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Visible facets

P : a d-dimensional convex polytope in R
d

Certain facets of P are visible from points v ∈ R
d
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Visible facets

P : a d-dimensional convex polytope in R
d

Certain facets of P are visible from points v ∈ R
d

green facets are visible

    visible
no facets are
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The visibility arrangement

aff(S): the affine span of a subset S ⊂ R
d

visibility arrangement:

vis(P) = {aff(F ) : F is a facet of P}
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The visibility arrangement

aff(S): the affine span of a subset S ⊂ R
d

visibility arrangement:

vis(P) = {aff(F ) : F is a facet of P}

Regions of vis(P) correspond to sets of facets
that are visible from some point v ∈ R

d.
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An example
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Number of regions

v(P): number of regions of vis(P), i.e., the
number of visibility sets of P

χA(q): characteristic polynomial of the
arrangement A

Zaslavsky’s theorem. Number of regions of A is
(−1)dχA(−1).
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Number of regions

v(P): number of regions of vis(P), i.e., the
number of visibility sets of P

χA(q): characteristic polynomial of the
arrangement A

Zaslavsky’s theorem. Number of regions of A is
(−1)dχA(−1).

In general, v(P) and χvis(P)(q) are hard to
compute.
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A simple example

Pn = n-cube

χvis(Pn)(q) = (q − 2)n

v(Pn) = 3n
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A simple example

Pn = n-cube

χvis(Pn)(q) = (q − 2)n

v(Pn) = 3n

For any facet F , can see either F , −F , or neither.
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Order polytopes

P = {t1, . . . , td}: a poset (partially ordered set)

Order polytope of P :

O(P ) =

{(x1, . . . , xd) ∈ R
d : 0 ≤ xi ≤ xj ≤ 1 if ti ≤ tj}
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Order polytopes

P = {t1, . . . , td}: a poset (partially ordered set)

Order polytope of P :

O(P ) =

{(x1, . . . , xd) ∈ R
d : 0 ≤ xi ≤ xj ≤ 1 if ti ≤ tj}

χvis(O(P ))(q) can be described in terms of
“generalized chromatic polynomials” (later, if
time), but there is a curious special case.

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p.



Rank one posets

Suppose that P has rank at most one (no
three-element chains).

H(P ) = Hasse diagram of P , with vertex set V

For W ⊆ V , let HW = restriction of H to W

χG(q): chromatic polynomial of the graph G
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Rank one posets

Suppose that P has rank at most one (no
three-element chains).

H(P ) = Hasse diagram of P , with vertex set V

For W ⊆ V , let HW = restriction of H to W

χG(q): chromatic polynomial of the graph G

Theorem.

v(O(P )) = (−1)#P
∑

W⊆V

χHW
(−3)
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Line shellings

Let v ∈ int(P) (interior of P)

Line shelling based at v: let L be a directed line
from v. Let F1, F2, . . . , Fk be the order in which
facets become visible along L, followed by the
order in which they become invisible from ∞
along the other half of L. Assume L is sufficiently
generic so that no two facets become visible or
invisible at the same time.
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Example of a line shelling
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The line shelling arrangment

ls(P, v): hyperplanes are

affine span of v with aff(F1) ∩ aff(F2) 6= ∅,
where F1, F2 are distinct facets

if aff(F1) ∩ aff(F2) = ∅, then the hyperplane
through v parallel to F1, F2
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The line shelling arrangment

ls(P, v): hyperplanes are

affine span of v with aff(F1) ∩ aff(F2) 6= ∅,
where F1, F2 are distinct facets

if aff(F1) ∩ aff(F2) = ∅, then the hyperplane
through v parallel to F1, F2

Line shellings at v are in bijection with regions of
ls(P, v).
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A nongeneric example

v

a

b

v is not generic: av = bv (10 line shellings at v)
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A generic example

v

One hyperplane for every pair of facets (12 line
shellings at v)
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Lattice of flats

L: lattice of flats of a matroid, e.g., the
intersection poset of a central hyperplane
arrangement

a matroid
(affine diagram)

a b

c d e

lattice of flats

d
ecba
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Upper truncation

T k(L): L with top k levels (excluding the
maximum element) removed, called the kth
truncation of L.

independent points
lattice    of flats of fourL (T   L )1
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Upper truncation (cont.)

T k(L) is still the lattice of flats of a matroid, i.e., a
geometric lattice (easy).
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Lower truncation

What if we remove the bottom k levels of L
(excluding the minimal element)? Not a
geometric lattice if rank is at least three.
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Lower truncation

What if we remove the bottom k levels of L
(excluding the minimal element)? Not a
geometric lattice if rank is at least three.

Want to “fill in” the kth lower truncation with as
many new elements as possible without adding
new elements of rank one, increasing the rank of
L, or altering the partial order relation of L.
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Lower truncation is “bad”

independent points
lattice    of flats of fourL not a geometric lattice
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An example of “filling in”

D   B( ) 1 4
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The Dilworth truncation

Matroidal definition: Let M be a matroid on a
set E of rank n, and let 1 ≤ k < n. The kth
Dilworth truncation Dk(M) has ground set
(

E
k+1

)

, and independent sets

I =







I ⊆

(

E

k + 1

)

: rankM





⋃

p∈I ′

p



 ≥ #I ′ + k,

∀∅ 6= I ′ ⊆ I} .
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First Dilworth truncation of Bn

L = Bn, the boolean algebra of rank n (lattice of
flats of the matroid Fn of n independent points)

D1(Bn) is a geometric lattice whose atoms are
the 2-element subsets of an n-set.
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First Dilworth truncation of Bn

L = Bn, the boolean algebra of rank n (lattice of
flats of the matroid Fn of n independent points)

D1(Bn) is a geometric lattice whose atoms are
the 2-element subsets of an n-set.

D1(Bn) = Πn (lattice of partitions of an n-set)

D1(Fn) is the braid arrangement xi = xj,
1 ≤ i < j ≤ n
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First Dilworth truncation of Bn

L = Bn, the boolean algebra of rank n (lattice of
flats of the matroid Fn of n independent points)

D1(Bn) is a geometric lattice whose atoms are
the 2-element subsets of an n-set.

D1(Bn) = Πn (lattice of partitions of an n-set)

D1(Fn) is the braid arrangement xi = xj,
1 ≤ i < j ≤ n

Number of bases of D1(Bn) equals ??
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First Dilworth truncation of Bn

L = Bn, the boolean algebra of rank n (lattice of
flats of the matroid Fn of n independent points)

D1(Bn) is a geometric lattice whose atoms are
the 2-element subsets of an n-set.

D1(Bn) = Πn (lattice of partitions of an n-set)

D1(Fn) is the braid arrangement xi = xj,
1 ≤ i < j ≤ n

Number of bases of D1(Bn) equals nn−2.
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Second Dilworth completion ofBn

Matroid is on the set
(

[n]
3

)

A set S of triangles is an independent set if for
any ∅ 6= T ⊆ S, the total number of vertices of
triangles in T is at least #T + 2.
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Second Dilworth completion ofBn

Matroid is on the set
(

[n]
3

)

A set S of triangles is an independent set if for
any ∅ 6= T ⊆ S, the total number of vertices of
triangles in T is at least #T + 2.

Note. If instead
(

[n]
2

)

and total number of vertices
of edges in T is at least #T + 1, then we get a
forest.
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Bases ofD2(B4)

D2(B4): every pair of triangles is a basis (two
triangles use four vertices)
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Bases ofD2(B5)

1060 30

100 bases in all
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Bases ofD2(B5)

1060 30

100 bases in all

bad

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 24



Some data

χD2(B5)(q) = q2(q − 1)(q2 − 9q + 21), r = 62

χD2(B6)(q) = q2(q − 1)(q3 − 19q2 + 126q − 300),

r = 892 = 22 · 223

(computed up to B10 by Y. Numata and A.
Takemura )
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Some data

χD2(B5)(q) = q2(q − 1)(q2 − 9q + 21), r = 62

χD2(B6)(q) = q2(q − 1)(q3 − 19q2 + 126q − 300),

r = 892 = 22 · 223

(computed up to B10 by Y. Numata and A.
Takemura )

b(n): number of bases of D2(Bn)

b(4) = 6, b(5) = 100, b(6) = 3360 = 25 · 3 · 5 · 7
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Some data

χD2(B5)(q) = q2(q − 1)(q2 − 9q + 21), r = 62

χD2(B6)(q) = q2(q − 1)(q3 − 19q2 + 126q − 300),

r = 892 = 22 · 223

(computed up to B10 by Y. Numata and A.
Takemura )

b(n): number of bases of D2(Bn)

b(4) = 6, b(5) = 100, b(6) = 3360 = 25 · 3 · 5 · 7

b(7) = 191436 = 22 · 3 · 7 · 43 · 53
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Rank four

L: geometric lattice of rank four

ρ2: number of elements of rank two

L3: set of elements of rank three

c(t): number or elements covering t ∈ L
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Rank four

L: geometric lattice of rank four

ρ2: number of elements of rank two

L3: set of elements of rank three

c(t): number or elements covering t ∈ L

Theorem.
χD1(L)(q) = q3 − ρ2 q2 +

[

(

ρ2

2

)

−
∑

t∈L3

(

c(t)−1
2

)

]

q

+
∑

t∈L3

(

c(t)−1
2

)

−
(

ρ2−1
2

)
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Back to vis(P) and ls(P, v)

Definition of Dilworth truncation extends easily to
noncentral arrangements (omitted here).

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 27



Back to vis(P) and ls(P, v)

Definition of Dilworth truncation extends easily to
noncentral arrangements (omitted here).

Theorem. Let v ∈ int(P) be generic. Then

Lls(P,v)
∼= D1(Lvis(P)).
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Back to vis(P) and ls(P, v)

Definition of Dilworth truncation extends easily to
noncentral arrangements (omitted here).

Theorem. Let v ∈ int(P) be generic. Then

Lls(P,v)
∼= D1(Lvis(P)).

Proof omitted here, but is straightforward.
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The n-cube

Let P be an n-cube. Can one describe in a
reasonable way Lls(P,v) and/or χls(P,v)(q)?

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 28



The n-cube

Let P be an n-cube. Can one describe in a
reasonable way Lls(P,v) and/or χls(P,v)(q)?

Let P have vertices (a1, . . . , an), ai = 0, 1. If
v = (1

2 ,
1
2 , . . . ,

1
2), then ls(P, v) is isomorphic to the

Coxeter arrangement of type Bn, with

χls(P,v)(q) = (q − 1)(q − 3) · · · (q − (2n − 1))

r(ls(P, v)) = 2n n!.
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The 3-cube

Let v = (1
2 ,

1
2,

1
2). Then

χ(q) = (q − 1)(q − 3)(q − 5), r = 48.
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The 3-cube

Let v = (1
2 ,

1
2,

1
2). Then

χ(q) = (q − 1)(q − 3)(q − 5), r = 48.

Let v = (1/2, 1/2, 1/4). Then

χ(q) = (q − 1)(q − 5)(q − 7), r = 96.
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The 3-cube

Let v = (1
2 ,

1
2,

1
2). Then

χ(q) = (q − 1)(q − 3)(q − 5), r = 48.

Let v = (1/2, 1/2, 1/4). Then

χ(q) = (q − 1)(q − 5)(q − 7), r = 96.

Let v be generic. Then

χ(q) = q(q − 1)(q2 − 14q + 53), r = 136 = 23 · 17.
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The 3-cube

Let v = (1
2 ,

1
2,

1
2). Then

χ(q) = (q − 1)(q − 3)(q − 5), r = 48.

Let v = (1/2, 1/2, 1/4). Then

χ(q) = (q − 1)(q − 5)(q − 7), r = 96.

Let v be generic. Then

χ(q) = q(q − 1)(q2 − 14q + 53), r = 136 = 23 · 17.

Total number of line shellings of the 3-cube is
288. Total number of shellings is 480.
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Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then

∑

n≥1

f(n)
xn

n!
= 1 −

1
∑

n≥0(2n)!x
n

n!

.
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Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then

∑

n≥1

f(n)
xn

n!
= 1 −

1
∑

n≥0(2n)!x
n

n!

.

2. Total number of line shellings of the n-cube is
2nn!2.
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Three asides

1. Let f(n) be the total number of shellings of
the n-cube. Then

∑

n≥1

f(n)
xn

n!
= 1 −

1
∑

n≥0(2n)!x
n

n!

.

2. Total number of line shellings of the n-cube is
2nn!2.

3. Every shelling of the n-cube Cn can be
realized as a line shelling of a polytope
combinatorially equivalent to Cn (M. Develin ).
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Two consequences

The number of line shellings from a generic
v ∈ int(P) depends only on which sets of
facet normals of P are linearly independent,
i.e., matroid structure of vis(P).
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Two consequences

The number of line shellings from a generic
v ∈ int(P) depends only on which sets of
facet normals of P are linearly independent,
i.e., matroid structure of vis(P).

Recall Minkowski’s theorem : There exists a
convex d-polytope with outward facet normals
v1, . . . , vm and corresponding facet
(d− 1)-dimensional volumes c1, . . . , cm if and only
if the vi’s span a d-dimensional space and

∑

civi = 0.
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Second consequence

P: d-polytope with m facets, v ∈ int(P)

c(n, k): signless Stirling number of first kind
(number of w ∈ Sn with k cycles)

Then

ls(P, v) ≤ 2(c(m,m − d + 1) + c(m,m − d + 3)

+c(m,m − d + 5) + · · · )

(best possible).
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Many further directions

Valid hyperplane orderings. We can extend the
result

Lls(P,v)
∼= D1(Lvis(P))

to any (hyperplane) arrangement.
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Many further directions

Valid hyperplane orderings. We can extend the
result

Lls(P,v)
∼= D1(Lvis(P))

to any (hyperplane) arrangement.

A: any (finite) arrangement in R
n

v: any point not on any H ∈ A

L: sufficiently generic directed line through v
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Valid orderings

H1, H2, . . . , Hk: order in which hyperplanes are
crossed by L coming in from ∞
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Valid orderings

H1, H2, . . . , Hk: order in which hyperplanes are
crossed by L coming in from ∞

Call this a valid ordering of (A, v).
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An example

1 2 3

4

5
v

valid ordering: 3, 4, 1, 2, 5
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The valid ordering arrangment

vo(A, v): hyperplanes through v and every
intersection of two hyperplanes in A, together
with all hyperplanes through v parallel to (at
least) two hyperplanes of A
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The valid ordering arrangment

vo(A, v): hyperplanes through v and every
intersection of two hyperplanes in A, together
with all hyperplanes through v parallel to (at
least) two hyperplanes of A

v
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The valid ordering arrangment

vo(A, v): hyperplanes through v and every
intersection of two hyperplanes in A, together
with all hyperplanes through v parallel to (at
least) two hyperplanes of A

v
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The Dilworth truncation of A

The regions of vo(A, v) correspond to valid
orderings of hyperplanes by lines through v
(easy).

Theorem. Let v be generic. Then

Lvo(A,v)
∼= LD1(A).

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 37



The Dilworth truncation of A

The regions of vo(A, v) correspond to valid
orderings of hyperplanes by lines through v
(easy).

Theorem. Let v be generic. Then

Lvo(A,v)
∼= LD1(A).

Note that right-hand side is independent of v.
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m-planes

Rather than a line through v, pick an m-plane P
through m generic points v1, . . . , vm. For
“sufficiently generic” P , get a “full-sized” induced
arrangement

AP = {H ∩ P : H ∈ A}

in P .

Define vo(A; v1, . . . , vm) to consist of all
hyperplanes passing through v1, . . . , vm and
every intersection of m + 1 hyperplanes of A
(including “intersections at ∞”).
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mth Dilworth truncation

Theorem. If v1, . . . , vm are generic, then

vo(A(v1, . . . , vm)) ∼= Dm(A).
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mth Dilworth truncation

Theorem. If v1, . . . , vm are generic, then

vo(A(v1, . . . , vm)) ∼= Dm(A).

Proof is straightforward.
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Non-generic base points

For simplicity, consider only the original case
m = 1. Recall:

Lvo(A,v)
∼= LD1(A).

What if v is not generic?
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Non-generic base points

For simplicity, consider only the original case
m = 1. Recall:

Lvo(A,v)
∼= LD1(A).

What if v is not generic?

Then we get “smaller” arrangements than the
generic case.

We obtain a polyhedral subdivision of R
n

depending on which arrangement corresponds to
v.
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An example

12

10
8

Numbers are number of line shellings from points
in the interior of the face.

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 41



Order polytopes redux

Recall:

O(P ) = {(x1, . . . , xd) ∈ R
d : xi ≤ xj if ti ≤ tj}

We will relate χvis(O(P ))(q) to “generalized
chromatic polynomials.”
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Generalized chromatic polynomials

G: finite graph with vertex set V

P = {1, 2, 3, . . . }

σ : V → 2P such that σ(v) < ∞, ∀v ∈ V

χG,σ(q), q ∈ P: number of proper colorings
f : V → {1, 2, . . . , q} such that

f(v) 6∈ σ(v), ∀v ∈ V
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Generalized chromatic polynomials

G: finite graph with vertex set V

P = {1, 2, 3, . . . }

σ : V → 2P such that σ(v) < ∞, ∀v ∈ V

χG,σ(q), q ∈ P: number of proper colorings
f : V → {1, 2, . . . , q} such that

f(v) 6∈ σ(v), ∀v ∈ V

Each f is a list coloring , but the definition of
χG,σ(q) seems to be new.
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The arrangementAG,σ

d = #V = #{v1, . . . , vd}

AG,σ: the arrangement in R
d given by

xi = xj, if vivj is an edge

xi = αj, if αj ∈ σ(i)
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The arrangementAG,σ

d = #V = #{v1, . . . , vd}

AG,σ: the arrangement in R
d given by

xi = xj, if vivj is an edge

xi = αj, if αj ∈ σ(i)

Theorem (easy). χAG,σ
= χG,σ(q) for q ≫ 0
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Consequences

Since χG,σ(q) is the characteristic polynomial of a
hyperplane arrangement, it has such properties
as a deletion-contraction recurrence , broken
circuit theorem , Tutte polynomial, etc.
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vis(O(P )) and AH,σ

Theorem (easy). Let H be the Hasse diagram of
P , considered as a graph. Define σ : H → P by

σ(v) =



















{1, 2}, v = isolated point

{1}, v minimal, not maximal

{2}, v maximal, not minimal

∅, otherwise.

Then vis(O(P )) = AH,σ.
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Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement AG.

AG is supersolvable (not defined here).
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Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement AG.

AG is supersolvable (not defined here).

AG is free in the sense of Terao (not defined
here).
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Supersolvable and free

Recall that the following three properties are
equivalent for the usual graphic arrangement AG.

AG is supersolvable (not defined here).

AG is free in the sense of Terao (not defined
here).

G is a chordal graph, i.e., can order vertices
v1, . . . , vd so that vi+1 connects to previous
vertices along a clique. (Numerous other
characterizations.)
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Generalize to(G, σ)

Theorem (easy). Suppose that we can order the
vertices of G as v1, . . . , vp such that:

vi+1 connects to previous vertices along a
clique (so G is chordal).

If i < j and vi is adjacent to vj, then
σ(vj) ⊆ σ(vi).

Then AG,σ is supersolvable.
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Open questions

Is this sufficient condition for supersolvability
also necessary?

Is it necessary for freeness? (In general,
supersolvable ⇒ free.)
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Open questions

Is this sufficient condition for supersolvability
also necessary?

Is it necessary for freeness? (In general,
supersolvable ⇒ free.)

Are there characterizations of supersolvable
arrangements AG,σ analogous to the known
characterizations of supersolvable AG?
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The last slide

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 50



The last slide

The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope – p. 51



The last slide
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