Joint with：

Bill Chen 陈永川
 Eva Deng 邓玉平
 Rosena Du 杜若霞
 Catherine Yan 颜华菲

(complete) matching:

crossing:

nesting:

Theorem. The number of matchings on $[2 n]$ with no crossings (or with no nestings) is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Recall:

$$
\begin{aligned}
& C_{n}=\#\left\{a_{1} \cdots a_{2 n}: a_{i}= \pm 1\right. \\
& \left.\quad a_{1}+\cdots+a_{i} \geq 0, \sum a_{i}=0\right\}
\end{aligned}
$$

(ballot sequence).

3-crossing

$M=$ matching
$\operatorname{cr}(M)=\max \{k: \exists k$-crossing $\}$
$\operatorname{ne}(M)=\max \{k: \exists k$-nesting $\}$.
Theorem. Let $f_{n}(i, j)=\#$ matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and ne $(M)=j$. Then $\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{i}, \boldsymbol{j})=\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{j}, \boldsymbol{i})$.

Corollary. \# matchings M on $[2 n]$ with $\operatorname{cr}(M)=k$ equals \# matchings M on [2n] with $\operatorname{ne}(M)=k$.

Partitions (of the set [n]).

$$
\pi=145-26-3
$$

3-crossing

$\pi=$ set partition

 $\operatorname{cr}(\pi)=\max \{k: \exists k$-crossing $\}$ $\operatorname{ne}(\pi)=\max \{k: \exists k$-nesting $\}$.Theorem. Let $g_{n}(i, j)=\#$ partitions π of $[n]$ with $\operatorname{cr}(M)=i$ and ne $(M)=j$. Then

$$
g_{n}(i, j)=g_{n}(j, i)
$$

A common generalization. Given

 $\pi \in \Pi_{n}$, define:$\min (\pi)=\{$ minimal block elements of $\pi\}$
$\max (\pi)=\{$ maximal block elements of $\pi\}$

$$
\begin{aligned}
\min (135-26-4) & =\{1,2,4\} \\
\max (135-26-4) & =\{4,5,6\}
\end{aligned}
$$

Note. $(\min (\pi), \max (\pi))$ determines number of blocks of π, number of singleton blocks, whether π is a matching,

Fix $S, T \subseteq[n], \# S=\# T$.
$f_{n, S, T}(i, j)=\#\left\{\pi \in \Pi_{n}: \min (\pi)=S\right.$, $\max (\pi)=T, \operatorname{cr}(\pi)=i, \operatorname{ne}(\pi)=j\}$.
Theorem. $f_{n, S, T}(i, j)=f_{n, S, T}(j, i)$

Main tool: vacillating tableaux.

Label points i with a pair $a_{i} b_{i}$ from right-to-left.

For arcs or singletons $i j$ with $i \leq j$, $a_{j}=1,2, \ldots, n$ in order from right-toleft.

$$
b_{i}=a_{j}
$$

Otherwise $a_{i}=b_{i}$.

Begin with empty tableaux $\boldsymbol{T}_{0}=\emptyset$.
Scan numbers $a_{1} b_{1} a_{2} b_{2} \cdots a_{n} b_{n}$ left-to-right. At each step either RSK-insert, delete, or do nothing:

*: do nothing

$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 12 & 12 & 12 & 1 & 1 & \emptyset & \emptyset\end{array}$ $\begin{array}{lllll}3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & & \end{array}$

Remember only the shapes：

ф申ロロロロ『日日日

目目日ロロロロロゆ

This gives a vacillating tableau or gently enhanced Sunday tableau of length $2 n$ and shape \emptyset, viz., a sequence

$$
\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right)
$$

of shapes such that

- $\lambda^{2 i+1}=\lambda^{2 i}$ or $\lambda^{2 i}-\square$
- $\lambda^{2 i}=\lambda^{2 i-1}$ or $\lambda^{2 i-1}+\square$
(Always $\left.\lambda^{1}=\lambda^{2 n-1}=\emptyset.\right)$

Theorem. The above correspondence is a bijection from partitions of [n] and vacillating tableaux of length $2 n$ and shape \emptyset.

Note. Let $\boldsymbol{P}(\boldsymbol{n})$ be the partition algebra (Martin, Doran, Wales, Halverson, Ram, ...), a semisimple \mathbb{C}-algebra satisfying

$$
\operatorname{dim} P(n)=B(n),
$$

the number of partitions of $[n]$ (Bell number).

Implicit in theory of $P(n)$: Irreps I_{n} of $P(n)$ indexed by λ for which there is a vacillating tableaux

$$
\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset
$$

with $\lambda^{n}=\lambda$, and $\operatorname{dim} I_{n}$ is the number of such vacillating tableaux.

$\boldsymbol{U}=$ "add a square" operator $\boldsymbol{D}=$ "remove a square" operator.

standard Young tableaux: U oscillating tableaux: $U+D$
vacillating tableaux: $(U+I)(D+I)$

Theorem. Let $\pi \in \Pi_{n}$ and

$$
\pi \rightarrow\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right) .
$$

Then $\operatorname{cr}(\pi)$ is the most number of rows in any λ^{i}, and ne (π) is the most number of columns in any λ^{i}.

Compare: $\left(^{*}\right)$ if $w \in \mathfrak{S}_{n}$ and

$$
w \xrightarrow{\mathrm{RSK}}(P, Q),
$$

then the number of columns of P is the length of the longest increasing subsequence of w (easy), and the number of rows of P is the length of the longest decreasing subsequence of w (harder).

In fact, proof of above theorem uses $\left.{ }^{*}\right)$.

Corollary to previous theorem:
Theorem. $f_{n, S, T}(i, j)=f_{n, S, T}(j, i)$
Proof. Let

$$
\begin{aligned}
\pi & \rightarrow\left(\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}\right) \\
\pi^{\prime} & \rightarrow\left(\left(\lambda^{0}\right)^{\prime},\left(\lambda^{1}\right)^{\prime}, \ldots,\left(\lambda^{2 n}\right)^{\prime}\right) .
\end{aligned}
$$

Then $\operatorname{cr}(\pi)=\operatorname{ne}\left(\pi^{\prime}\right), \operatorname{ne}(\pi)=\operatorname{cr}\left(\pi^{\prime}\right)$,
$S(\pi)=S\left(\pi^{\prime}\right), T(\pi)=T\left(\pi^{\prime}\right)$, etc. \square

Enumeration of k-noncrossing

 matchings (or nestings).Recall: The number of matchings M on $[2 n]$ with no crossings, i.e., $\operatorname{cr}(M)=$ 1, (or with no nestings) is $\boldsymbol{C}_{\boldsymbol{n}}=\frac{1}{n+1}\binom{2 n}{n}$.

What about the number with $\operatorname{cr}(M) \leq$ k ?

Let $M \rightarrow V$, where V is a vacillating tableau. Remove all steps that do nothing. We obtain an oscillating tableau

$$
\left(\emptyset=\mu^{0}, \mu^{1}, \ldots, \mu^{2 n}=\emptyset\right)
$$

of length $2 n$ and shape \emptyset, i.e.,

$$
\mu^{0}=\mu^{2 n}=\emptyset, \mu^{i+1}=\mu^{i} \pm \square .
$$

This gives a (well-known) bijection between matchings on $[2 n]$ and oscillating tableaux of length $2 n$ and shape \emptyset.

$$
\operatorname{cr}(M) \leq k \Leftrightarrow \ell(\mu) \leq k \forall i
$$

$\operatorname{Regard} \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \in \mathbb{N}^{k}$.
Corollary. The number $f_{k}(n)$ of matchings M on [2n] with $\operatorname{cr}(M) \leq$ k is the number of lattice paths of length $2 n$ from $\mathbf{0}$ to $\mathbf{0}$ in the region $\mathcal{C}_{n}:=\left\{\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{k}: a_{1} \leq \cdots \leq a_{k}\right\}$ with steps $\pm e_{i}$ ($e_{i}=i$ th unit coordinate vector).
$\mathcal{C}_{n} \otimes \mathbb{R}_{\geq 0}$ is a fundamental chamber for the Weyl group of type B_{k}.

Grabiner-Magyar: applied GesselZeilberger reflection principle to solve this lattice path problem (not knowing connection with matchings).

Theorem. Define

$$
\boldsymbol{F}_{\boldsymbol{k}}(\boldsymbol{x})=\sum_{n} f_{k}(n) \frac{x^{2 n}}{(2 n)!} .
$$

Then
$F_{k}(x)=\operatorname{det}\left[I_{|i-j|}(2 x)-I_{i+j}(2 x)\right]_{i, j=1}^{k}$
where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!}
$$

(hyperbolic Bessel function of the first kind of order m).

Example. $k=1$ (noncrossing matchings):

$$
\begin{aligned}
F_{1}(x) & =I_{0}(2 x)-I_{2}(2 x) \\
& =\sum_{j \geq 0} C_{j} \frac{x^{2 j}}{(2 j)!} .
\end{aligned}
$$

Compare:

$u_{k}(\boldsymbol{n}):=\#\left\{w \in \mathfrak{S}_{n}:\right.$ longest increasing subsequence of length $\leq k\}$.
$\sum_{n \geq 0} u_{k}(n) \frac{x^{2 n}}{n!^{2}}=\operatorname{det}\left[I_{i-j}(2 x)\right]_{i, j=1}^{k}$.
Many similar formulas involving RSK for classical groups.

$$
\begin{gathered}
g_{j, k}(\boldsymbol{n}):=\#\{\text { matchings } M \text { on }[2 n], \\
\operatorname{cr}(M) \leq j, \operatorname{ne}(M) \leq k\}
\end{gathered}
$$

Now
$g_{j, k}(n)=\#\left\{\left(\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{2 n}=\emptyset\right):\right.$
$\lambda^{i+1}=\lambda^{i} \pm \square, \lambda^{i} \subseteq j \times k$ rectangle $\}$, a walk on the Hasse diagram $\mathcal{H}(\boldsymbol{j}, \boldsymbol{k})$ of
$L(j, k):=\{\lambda \subseteq j \times k$ rectangle $\}$,
ordered by inclusion.

$\boldsymbol{A}=$ adjacency matrix of $\mathcal{H}(j, k)$
$\boldsymbol{A}_{0}=$ adjacency matrix of $\mathcal{H}(j, k)-\{\emptyset\}$.
Transfer-matrix method \Rightarrow

$$
\sum_{n \geq 0} g_{j, k}(n) x^{2 n}=\frac{\operatorname{det}\left(I-x A_{0}\right)}{\operatorname{det}(I-x A)}
$$

Conjecture. $\operatorname{det}(I-x A)$ factors into polynomials of "small" degree over \mathbb{Q}.

Example. $j=2, k=5$:

$$
\begin{aligned}
& \operatorname{det}(I-x A)=\left(1-2 x^{2}\right)\left(1-4 x^{2}+2 x^{4}\right) \\
& \left(1-8 x^{2}+8 x^{4}\right)\left(1-8 x^{2}+8 x^{3}-2 x^{4}\right) \\
& \quad\left(1-8 x^{2}-8 x^{3}-2 x^{4}\right) \\
& j=k=3: \\
& \operatorname{det}(I-x A)=(1-x)(1+x)\left(1+x-9 x^{2}-x^{3}\right) \\
& \left(1-x-9 x^{2}+x^{3}\right)\left(1-x-2 x^{2}+x^{3}\right)^{2} \\
& \left(1+x-2 x^{2}-x^{3}\right)^{2}
\end{aligned}
$$

Variations. Can modify the insertiondeletion algorithm for vacillating tableaux so that:

- Isolated points can belong to a nesting.
- Arcs touching at their endpoints can be part of a crossing.

