The X-Descent Set of a Permutation

Richard P. Stanley M.I.T. and U. Miami

July 4, 2022

The Descent Set of a Permutation

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

descent set of w : $\mathbf{Des}(\mathbf{w}) = \{1 \le i \le n-1 : a_i > a_{i+1}\}$

The Descent Set of a Permutation

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

descent set of *w*: $Des(w) = \{1 \le i \le n-1 : a_i > a_{i+1}\}$

Fix n. For $S \subseteq [n-1]$, define

$$\textbf{\textit{F}}_{\textbf{\textit{S}}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \textbf{\textit{S}}}} x_{i_1} x_{i_2} \cdots x_{i_n},$$

known as (Gessel's) fundamental quasisymmetric function.

The Descent Set of a Permutation

$$\mathbf{w} = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$$

descent set of *w*:
$$\mathbf{Des}(w) = \{1 \le i \le n-1 : a_i > a_{i+1}\}$$

Fix n. For $S \subseteq [n-1]$, define

$$\textbf{\textit{F}}_{\textbf{\textit{S}}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \dots \leq i_n \\ i_i < i_{i+1} \text{ if } j \in \textbf{\textit{S}}}} x_{i_1} x_{i_2} \cdots x_{i_n},$$

known as (Gessel's) fundamental quasisymmetric function.

Theorem.
$$\sum_{w \in \mathfrak{S}_n} F_{\mathrm{Des}(w)} = (x_1 + x_2 + \cdots)^n$$

The case n = 3

W	$F_{\mathrm{Des}(w)}$
123	$\sum_{1 \le i \le k} x_a x_b x_c$
132	$\sum_{1 \le a \le b \le c} x_a x_b x_c$
213	$\sum_{1 \le a \le b \le c}^{} x_a x_b x_c$
231	$\sum_{1 \le a \le b \le c} x_a x_b x_c$
312	$\sum_{a} x_a x_b x_c$
321	$\sum_{1 \le a < b \le c} x_a x_b x_c$
	$(x_1+x_2+\cdots)^3$

$$X \subseteq \mathcal{E}_n := \{(i,j) : 1 \le i \le n, \ 1 \le j \le n, \ i \ne j\}$$

$$X \subseteq \mathcal{E}_n := \{(i,j) : 1 \le i \le n, 1 \le j \le n, i \ne j\}$$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le i \le n-1$ for which $(a_i, a_{i+1}) \in X$

$$X \subseteq \mathcal{E}_n := \{(i,j) : 1 \le i \le n, 1 \le j \le n, i \ne j\}$$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le i \le n-1$ for which $(a_i, a_{i+1}) \in X$

X-descent set XDes(w): set of X-descents

$$X \subseteq \mathcal{E}_n := \{(i,j) : 1 \le i \le n, 1 \le j \le n, i \ne j\}$$

X-descent of $w = a_1 \cdots a_n \in \mathfrak{S}_n$: an index $1 \le i \le n-1$ for which $(a_i, a_{i+1}) \in X$

X-descent set XDes(w): set of X-descents

Example. (a) $X = \{(i,j) : n-1 \ge i > j \ge 1\}$: XDes = Des (the ordinary descent set)

(b)
$$X = \{(i,j) \in [n] \times [n] : i \neq j\}$$
: $XDes(w) = [n-1]$, where $[n-1] = \{1,2,\ldots,n-1\}$

Symmetric functions

Symmetric function: $f = f(x_1, x_2,...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of n: $\lambda = (\lambda_1, \lambda_2, \dots)$, $\lambda_1 \ge \lambda_2 \ge \dots \ge 0$, $\sum \lambda_i = n$, denoted $\lambda \vdash n$

Symmetric functions

Symmetric function: $f = f(x_1, x_2,...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of n: $\lambda = (\lambda_1, \lambda_2, \dots)$, $\lambda_1 \ge \lambda_2 \ge \dots \ge 0$, $\sum \lambda_i = n$, denoted $\lambda \vdash n$

Example. Power sums: $p_k = \sum_i x_i^k$ (with $p_0 = 1$),

$$p_{\lambda}=p_{\lambda_1}p_{\lambda_2}\cdots,$$

a Q-basis for the space of symmetric functions

Symmetric functions

Symmetric function: $f = f(x_1, x_2,...)$, a power series of bounded degree with rational coefficients, invariant under any permutation of the x_i 's.

partition of n: $\lambda = (\lambda_1, \lambda_2, ...)$, $\lambda_1 \ge \lambda_2 \ge ... \ge 0$, $\sum \lambda_i = n$, denoted $\lambda \vdash n$

Example. Power sums: $p_k = \sum_i x_i^k$ (with $p_0 = 1$),

$$p_{\lambda}=p_{\lambda_1}p_{\lambda_2}\cdots,$$

a $\mathbb{Q}\text{-basis}$ for the space of symmetric functions

Schur functions s_{λ} : another \mathbb{Q} -basis, not defined here

A generating function for the XDescent set

Define
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$$
.

A generating function for the XDescent set

Define
$$U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$$
.

Example.
$$n = 3, X = \{(1,3), (2,1), (3,1), (3,2)\}$$

W	XDes(w)
123	Ø
132	$\{1, 2\}$
213	$\{1, 2\}$
231	{2}
312	{1}
321	{1,2}

$$U_X = F_{\emptyset} + F_1 + F_2 + 3F_{1,2} = p_1^3 - p_2p_1 + p_3 = s_3 + s_{21} + 2s_{111}$$

First easy theorem

Theorem. (a) U_X is a p-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

First easy theorem

Theorem. (a) U_X is a p-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathbf{m} = x_1^2 x_2^3 x_4^2$ (where n = 7). Recall

$$U_{X} = \sum_{w \in \mathfrak{S}_{n}} F_{XDes(w)}$$

$$\textbf{\textit{F}}_{\textbf{\textit{S}}} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in \textbf{\textit{S}}}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

First easy theorem

Theorem. (a) U_X is a p-integral symmetric function, i.e., $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$, where $c_{\lambda} \in \mathbb{Z}$.

Proof. Consider the coefficient of a monomial, say $\mathbf{m} = x_1^2 x_2^3 x_4^2$ (where n = 7). Recall

$$U_X = \sum_{w \in \mathfrak{S}_n} F_{\mathrm{XDes}(w)}$$

$$\mathbf{F_S} = \sum_{\substack{1 \leq i_1 \leq i_2 \leq \cdots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in S}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

Let $w = a_1 a_2 \cdots a_7$. Thus \mathfrak{m} appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Let $w = a_1 a_2 \cdots a_7$. Thus \mathfrak{m} appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Let $w = a_1 a_2 \cdots a_7$. Thus \mathfrak{m} appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w=a_1a_2\cdot a_3a_4a_5\cdot a_6a_7=u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\mathrm{XDes}(w')}$, where $w'=u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

Let $w = a_1 a_2 \cdots a_7$. Thus \mathfrak{m} appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w=a_1a_2\cdot a_3a_4a_5\cdot a_6a_7=u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\text{XDes}(w')}$, where $w'=u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

Also $x_1^2 x_2^3 x_4^2 = \mathfrak{m}$ appears in $F_{\mathrm{XDes}(w'')}$, where $w'' = u_3 u_2 u_1$. Generalizing shows that the coefficient of $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ in U_X is an integer multiple of $\alpha_1! \alpha_2! \cdots$.

Let $w = a_1 a_2 \cdots a_7$. Thus \mathfrak{m} appears in $F_{XDes(w)}$ if and only if $(a_1, a_2), (a_3, a_4), (a_4, a_5), (a_6, a_7) \notin X$.

Write $w=a_1a_2\cdot a_3a_4a_5\cdot a_6a_7=u_1u_2u_3$ (juxtaposition of words). Then $x_1^3x_2^2x_4^2$ appears in $F_{\text{XDes}(w')}$, where $w'=u_2u_1u_3$. Generalizing shows that U_X is a symmetric function.

Also $x_1^2 x_2^3 x_4^2 = \mathfrak{m}$ appears in $F_{\mathrm{XDes}(w'')}$, where $w'' = u_3 u_2 u_1$. Generalizing shows that the coefficient of $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$ in U_X is an integer multiple of $\alpha_1! \alpha_2! \cdots$.

Well-known and easy that this implies U_X is p-integral (given that U_X is a symmetric function). \square

 ω : linear transformation on symmetric functions given by $\omega(p_{\lambda}) = (-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda) = \#\{i : \lambda_i > 0\}$.

 ω : linear transformation on symmetric functions given by $\omega(p_{\lambda}) = (-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda) = \#\{i : \lambda_i > 0\}$.

Note. $\omega^2 = 1$

 ω : linear transformation on symmetric functions given by $\omega(p_{\lambda}) = (-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda) = \#\{i : \lambda_i > 0\}$.

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

 ω : linear transformation on symmetric functions given by $\omega(p_{\lambda}) = (-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda) = \#\{i : \lambda_i > 0\}$.

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

Proof.

 ω : linear transformation on symmetric functions given by $\omega(p_{\lambda}) = (-1)^{n-\ell(\lambda)} p_{\lambda}$ for $\lambda \vdash n$, where $\ell(\lambda) = \#\{i : \lambda_i > 0\}$.

Note. $\omega^2 = 1$

Theorem. Let $\overline{X} = \mathcal{E}_n - X$. Then $\omega U_X = U_{\overline{X}}$.

Proof. Exercise.

Special case

```
record set \operatorname{rec}(w) for w = a_1 \cdots a_n \in \mathfrak{S}_n:

\operatorname{rec}(w) = \{0 \le i \le n - 1 : a_i > a_j \text{ for all } j < i\}. Thus always

0 \in \operatorname{rec}(w).

record partition \operatorname{rp}(w): if \operatorname{rec}(w) = \{r_0, \dots, r_i\}_{< i}, then \operatorname{rp}(w) is
```

the numbers $r_1 - r_0, r_2 - r_1, \dots, n - r_i$ arranged in decreasing order.

Special case

record set $\operatorname{rec}(w)$ for $w = a_1 \cdots a_n \in \mathfrak{S}_n$: $\operatorname{rec}(w) = \{0 \le i \le n - 1 : a_i > a_j \text{ for all } j < i\}$. Thus always $0 \in \operatorname{rec}(w)$.

record partition $\mathbf{rp}(w)$: if $\mathrm{rec}(w) = \{r_0, \dots, r_j\}_{<}$, then $\mathrm{rp}(w)$ is the numbers $r_1 - r_0, r_2 - r_1, \dots, n - r_j$ arranged in decreasing order.

Theorem (conjectured by **RS**, proved by **I. Gessel**). Let X have the property that if $(i,j) \in X$ then i > j. Then

$$U_X = \sum_{\substack{w \in \mathfrak{S}_n \ \mathrm{XDes}(w) = \emptyset}} p_{\mathrm{rp}(w)}.$$

In particular, U_X is p-positive.

An example

$$n = 4, X = \{(2,1), (3,2), (4,3)\}$$

W	rec(w)
1234	1111
134 2	211
14 23	31
2314	211
234 1	211
24 13	31
3 12 4	31
3 1 4 2	22
34 12	31
4 123	4
4 231	4

An example

$$n = 4, X = \{(2,1), (3,2), (4,3)\}$$

W	rec(w)
1234	1111
134 2	211
14 23	31
2314	211
234 1	211
24 13	31
3 12 4	31
314 2	22
34 12	31
4 123	4
4 231	4

$$\Rightarrow U_X = p_1^4 + 3p_2p_1^2 + 4p_3p_1 + p_2^2 + 2p_4$$

A generalization

Theorem (D. Grinberg) Suppose that $(i,j) \in X \Rightarrow (j,i) \notin X$. Then U_X is p-positive.

A generalization

Theorem (D. Grinberg) Suppose that $(i,j) \in X \Rightarrow (j,i) \notin X$. Then U_X is p-positive.

In fact, Grinberg has a combinatorial interpretation of the coefficients (not given here).

Connection with chromatic symmetric functions

P: partial ordering of [n]

$$\mathbf{Y}_{\mathbf{P}} = \{(i,j) : i >_{\mathbf{P}} j\}$$

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if $i \parallel j$ in P

 X_G : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

Connection with chromatic symmetric functions

P: partial ordering of [n]

$$\mathbf{Y}_{\mathbf{P}} = \{(i,j) : i >_{\mathbf{P}} j\}$$

inc(P): incomparability graph of P, i.e., vertex set [n], edges ij if $i \parallel j$ in P

 X_G : chromatic symmetric function of the graph G (generalizes the chromatic polynomial)

Theorem.
$$U_{Y_P} = X_{\text{inc}(P)}$$

Reverse succession-free permutations

Let
$$X = \{(2,1), (3,2), \dots, (n,n-1)\}.$$

$$f_n = \#\{w \in \mathfrak{S}_n : XDes(w) = \emptyset\} \text{ (rs-free permutations)}$$

Reverse succession-free permutations

Let
$$X = \{(2,1), (3,2), \dots, (n,n-1)\}.$$

$$f_n = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = \emptyset\}$$
 (rs-free permutations)

Known result.
$$\sum_{n>0} f_n \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Reverse succession-free permutations

Let
$$X = \{(2,1), (3,2), \dots, (n,n-1)\}.$$

$$f_n = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = \emptyset\}$$
 (rs-free permutations)

Known result.
$$\sum_{n\geq 0} f_n \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Theorem.
$$U_X = \sum_{i=1}^{n} f_i \, s_{i,1^{n-i}}$$

(generating function for $w \in \mathfrak{S}_n$ by positions of reverse successions)

Reverse succession-free permutations

Let
$$X = \{(2,1), (3,2), \dots, (n,n-1)\}.$$

$$f_n = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = \emptyset\}$$
 (rs-free permutations)

Known result.
$$\sum_{n\geq 0} f_n \frac{x^n}{n!} = \frac{e^{-x}}{(1-x)^2}$$

Theorem.
$$U_X = \sum_{i=1}^n f_i \, s_{i,1^{n-i}}$$

(generating function for $w \in \mathfrak{S}_n$ by positions of reverse successions)

Example.
$$n = 4$$
: $U_X = 11s_4 + 3s_{31} + s_{211} + s_{1111}$

Theorem.
$$U_X = \sum_{i=1}^{n} f_i \, s_{i,1^{n-i}}$$

Theorem.
$$U_X = \sum_{i=1}^n f_i \, s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Theorem.
$$U_X = \sum_{i=1}^{n} f_i \, s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Left-hand side: $\#\{w \in \mathfrak{S}_n : XDes(w) = S\}$



Theorem.
$$U_X = \sum_{i=1}^n f_i \, s_{i,1^{n-i}}$$

Proof. For $S \subseteq [n-1]$, take coefficient of F_S on both sides.

Left-hand side: $\#\{w \in \mathfrak{S}_n : XDes(w) = S\}$

Right-hand side: Use

$$s_{i,1^{n-i}} = \sum_{S \in \binom{[n-1]}{n-i}} F_S.$$

To show: $f_i = \#\{w \in \mathfrak{S}_n : XDes(w) = S\}$ if #S = n - i.

Conclusion of proof

To show: $f_i = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S\}$ if #S = n - i.

Conclusion of proof

To show:
$$f_i = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S\}$$
 if $\#S = n - i$.

Will define a bijection

$$\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S\} \to \{u \in \mathfrak{S}_i : \mathrm{XDes}(u) = \emptyset\}.$$

Conclusion of proof

To show:
$$f_i = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S\}$$
 if $\#S = n - i$.

Will define a bijection

$$\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = S\} \to \{u \in \mathfrak{S}_i : \mathrm{XDes}(u) = \emptyset\}.$$

Example. w = 3247651, so $S = \{1, 4, 5\}$, n = 7, i = 4. Factor w:

$$w = 32 \cdot 4 \cdot 765 \cdot 1.$$

Let
$$1 \rightarrow 1$$
, $32 \rightarrow 2$, $4 \rightarrow 3$, $765 \rightarrow 4$: get

$$w \rightarrow 2341 = u$$
. \square

A *q*-analogue for $X = \{(2,1), (3,2), \dots, (n,n-1)\}$

Let $U_X(q) = \sum_{w \in \mathfrak{S}_n} q^{\operatorname{des}(w^{-1})} F_{\mathrm{XDes}(w)}$, where des denotes the number of (ordinary) descents.

 $U_X(q)$ is the generating function for $w \in \mathfrak{S}_n$ by positions of reverse successions and by $des(w^{-1})$.

$$f_n(q) = \sum_{\substack{w \in \mathfrak{S}_n \ \mathrm{XDes}(w) = \emptyset}} q^{\mathrm{des}(w^{-1})}$$

A *q*-analogue for $X = \{(2,1), (3,2), \dots, (n,n-1)\}$

Let $U_X(q) = \sum_{w \in \mathfrak{S}_n} q^{\operatorname{des}(w^{-1})} F_{\operatorname{XDes}(w)}$, where des denotes the number of (ordinary) descents.

 $U_X(q)$ is the generating function for $w \in \mathfrak{S}_n$ by positions of reverse successions and by $des(w^{-1})$.

$$f_n(q) = \sum_{\substack{w \in \mathfrak{S}_n \ \mathrm{XDes}(w) = \emptyset}} q^{\operatorname{des}(w^{-1})}$$

Theorem.
$$U_X(q) = \sum_{i=1}^n q^{n-i} f_i(q) s_{i,1^{n-i}}$$

Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$.

A **Hamiltonian path** in X is a permutation $a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ such that $(a_i, a_{i+1}) \in X$ for $1 \le i \le n-1$. Define

ham(X) = # Hamiltonian paths in X



Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$.

A Hamiltonian path in X is a permutation $a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ such that $(a_i, a_{i+1}) \in X$ for $1 \le i \le n-1$. Define

$$ham(X) = #$$
 Hamiltonian paths in X

Note.

▶ $w \in \mathfrak{S}_n$ is a Hamiltonian path in X if and only XDes(w) = [n-1].

Digraph interpretation

We can also regard X as a **digraph**, with edges $i \rightarrow j$ if $(i, j) \in X$.

A Hamiltonian path in X is a permutation $a_1 a_2 \cdots a_n \in \mathfrak{S}_n$ such that $(a_i, a_{i+1}) \in X$ for $1 \le i \le n-1$. Define

$$ham(X) = #$$
 Hamiltonian paths in X

Note.

- ▶ $w \in \mathfrak{S}_n$ is a Hamiltonian path in X if and only XDes(w) = [n-1].
- w is a Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Proof. Recall $U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$. Since $w \in \mathfrak{S}_n$ is a

Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$,

$$ham(\overline{X}) = \#\{w \in \mathfrak{S}_n : XDes(w) = \emptyset\}.$$

Note

$$[x_1^n]F_S = \begin{cases} 1, & S = \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

Also for $\lambda \vdash n$, $[x_1^n]p_{\lambda} = 1$.

Connection with U_X

Theorem. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then $ham(\overline{X}) = \sum_{\lambda} c_{\lambda}$.

Proof. Recall $U_X = \sum_{w \in \mathfrak{S}_n} F_{XDes(w)}$. Since $w \in \mathfrak{S}_n$ is a

Hamiltonian path in \overline{X} if and only if $XDes(w) = \emptyset$,

$$\mathrm{ham}(\overline{X}) = \#\{w \in \mathfrak{S}_n : \mathrm{XDes}(w) = \emptyset\}.$$

Note

$$[x_1^n]F_S = \begin{cases} 1, & S = \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

Also for $\lambda \vdash n$, $[x_1^n]p_{\lambda} = 1$.

Take coefficient of x_1^n on both sides of

$$U_X = \sum_{w \in \mathfrak{S}_n} F_{\mathrm{XDes}(w)} = \sum_{\lambda} c_{\lambda} p_{\lambda}.$$

Simple corollary

Corollary. Let
$$U_X=\sum_{\lambda}c_{\lambda}p_{\lambda}$$
 as before. Then
$$\mathrm{ham}(X)=\sum_{\lambda}(-1)^{n-\ell(\lambda)}c_{\lambda}.$$

Simple corollary

Corollary. Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$ as before. Then

$$ham(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Recall $\omega p_{\lambda} = (-1)^{n-\ell(\lambda)} p_{\lambda}$ and $\omega U_X = U_{\overline{X}}$. Now apply ω to $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$ and use previous theorem:

$$ham(\overline{X}) = \sum_{\lambda} c_{\lambda}.$$

Berge's theorem

Theorem (C. Berge).
$$ham(X) \equiv ham(\overline{X}) \pmod{2}$$

Proof (**D. Grinberg**). Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove:

$$\sum (-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda} \; (\operatorname{mod} 2).$$

Berge's theorem

Theorem (C. Berge).
$$ham(X) \equiv ham(\overline{X}) \pmod{2}$$

Proof (**D. Grinberg**). Let $U_X = \sum_{\lambda} c_{\lambda} p_{\lambda}$. To prove:

$$\sum (-1)^{n-\ell(\lambda)} c_{\lambda} \equiv \sum c_{\lambda} \pmod{2}.$$

Obvious since
$$(-1)^{n-\ell(\lambda)} = \pm 1$$
. \square

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i,j) \in X$ or $(j,i) \in X$.

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i,j) \in X$ or $(j,i) \in X$.

Theorem (**D. Grinberg**). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Tournaments

tournament: a digraph X with vertex set [n] (say), such that for all $1 \le i < j \le n$, exactly one of $(i,j) \in X$ or $(j,i) \in X$.

Theorem (**D. Grinberg**). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Special case of a result for any X.

A corollary

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$U_X \in \mathbb{Z}[p_1, 2p_3, 2p_5, 2p_7, \dots].$$

A corollary

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

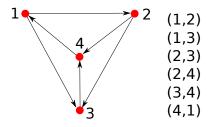
where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. If X is a tournament, then

$$U_X \in \mathbb{Z}[p_1, 2p_3, 2p_5, 2p_7, \dots].$$

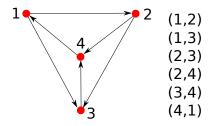
Note. Thus U_X can be written uniquely as a linear combination of Schur's "shifted Schur functions" P_λ , where λ has distinct parts. Can anything worthwhile be said about the coefficients?

An example



W	$2^{\operatorname{nsc}(w)}p_{\rho(w)}$
(1)(2)(3)(4)	$ ho_1^4$
(1,2,4)(3)	$2p_3p_1$
(1,3,4)(2)	$2p_3p_1$

An example



$$\begin{array}{c|c} w & 2^{\operatorname{nsc}(w)}p_{\rho(w)} \\ \hline (1)(2)(3)(4) & p_1^4 \\ (1,2,4)(3) & 2p_3p_1 \\ (1,3,4)(2) & 2p_3p_1 \end{array}$$

$$\Rightarrow U_X = p_1^4 + 4p_3p_1 = 5P_4 - 2P_{3,1}$$

An application to Hamiltonian paths

Observation (repeated). Let $U_x = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$\mathrm{ham}(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

An application to Hamiltonian paths

Observation (repeated). Let $U_x = \sum_{\lambda} c_{\lambda} p_{\lambda}$. Then

$$ham(X) = \sum_{\lambda} (-1)^{n-\ell(\lambda)} c_{\lambda}.$$

Theorem (repeated). Let X be a tournament. Then

$$U_X = \sum_w 2^{\operatorname{nsc}(w)} p_{\rho(w)},$$

where w ranges over all permutations in \mathfrak{S}_n of odd order such that every nonsingleton cycle of w is a (directed) cycle of X, and where $\operatorname{nsc}(w)$ denotes the number of nonsingleton cycles of w.

Corollary. Let X be a tournament. Then

$$ham(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$ham(X) = \sum_{w} 2^{nsc(w)}.$$

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$ham(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Since $c_{1^n}=1$ for all X (immediate from $U_X=\sum_{w\in\mathfrak{S}_n}F_{\mathrm{XDes}(w)}$), we conclude:

Rédei's theorem

Corollary (repeated). Let X be a tournament. Then

$$ham(X) = \sum_{w} 2^{\operatorname{nsc}(w)}.$$

Since $c_{1^n}=1$ for all X (immediate from $U_X=\sum_{w\in\mathfrak{S}_n}F_{\mathrm{XDes}(w)}$), we conclude:

Theorem (L. Rédei, 1934) Every tournament has an odd number of Hamiltionian paths.

The final slide

