamiltonian path in X is a permutation a1a2 · · · an ∈ Sn such
that (ai , ai+1) ∈ X for 1 ≤ i ≤ n − 1. Define

ham(X ) = # Hamiltonian paths in X



Digraph interpretation

We can also regard X as a digraph, with edges i → j if (i , j) ∈ X .

A Hamiltonian path in X is a permutation a1a2 · · · an ∈ Sn such
that (ai , ai+1) ∈ X for 1 ≤ i ≤ n − 1. Define

ham(X ) = # Hamiltonian paths in X

Note.

◮ w ∈ Sn is a Hamiltonian path in X if and only
XDes(w) = [n − 1].



Digraph interpretation

We can also regard X as a digraph, with edges i → j if (i , j) ∈ X .

A Hamiltonian path in X is a permutation a1a2 · · · an ∈ Sn such
that (ai , ai+1) ∈ X for 1 ≤ i ≤ n − 1. Define

ham(X ) = # Hamiltonian paths in X

Note.

◮ w ∈ Sn is a Hamiltonian path in X if and only
XDes(w) = [n − 1].

◮ w is a Hamiltonian path in X if and only if XDes(w) = ∅.
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Hamiltonian path in X if and only if XDes(w) = ∅,
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[xn1 ]FS =

{

1, S = ∅
0, otherwise.
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Connection with UX

Theorem. Let UX =
∑

λ cλpλ. Then ham(X ) =
∑

λ cλ.

Proof. Recall UX =
∑

w∈Sn

FXDes(w). Since w ∈ Sn is a

Hamiltonian path in X if and only if XDes(w) = ∅,

ham(X ) = #{w ∈ Sn : XDes(w) = ∅}.

Note

[xn1 ]FS =

{

1, S = ∅
0, otherwise.

Also for λ ⊢ n, [xn1 ]pλ = 1.

Take coefficient of xn1 on both sides of

UX =
∑

w∈Sn

FXDes(w) =
∑

λ

cλpλ. �



Simple corollary

Corollary. Let UX =
∑

λ cλpλ as before. Then

ham(X ) =
∑

λ

(−1)n−ℓ(λ)cλ.



Simple corollary

Corollary. Let UX =
∑

λ cλpλ as before. Then

ham(X ) =
∑

λ

(−1)n−ℓ(λ)cλ.

Proof. Recall ωpλ = (−1)n−ℓ(λ)pλ and ωUX = UX . Now apply ω

to UX =
∑

λ cλpλ and use previous theorem:

ham(X ) =
∑

λ

cλ. �



Berge’s theorem

Theorem (C. Berge). ham(X ) ≡ ham(X ) (mod 2)

Proof (D. Grinberg). Let UX =
∑

λ cλpλ. To prove:

∑

(−1)n−ℓ(λ)cλ ≡
∑

cλ (mod 2).



Berge’s theorem

Theorem (C. Berge). ham(X ) ≡ ham(X ) (mod 2)

Proof (D. Grinberg). Let UX =
∑

λ cλpλ. To prove:

∑

(−1)n−ℓ(λ)cλ ≡
∑

cλ (mod 2).

Obvious since (−1)n−ℓ(λ) = ±1. �
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Theorem (D. Grinberg). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
nsc(w) denotes the number of nonsingleton cycles of w.



Tournaments

tournament: a digraph X with vertex set [n] (say), such that for
all 1 ≤ i < j ≤ n, exactly one of (i , j) ∈ X or (j , i) ∈ X .

Theorem (D. Grinberg). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
nsc(w) denotes the number of nonsingleton cycles of w.

Special case of a result for any X .



A corollary

Theorem (repeated). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
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A corollary

Theorem (repeated). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
nsc(w) denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

UX ∈ Z[p1, 2p3, 2p5, 2p7, . . . ].

Note. Thus UX can be written uniquely as a linear combination of
Schur’s “shifted Schur functions” Pλ, where λ has distinct parts.
Can anything worthwhile be said about the coefficients?
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3

4

(1,2)

(1,3)
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(2,4)

(3,4)

(4,1)

w 2nsc(w)pρ(w)

(1)(2)(3)(4) p41
(1, 2, 4)(3) 2p3p1
(1, 3, 4)(2) 2p3p1



An example

1 2

3

4

(1,2)

(1,3)

(2,3)

(2,4)

(3,4)

(4,1)

w 2nsc(w)pρ(w)

(1)(2)(3)(4) p41
(1, 2, 4)(3) 2p3p1
(1, 3, 4)(2) 2p3p1

⇒ UX = p41 + 4p3p1 = 5P4 − 2P3,1



An application to Hamiltonian paths

Observation (repeated). Let Ux =
∑

λ cλpλ. Then

ham(X ) =
∑

λ

(−1)n−ℓ(λ)cλ.
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nsc(w) denotes the number of nonsingleton cycles of w.



An application to Hamiltonian paths

Observation (repeated). Let Ux =
∑

λ cλpλ. Then

ham(X ) =
∑

λ

(−1)n−ℓ(λ)cλ.

Theorem (repeated). Let X be a tournament. Then

UX =
∑

w

2nsc(w)pρ(w),

where w ranges over all permutations in Sn of odd order such that
every nonsingleton cycle of w is a (directed) cycle of X , and where
nsc(w) denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

ham(X ) = ham(X ) =
∑

w

2nsc(w).



Rédei’s theorem

Corollary (repeated). Let X be a tournament. Then

ham(X ) =
∑

w

2nsc(w).
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Corollary (repeated). Let X be a tournament. Then

ham(X ) =
∑

w

2nsc(w).

Since c1n = 1 for all X (immediate from UX =
∑

w∈Sn
FXDes(w)),

we conclude:



Rédei’s theorem

Corollary (repeated). Let X be a tournament. Then

ham(X ) =
∑

w

2nsc(w).

Since c1n = 1 for all X (immediate from UX =
∑

w∈Sn
FXDes(w)),

we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number
of Hamiltionian paths.



Further applications to Hamiltonian paths?

Conjecture (L. Lovász, 1969) Every finite connected
vertex-transitive (undirected) graph contains a Hamiltonian path.



Further applications to Hamiltonian paths?

Conjecture (L. Lovász, 1969) Every finite connected
vertex-transitive (undirected) graph contains a Hamiltonian path.

We can convert an undirected graph to a directed graph by
replacing each edge with two directed edges, one in each direction.
But how to deal with vertex-transitivity?



The final slide


