The Visibility Arrangement and Line Shelling Arrangement of a Convex Polytope

Richard P. Stanley
M.I.T.

Visible facets

\mathcal{P} : a d-dimensional convex polytope in \mathbb{R}^{d}
Certain facets of \mathcal{P} are visible from points $v \in \mathbb{R}^{d}$

Visible facets

\mathcal{P} : a d-dimensional convex polytope in \mathbb{R}^{d}
Certain facets of \mathcal{P} are visible from points $v \in \mathbb{R}^{d}$

- green facets are visible

The visibility arrangement

$\operatorname{aff}(S)$: the affine span of a subset $S \subset \mathbb{R}^{d}$
visibility arrangement:

$$
\operatorname{vis}(\mathcal{P})=\{\operatorname{aff}(F): F \text { is a facet of } \mathcal{P}\}
$$

The visibility arrangement

$\boldsymbol{a f f}(S)$: the affine span of a subset $S \subset \mathbb{R}^{d}$
visibility arrangement:

$$
\operatorname{vis}(\mathcal{P})=\{\operatorname{aff}(F): F \text { is a facet of } \mathcal{P}\}
$$

Regions of $\operatorname{vis}(\mathcal{P})$ correspond to sets of facets that are visible from some point $v \in \mathbb{R}^{d}$.

An example

Number of regions

$\boldsymbol{v}(\mathcal{P})$: number of regions of $\operatorname{vis}(\mathcal{P})$, i.e., the number of visibility sets of \mathcal{P}
$\chi_{\mathcal{A}}(q)$: characteristic polynomial of the arrangement \mathcal{A}

Zaslavsky's theorem. Number of regions of \mathcal{A} is $(-1)^{d} \chi_{\mathcal{A}}(-1)$.

Number of regions

$\boldsymbol{v}(\mathcal{P})$: number of regions of $\operatorname{vis}(\mathcal{P})$, i.e., the number of visibility sets of \mathcal{P}
$\chi_{\mathcal{A}}(q)$: characteristic polynomial of the arrangement \mathcal{A}

Zaslavsky's theorem. Number of regions of \mathcal{A} is $(-1)^{d} \chi_{\mathcal{A}}(-1)$.

In general, $v(\mathcal{P})$ and $\chi_{\operatorname{vis}(\mathcal{P})}(q)$ are hard to compute.

A simple example

$\mathcal{P}_{n}=n$-cube

$$
\begin{aligned}
\chi_{\operatorname{vis}\left(\mathcal{P}_{n}\right)}(q) & =(q-2)^{n} \\
v\left(\mathcal{P}_{n}\right) & =3^{n}
\end{aligned}
$$

A simple example

$\mathcal{P}_{n}=n$-cube

$$
\begin{aligned}
\chi_{\operatorname{vis}\left(\mathcal{P}_{n}\right)}(q) & =(q-2)^{n} \\
v\left(\mathcal{P}_{n}\right) & =3^{n}
\end{aligned}
$$

For any facet F, can see either $F,-F$, or neither.

Order polytopes

$\boldsymbol{P}=\left\{t_{1}, \ldots, t_{d}\right\}:$ a poset (partially ordered set)
Order polytope of P :

$$
\begin{aligned}
\mathcal{O}(P) & = \\
\left\{\left(x_{1}, \ldots, x_{d}\right)\right. & \left.\in \mathbb{R}^{d}: 0 \leq x_{i} \leq x_{j} \leq 1 \text { if } t_{i} \leq t_{j}\right\}
\end{aligned}
$$

Order polytopes

$\boldsymbol{P}=\left\{t_{1}, \ldots, t_{d}\right\}:$ a poset (partially ordered set)
Order polytope of P :

$$
\begin{aligned}
\mathcal{O}(P) & = \\
\left\{\left(x_{1}, \ldots, x_{d}\right)\right. & \left.\in \mathbb{R}^{d}: 0 \leq x_{i} \leq x_{j} \leq 1 \text { if } t_{i} \leq t_{j}\right\}
\end{aligned}
$$

$\chi_{\operatorname{vis}(\mathcal{O}(P))}(q)$ can be described in terms of "generalized chromatic polynomials" (later, if time), but there is a curious special case.

Rank one posets

Suppose that P has rank at most one (no three-element chains).
$\boldsymbol{H}(P)=$ Hasse diagram of P, with vertex set \boldsymbol{V}
For $W \subseteq V$, let $\boldsymbol{H}_{W}=$ restriction of H to W
$\chi_{G}(q)$: chromatic polynomial of the graph G

Rank one posets

Suppose that P has rank at most one (no three-element chains).
$\boldsymbol{H}(P)=$ Hasse diagram of P, with vertex set \boldsymbol{V}
For $W \subseteq V$, let $\boldsymbol{H}_{W}=$ restriction of H to W
$\chi_{G}(q)$: chromatic polynomial of the graph G
Theorem.

$$
v(\mathcal{O}(P))=(-1)^{\# P} \sum_{W \subseteq V} \chi_{H_{W}}(-3)
$$

Line shellings

Let $v \in \operatorname{int}(\mathcal{P})$ (interior of \mathcal{P})

Line shelling based at v : let L be a directed line from v. Let $F_{1}, F_{2}, \ldots, F_{k}$ be the order in which facets become visible along L, followed by the order in which they become invisible from ∞ along the other half of L. Assume L is sufficiently generic so that no two facets become visible or invisible at the same time.

Example of a line shelling

The line shelling arrangment

$\operatorname{ls}(\mathcal{P}, \boldsymbol{v})$: hyperplanes are

- affine span of v with $\operatorname{aff}\left(F_{1}\right) \cap \operatorname{aff}\left(F_{2}\right) \neq \emptyset$, where F_{1}, F_{2} are distinct facets
- if $\operatorname{aff}\left(F_{1}\right) \cap \operatorname{aff}\left(F_{2}\right)=\emptyset$, then the hyperplane through v parallel to F_{1}, F_{2}

The line shelling arrangment

$\operatorname{ls}(\mathcal{P}, \boldsymbol{v})$: hyperplanes are

- affine span of v with $\operatorname{aff}\left(F_{1}\right) \cap \operatorname{aff}\left(F_{2}\right) \neq \emptyset$, where F_{1}, F_{2} are distinct facets
- if $\operatorname{aff}\left(F_{1}\right) \cap \operatorname{aff}\left(F_{2}\right)=\emptyset$, then the hyperplane through v parallel to F_{1}, F_{2}

Line shellings at v are in bijection with regions of
$\operatorname{ls}(\mathcal{P}, v)$.

A nongeneric example

v is not generic: $\overline{a v}=\overline{b v}$ (10 line shellings at v)

A generic example

One hyperplane for every pair of facets (12 line shellings at v)

Lattice of flats

L : lattice of flats of a matroid, e.g., the intersection poset of a central hyperplane arrangement

Upper truncation

$T^{k}(L): L$ with top k levels (excluding the maximum element) removed, called the k th truncation of L.

lattice L of flats of four independent points

$T^{1}(L)$

Upper truncation (cont.)

$T^{k}(L)$ is still the lattice of flats of a matroid, i.e., a geometric lattice (easy).

Lower truncation

What if we remove the bottom k levels of L (excluding the minimal element)? Not a geometric lattice if rank is at least three.

Lower truncation

What if we remove the bottom k levels of L (excluding the minimal element)? Not a geometric lattice if rank is at least three.

Want to "fill in" the k th lower truncation with as many new elements as possible without adding new elements of rank one, increasing the rank of L, or altering the partial order relation of L.

Lower truncation is "bad"

lattice L of flats of four independent points

not a geometric lattice

An example of "filling in"

$D_{1}\left(B_{4}\right)$

The Dilworth truncation

Matroidal definition: Let \boldsymbol{M} be a matroid on a set E of rank n, and let $1 \leq \boldsymbol{k}<n$. The \boldsymbol{k} th Dilworth truncation $D_{k}(M)$ has ground set $\binom{E}{k+1}$, and independent sets
$\boldsymbol{\mathcal { I }}=\left\{I \subseteq\binom{E}{k+1}: \operatorname{rank}_{M}\left(\bigcup_{p \in I^{\prime}} p\right) \geq \# I^{\prime}+k\right.$,

$$
\left.\forall \emptyset \neq I^{\prime} \subseteq I\right\}
$$

First Dilworth truncation of B_{n}

$L=\boldsymbol{B}_{n}$, the boolean algebra of rank n (lattice of flats of the matroid $\boldsymbol{F}_{\boldsymbol{n}}$ of n independent points)
$D_{1}\left(B_{n}\right)$ is a geometric lattice whose atoms are the 2 -element subsets of an n-set.

First Dilworth truncation of B_{n}

$L=\boldsymbol{B}_{n}$, the boolean algebra of rank n (lattice of flats of the matroid $\boldsymbol{F}_{\boldsymbol{n}}$ of n independent points)
$D_{1}\left(B_{n}\right)$ is a geometric lattice whose atoms are the 2 -element subsets of an n-set.
$D_{1}\left(B_{n}\right)=\Pi_{n}$ (lattice of partitions of an n-set)
$D_{1}\left(F_{n}\right)$ is the braid arrangement $x_{i}=x_{j}$,
$1 \leq i<j \leq n$

First Dilworth truncation of B_{n}

$L=\boldsymbol{B}_{n}$, the boolean algebra of rank n (lattice of flats of the matroid $\boldsymbol{F}_{\boldsymbol{n}}$ of n independent points)
$D_{1}\left(B_{n}\right)$ is a geometric lattice whose atoms are the 2 -element subsets of an n-set.
$D_{1}\left(B_{n}\right)=\Pi_{n}$ (lattice of partitions of an n-set)
$D_{1}\left(F_{n}\right)$ is the braid arrangement $x_{i}=x_{j}$,
$1 \leq i<j \leq n$
Number of bases of $D_{1}\left(B_{n}\right)$ equals ??

First Dilworth truncation of B_{n}

$L=\boldsymbol{B}_{n}$, the boolean algebra of rank n (lattice of flats of the matroid $\boldsymbol{F}_{\boldsymbol{n}}$ of n independent points)
$D_{1}\left(B_{n}\right)$ is a geometric lattice whose atoms are the 2 -element subsets of an n-set.
$D_{1}\left(B_{n}\right)=\Pi_{n}$ (lattice of partitions of an n-set)
$D_{1}\left(F_{n}\right)$ is the braid arrangement $x_{i}=x_{j}$,
$1 \leq i<j \leq n$
Number of bases of $D_{1}\left(B_{n}\right)$ equals n^{n-2}.

Second Dilworth completion of B_{n}

Matroid is on the set $\binom{[n]}{3}$
A set S of triangles is an independent set if for any $\emptyset \neq T \subseteq S$, the total number of vertices of triangles in T is at least $\# T+2$.

Second Dilworth completion of B_{n}

Matroid is on the set $\binom{[n]}{3}$
A set S of triangles is an independent set if for any $\emptyset \neq T \subseteq S$, the total number of vertices of triangles in T is at least $\# T+2$.

Note. If instead $\binom{[n]}{2}$ and total number of vertices of edges in T is at least $\# T+1$, then we get a forest.

Bases of $D_{2}\left(\boldsymbol{B}_{4}\right)$

$D_{2}\left(B_{4}\right)$: every pair of triangles is a basis (two triangles use four vertices)

Bases of $D_{2}\left(\boldsymbol{B}_{5}\right)$

60

10

30

100 bases in all

Bases of $D_{2}\left(\boldsymbol{B}_{5}\right)$

60

10

30

100 bases in all
bad

Some data

$$
\begin{aligned}
\chi_{D_{2}\left(B_{5}\right)}(q)= & q^{2}(q-1)\left(q^{2}-9 q+21\right), r=62 \\
\chi_{D_{2}\left(B_{6}\right)}(q)= & q^{2}(q-1)\left(q^{3}-19 q^{2}+126 q-300\right), \\
& r=892=2^{2} \cdot 223
\end{aligned}
$$

(computed up to B_{10} by \mathbf{Y}. Numata and \mathbf{A}. Takemura)

Some data

$$
\begin{aligned}
\chi_{D_{2}\left(B_{5}\right)}(q)= & q^{2}(q-1)\left(q^{2}-9 q+21\right), r=62 \\
\chi_{D_{2}\left(B_{6}\right)}(q)= & q^{2}(q-1)\left(q^{3}-19 q^{2}+126 q-300\right), \\
& r=892=2^{2} \cdot 223
\end{aligned}
$$

(computed up to B_{10} by \mathbf{Y}. Numata and \mathbf{A}. Takemura)
$\boldsymbol{b}(n)$: number of bases of $D_{2}\left(B_{n}\right)$
$b(4)=6, b(5)=100, b(6)=3360=2^{5} \cdot 3 \cdot 5 \cdot 7$

Some data

$$
\begin{aligned}
\chi_{D_{2}\left(B_{5}\right)}(q)= & q^{2}(q-1)\left(q^{2}-9 q+21\right), r=62 \\
\chi_{D_{2}\left(B_{6}\right)}(q)= & q^{2}(q-1)\left(q^{3}-19 q^{2}+126 q-300\right), \\
& r=892=2^{2} \cdot 223
\end{aligned}
$$

(computed up to B_{10} by \mathbf{Y}. Numata and \mathbf{A}. Takemura)
$\boldsymbol{b}(n)$: number of bases of $D_{2}\left(B_{n}\right)$
$b(4)=6, b(5)=100, b(6)=3360=2^{5} \cdot 3 \cdot 5 \cdot 7$

$$
b(7)=191436=2^{2} \cdot 3 \cdot 7 \cdot 43 \cdot 53
$$

Rank four

L : geometric lattice of rank four
ρ_{2} : number of elements of rank two
L_{3} : set of elements of rank three
$\boldsymbol{c}(\boldsymbol{t})$: number or elements covering $t \in L$

Rank four

L : geometric lattice of rank four
ρ_{2} : number of elements of rank two
L_{3} : set of elements of rank three
$\boldsymbol{c}(\boldsymbol{t})$: number or elements covering $t \in L$
Theorem.

$$
\begin{aligned}
& \chi_{D_{1}(L)}(q)=q^{3}-\rho_{2} q^{2}+\left[\binom{\rho_{2}}{2}-\sum_{t \in L_{3}}\binom{c(t)-1}{2}\right] q \\
& \quad+\sum_{t \in L_{3}}\binom{c(t)-1}{2}-\binom{\rho_{2}-1}{2}
\end{aligned}
$$

Back to $\operatorname{vis}(\mathcal{P})$ and $\operatorname{ls}(\mathcal{P}, v)$

Definition of Dilworth truncation extends easily to noncentral arrangements (omitted here).
Back to $\operatorname{vis}(\mathcal{P})$ and $\operatorname{ls}(\mathcal{P}, v)$

Definition of Dilworth truncation extends easily to noncentral arrangements (omitted here).

Theorem. Let $v \in \operatorname{int}(\mathcal{P})$ be generic. Then

$$
L_{\mathrm{ls}(\mathcal{P}, v)} \cong D_{1}\left(L_{\mathrm{vis}(\mathcal{P})}\right)
$$

Back to $\operatorname{vis}(\mathcal{P})$ and $\operatorname{ls}(\mathcal{P}, v)$

Definition of Dilworth truncation extends easily to noncentral arrangements (omitted here).

Theorem. Let $v \in \operatorname{int}(\mathcal{P})$ be generic. Then

$$
L_{\mathrm{ls}(\mathcal{P}, v)} \cong D_{1}\left(L_{\mathrm{vis}(\mathcal{P})}\right) .
$$

Proof omitted here, but is straightforward.

The n-cube

Let \mathcal{P} be an n-cube. Can one describe in a reasonable way $L_{\mathrm{ls}(\mathcal{P}, v)}$ and/or $\chi_{1 \mathrm{~s}(\mathcal{P}, v)}(q)$?

The n-cube

Let \mathcal{P} be an n-cube. Can one describe in a reasonable way $L_{\mathrm{ls}(\mathcal{P}, v)}$ and/or $\chi_{\mathrm{ls}(\mathcal{P}, v)}(q)$?

Let \mathcal{P} have vertices $\left(a_{1}, \ldots, a_{n}\right), a_{i}=0,1$. If
$v=\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$, then $\operatorname{ls}(\mathcal{P}, v)$ is isomorphic to the Coxeter arrangement of type B_{n}, with

$$
\begin{aligned}
\chi_{1 s(\mathcal{P}, v)}(q) & =(q-1)(q-3) \cdots(q-(2 n-1)) \\
r(\operatorname{ls}(\mathcal{P}, v)) & =2^{n} n!
\end{aligned}
$$

The 3-cube

Let $v=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Then

$$
\chi(q)=(q-1)(q-3)(q-5), \quad r=48 .
$$

The 3-cube

Let $v=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Then

$$
\chi(q)=(q-1)(q-3)(q-5), \quad r=48
$$

Let $v=(1 / 2,1 / 2,1 / 4)$. Then

$$
\chi(q)=(q-1)(q-5)(q-7), \quad r=96
$$

The 3-cube

Let $v=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Then

$$
\chi(q)=(q-1)(q-3)(q-5), \quad r=48 .
$$

Let $v=(1 / 2,1 / 2,1 / 4)$. Then

$$
\chi(q)=(q-1)(q-5)(q-7), \quad r=96 .
$$

Let v be generic. Then
$\chi(q)=q(q-1)\left(q^{2}-14 q+53\right), \quad r=136=2^{3} \cdot 17$.

The 3-cube

Let $v=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Then

$$
\chi(q)=(q-1)(q-3)(q-5), \quad r=48 .
$$

Let $v=(1 / 2,1 / 2,1 / 4)$. Then

$$
\chi(q)=(q-1)(q-5)(q-7), \quad r=96 .
$$

Let v be generic. Then
$\chi(q)=q(q-1)\left(q^{2}-14 q+53\right), \quad r=136=2^{3} \cdot 17$.
Total number of line shellings of the 3-cube is 288. Total number of shellings is 480 .

Three asides

1. Let $f(n)$ be the total number of shellings of the n-cube. Then

$$
\sum_{n \geq 1} f(n) \frac{x^{n}}{n!}=1-\frac{1}{\sum_{n \geq 0}(2 n)!\frac{x^{n}}{n!}}
$$

Three asides

1. Let $f(n)$ be the total number of shellings of the n-cube. Then

$$
\sum_{n \geq 1} f(n) \frac{x^{n}}{n!}=1-\frac{1}{\sum_{n \geq 0}(2 n)!\frac{x^{n}}{n!}}
$$

2. Total number of line shellings of the n-cube is $2^{n} n!^{2}$.

Three asides

1. Let $f(n)$ be the total number of shellings of the n-cube. Then

$$
\sum_{n \geq 1} f(n) \frac{x^{n}}{n!}=1-\frac{1}{\sum_{n \geq 0}(2 n)!\frac{x^{n}}{n!}}
$$

2. Total number of line shellings of the n-cube is $2^{n} n!^{2}$.
3. Every shelling of the n-cube C_{n} can be realized as a line shelling of a polytope combinatorially equivalent to C_{n} (\mathbf{M}. Develin).

Two consequences

- The number of line shellings from a generic $v \in \operatorname{int}(\mathcal{P})$ depends only on which sets of facet normals of \mathcal{P} are linearly independent, i.e., matroid structure of $\operatorname{vis}(\mathcal{P})$.

Two consequences

- The number of line shellings from a generic $v \in \operatorname{int}(\mathcal{P})$ depends only on which sets of facet normals of \mathcal{P} are linearly independent, i.e., matroid structure of $\operatorname{vis}(\mathcal{P})$.

Recall Minkowski's theorem: There exists a convex d-polytope with outward facet normals v_{1}, \ldots, v_{m} and corresponding facet
($d-1$)-dimensional volumes c_{1}, \ldots, c_{m} if and only if the v_{i} 's span a d-dimensional space and

$$
\sum c_{i} v_{i}=0
$$

Second consequence

- \mathcal{P} : d-polytope with \boldsymbol{m} facets, $\boldsymbol{v} \in \operatorname{int}(\mathcal{P})$
$c(n, k)$: signless Stirling number of first kind (number of $w \in \mathfrak{S}_{n}$ with k cycles)

Then

$$
\begin{gathered}
\operatorname{ls}(\mathcal{P}, v) \leq 2(c(m, m-d+1)+c(m, m-d+3) \\
+c(m, m-d+5)+\cdots)
\end{gathered}
$$

(best possible).

Many further directions

Valid hyperplane orderings. We can extend the result

$$
L_{\mathrm{ls}(\mathcal{P}, v)} \cong D_{1}\left(L_{\mathrm{vis}(\mathcal{P})}\right)
$$

to any (hyperplane) arrangement.

Many further directions

Valid hyperplane orderings. We can extend the result

$$
L_{\mathrm{ls}(\mathcal{P}, v)} \cong D_{1}\left(L_{\mathrm{vis}(\mathcal{P})}\right)
$$

to any (hyperplane) arrangement.
\mathcal{A} : any (finite) arrangement in \mathbb{R}^{n}
\boldsymbol{v} : any point not on any $H \in \mathcal{A}$
L : sufficiently generic directed line through v

Valid orderings

$\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \ldots, \boldsymbol{H}_{\boldsymbol{k}}$: order in which hyperplanes are crossed by L coming in from ∞

Valid orderings

$\boldsymbol{H}_{1}, \boldsymbol{H}_{2}, \ldots, \boldsymbol{H}_{\boldsymbol{k}}$: order in which hyperplanes are crossed by L coming in from ∞

Call this a valid ordering of (\mathcal{A}, v).

An example

valid ordering: $3,4,1,2,5$

The valid ordering arrangment

$\operatorname{vo}(\mathcal{A}, v)$: hyperplanes through v and every intersection of two hyperplanes in \mathcal{A}, together with all hyperplanes through v parallel to (at least) two hyperplanes of \mathcal{A}

The valid ordering arrangment

$\operatorname{vo}(\mathcal{A}, v)$: hyperplanes through v and every intersection of two hyperplanes in \mathcal{A}, together with all hyperplanes through v parallel to (at least) two hyperplanes of \mathcal{A}

The valid ordering arrangment

$\operatorname{vo}(\mathcal{A}, v)$: hyperplanes through v and every intersection of two hyperplanes in \mathcal{A}, together with all hyperplanes through v parallel to (at least) two hyperplanes of \mathcal{A}

The Dilworth truncation of \mathcal{A}

The regions of vo (\mathcal{A}, v) correspond to valid orderings of hyperplanes by lines through v (easy).

Theorem. Let v be generic. Then

$$
L_{\mathrm{vo}(\mathcal{A}, v)} \cong L_{D_{1}(\mathcal{A})}
$$

The Dilworth truncation of \mathcal{A}

The regions of vo (\mathcal{A}, v) correspond to valid orderings of hyperplanes by lines through v (easy).

Theorem. Let v be generic. Then

$$
L_{\mathrm{vo}(\mathcal{A}, v)} \cong L_{D_{1}(\mathcal{A})}
$$

Note that right-hand side is independent of v.

m-planes

Rather than a line through v, pick an m-plane P through m generic points v_{1}, \ldots, v_{m}. For "sufficiently generic" P, get a "full-sized" induced arrangement

$$
\mathcal{A}_{\boldsymbol{P}}=\{H \cap P: H \in \mathcal{A}\}
$$

in P.
Define vo $\left(\mathcal{A} ; v_{1}, \ldots, v_{m}\right)$ to consist of all hyperplanes passing through v_{1}, \ldots, v_{m} and every intersection of $m+1$ hyperplanes of \mathcal{A} (including "intersections at ∞ ").

m th Dilworth truncation

Theorem. If v_{1}, \ldots, v_{m} are generic, then

$$
\operatorname{vo}\left(\mathcal{A}\left(v_{1}, \ldots, v_{m}\right)\right) \cong D_{m}(\mathcal{A})
$$

m th Dilworth truncation

Theorem. If v_{1}, \ldots, v_{m} are generic, then

$$
\operatorname{vo}\left(\mathcal{A}\left(v_{1}, \ldots, v_{m}\right)\right) \cong D_{m}(\mathcal{A})
$$

Proof is straightforward.

Non-generic base points

For simplicity, consider only the original case $m=1$. Recall:

$$
L_{\mathrm{vo}(\mathcal{A}, v)} \cong L_{D_{1}(\mathcal{A})} .
$$

What if v is not generic?

Non-generic base points

For simplicity, consider only the original case $m=1$. Recall:

$$
L_{\mathrm{vo}(\mathcal{A}, v)} \cong L_{D_{1}(\mathcal{A})} .
$$

What if v is not generic?
Then we get "smaller" arrangements than the generic case.

We obtain a polyhedral subdivision of \mathbb{R}^{n} depending on which arrangement corresponds to v.

An example

Numbers are number of line shellings from points in the interior of the face.

Order polytopes redux

Recall:
$\mathcal{O}(P)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{i} \leq x_{j}\right.$ if $\left.t_{i} \leq t_{j}\right\}$
We will relate $\chi_{\operatorname{vis}(\mathcal{O}(P))}(q)$ to "generalized chromatic polynomials."

Generalized chromatic polynomials

G : finite graph with vertex set \boldsymbol{V}
$\mathbb{P}=\{1,2,3, \ldots\}$
$\boldsymbol{\sigma}: V \rightarrow 2^{\mathbb{P}}$ such that $\sigma(v)<\infty, \forall v \in V$
$\chi_{G, \sigma}(q), q \in \mathbb{P}:$ number of proper colorings $f: V \rightarrow\{1,2, \ldots, q\}$ such that

$$
f(v) \notin \sigma(v), \forall v \in V
$$

Generalized chromatic polynomials

G : finite graph with vertex set \boldsymbol{V}
$\mathbb{P}=\{1,2,3, \ldots\}$
$\boldsymbol{\sigma}: V \rightarrow 2^{\mathbb{P}}$ such that $\sigma(v)<\infty, \forall v \in V$
$\chi_{G, \sigma}(\boldsymbol{q}), q \in \mathbb{P}:$ number of proper colorings $f: V \rightarrow\{1,2, \ldots, q\}$ such that

$$
f(v) \notin \sigma(v), \forall v \in V
$$

Each f is a list coloring, but the definition of $\chi_{G, \sigma}(q)$ seems to be new.

The arrangement $\mathcal{A}_{G, \sigma}$

$$
\boldsymbol{d}=\# V=\#\left\{v_{1}, \ldots, v_{d}\right\}
$$

$\mathcal{A}_{G, \sigma}$: the arrangement in \mathbb{R}^{d} given by

$$
\begin{aligned}
& x_{i}=x_{j}, \text { if } v_{i} v_{j} \text { is an edge } \\
& x_{i}=\alpha_{j}, \text { if } \alpha_{j} \in \sigma(i)
\end{aligned}
$$

The arrangement $\mathcal{A}_{G, \sigma}$

$$
\boldsymbol{d}=\# V=\#\left\{v_{1}, \ldots, v_{d}\right\}
$$

$\mathcal{A}_{G, \sigma}$: the arrangement in \mathbb{R}^{d} given by

$$
\begin{aligned}
& x_{i}=x_{j}, \text { if } v_{i} v_{j} \text { is an edge } \\
& x_{i}=\alpha_{j}, \text { if } \alpha_{j} \in \sigma(i)
\end{aligned}
$$

Theorem (easy). $\chi_{\mathcal{A}_{G, \sigma}}=\chi_{G, \sigma}(q)$ for $q \gg 0$

Consequences

Since $\chi_{G, \sigma}(q)$ is the characteristic polynomial of a hyperplane arrangement, it has such properties as a deletion-contraction recurrence, broken circuit theorem, Tutte polynomial, etc.
$\operatorname{vis}(\mathcal{O}(P))$ and $\mathcal{A}_{H, \sigma}$

Theorem (easy). Let H be the Hasse diagram of P, considered as a graph. Define $\boldsymbol{\sigma}: H \rightarrow \mathbb{P}$ by

$$
\sigma(v)=\left\{\begin{aligned}
\{1,2\}, & v=\text { isolated point } \\
\{1\}, & v \text { minimal, not maximal } \\
\{2\}, & v \text { maximal, not minimal } \\
\emptyset, & \text { otherwise } .
\end{aligned}\right.
$$

Then $\operatorname{vis}(\mathcal{O}(P))=\mathcal{A}_{H, \sigma}$.

Supersolvable and free

Recall that the following three properties are equivalent for the usual graphic arrangement \mathcal{A}_{G}.

- \mathcal{A}_{G} is supersolvable (not defined here).

Supersolvable and free

Recall that the following three properties are equivalent for the usual graphic arrangement \mathcal{A}_{G}.

- \mathcal{A}_{G} is supersolvable (not defined here).
- \mathcal{A}_{G} is free in the sense of Terao (not defined here).

Supersolvable and free

Recall that the following three properties are equivalent for the usual graphic arrangement \mathcal{A}_{G}.

- \mathcal{A}_{G} is supersolvable (not defined here).
- \mathcal{A}_{G} is free in the sense of Terao (not defined here).
- G is a chordal graph, i.e., can order vertices v_{1}, \ldots, v_{d} so that v_{i+1} connects to previous vertices along a clique. (Numerous other characterizations.)

Generalize to (G, σ)

Theorem (easy). Suppose that we can order the vertices of G as v_{1}, \ldots, v_{p} such that:

- v_{i+1} connects to previous vertices along a clique (so G is chordal).
- If $i<j$ and v_{i} is adjacent to v_{j}, then $\sigma\left(v_{j}\right) \subseteq \sigma\left(v_{i}\right)$.
Then $\mathcal{A}_{G, \sigma}$ is supersolvable.

Open questions

- Is this sufficient condition for supersolvability also necessary?
- Is it necessary for freeness? (In general, supersolvable \Rightarrow free.)

Open questions

- Is this sufficient condition for supersolvability also necessary?
- Is it necessary for freeness? (In general, supersolvable \Rightarrow free.)
- Are there characterizations of supersolvable arrangements $\mathcal{A}_{G, \sigma}$ analogous to the known characterizations of supersolvable \mathcal{A}_{G} ?

The last slide

The last slide $\overbrace{}^{0}$

The last slide

