
1



Joint with:

Bill Chen �
�

Eva Deng ���

Rosena Du ���

Catherine Yan 	��

2



(complete) matching:

crossing:   

nesting:  

Theorem. The number of match-
ings on [2n] with no crossings (or with
no nestings) is

Cn =
1

n + 1

(

2n

n

)

.
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Recall:

Cn = #{a1 · · · a2n : ai = ±1,

a1 + · · · + ai ≥ 0,
∑

ai = 0}

(ballot sequence).

1 1 1 −1 −1 1 −1−1

1 1 −1 1 −1 −1 1 −1
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3−nesting

3−crossing

M = matching

cr(M ) = max{k : ∃ k-crossing}

ne(M ) = max{k : ∃ k-nesting}.

Theorem. Let fn(i, j) = # match-
ings M on [2n] with cr(M ) = i and
ne(M ) = j. Then fn(i, j) = fn(j, i).

Corollary. # matchings M on [2n]
with cr(M ) = k equals # matchings
M on [2n] with ne(M ) = k.
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Partitions (of the set [n]).

1 2 3 4 5 6

π = 145 − 26 − 3

3−crossing

3−nesting
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2−crossing

2−nesting
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π = set partition

cr(π) = max{k : ∃ k-crossing}

ne(π) = max{k : ∃ k-nesting}.

Theorem. Let gn(i, j) = # par-
titions π of [n] with cr(M ) = i and
ne(M ) = j. Then

gn(i, j) = gn(j, i).
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A common generalization. Given
π ∈ Πn, define:

min(π) = {minimal block elements of π}

max(π) = {maximal block elements of π}

min(135 − 26 − 4) = {1, 2, 4}

max(135 − 26 − 4) = {4, 5, 6}.

Note. (min(π), max(π)) determines num-
ber of blocks of π, number of singleton
blocks, whether π is a matching, . . ..

Fix S, T ⊆ [n], #S = #T .

fn,S,T (i, j) = #{π ∈ Πn : min(π) = S,

max(π) = T, cr(π) = i, ne(π) = j}.

Theorem. fn,S,T (i, j) = fn,S,T (j, i)
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Main tool: vacillating tableaux.

Label points i with a pair aibi from
right-to-left.

For arcs or singletons ij with i ≤ j,
aj = 1, 2, . . . , n in order from right-to-
left.

bi = aj

Otherwise ai = bi.

1122334255116336644 6
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Begin with empty tableaux T0 = ∅.

Scan numbers a1b1a2b2 · · · anbn left-
to-right. At each step either RSK-insert,
delete, or do nothing:

* +i
i i i i

−i *
i i
* * −i +j

i j

∗: do nothing
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44 66 33 66 11 55 42 33 22 11

∅ ∅ 4 4 4 6 4 6 3 6 3 3 3
4 4 4 4

1 1 1 1 1 2 1 2 1 2 1 1 ∅ ∅
3 3 3 3 3
4 4 4

Remember only the shapes:

φφ

φ φ
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This gives a vacillating tableau or
gently enhanced Sunday tableau
of length 2n and shape ∅, viz., a se-
quence

(∅ = λ0, λ1, . . . , λ2n = ∅)

of shapes such that

• λ2i+1 = λ2i or λ2i − ✷

• λ2i = λ2i−1 or λ2i−1 + ✷

(Always λ1 = λ2n−1 = ∅.)
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Theorem. The above correspon-
dence is a bijection from partitions of
[n] and vacillating tableaux of length
2n and shape ∅.

Note. Let P (n) be the partition
algebra (Martin, Doran, Wales, Halver-
son, Ram, . . .), a semisimple C-algebra
satisfying

dim P (n) = B(n),

the number of partitions of [n] (Bell
number).

Implicit in theory of P (n): Irreps In

of P (n) indexed by λ for which there is
a vacillating tableaux

∅ = λ0, λ1, . . . , λ2n = ∅

with λn = λ, and dim In is the number
of such vacillating tableaux.
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U = “add a square” operator

D = “remove a square” operator.

standard Young tableaux: U

oscillating tableaux: U + D

vacillating tableaux: (U + I)(D + I)
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Theorem. Let π ∈ Πn and

π → (∅ = λ0, λ1, . . . , λ2n = ∅).

Then cr(π) is the most number of rows
in any λi, and ne(π) is the most num-
ber of columns in any λi.

Compare: (*) if w ∈ Sn and

w
RSK
−→ (P,Q),

then the number of columns of P is the
length of the longest increasing subse-
quence of w (easy), and the number of
rows of P is the length of the longest
decreasing subsequence of w (harder).

In fact, proof of above theorem uses
(*).
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Corollary to previous theorem:

Theorem. fn,S,T (i, j) = fn,S,T (j, i)

Proof. Let

π → (λ0, λ1, . . . , λ2n)

π′ → ((λ0)′, (λ1)′, . . . , (λ2n)′).

Then cr(π) = ne(π′), ne(π) = cr(π′),
S(π) = S(π′), T (π) = T (π′), etc. ✷
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Enumeration of k-noncrossing
matchings (or nestings).

Recall: The number of matchings M

on [2n] with no crossings, i.e., cr(M ) =

1, (or with no nestings) is Cn = 1
n+1

(2n
n

)

.

What about the number with cr(M ) ≤
k?

Let M → V , where V is a vacil-
lating tableau. Remove all steps that
do nothing. We obtain an oscillating
tableau

(∅ = µ0, µ1, . . . , µ2n = ∅)

of length 2n and shape ∅, i.e.,

µ0 = µ2n = ∅, µi+1 = µi ± ✷.
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This gives a (well-known) bijection be-
tween matchings on [2n] and oscillating
tableaux of length 2n and shape ∅.

cr(M ) ≤ k ⇔ ℓ(µ) ≤ k ∀i

Regard µ = (µ1, . . . , µk) ∈ Nk.

Corollary. The number fk(n) of
matchings M on [2n] with cr(M ) ≤
k is the number of lattice paths of
length 2n from 0 to 0 in the region

Cn := {(a1, . . . , ak) ∈ Nk : a1 ≤ · · · ≤ ak}

with steps ±ei (ei = ith unit coordi-
nate vector).

Cn ⊗ R≥0 is a fundamental chamber
for the Weyl group of type Bk.
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Grabiner-Magyar: applied Gessel-
Zeilberger reflection principle to
solve this lattice path problem (not know-
ing connection with matchings).

Theorem. Define

Fk(x) =
∑

n

fk(n)
x2n

(2n)!
.

Then

Fk(x) = det
[

I|i−j|(2x) − Ii+j(2x)
]k

i,j=1

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!

(hyperbolic Bessel function of the
first kind of order m).
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Example. k = 1 (noncrossing match-
ings):

F1(x) = I0(2x) − I2(2x)

=
∑

j≥0

Cj
x2j

(2j)!
.

Compare:

uk(n) := #{w ∈ Sn : longest increasing

subsequence of length ≤ k}.
∑

n≥0

uk(n)
x2n

n!2
= det

[

Ii−j(2x)
]k
i,j=1 .

Many similar formulas involving RSK
for classical groups.
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gj,k(n) := #{matchings M on [2n],

cr(M ) ≤ j, ne(M ) ≤ k}

Now

gj,k(n) = #{(∅ = λ0, λ1, . . . , λ2n = ∅) :

λi+1 = λi ±✷, λi ⊆ j × k rectangle},

a walk on the Hasse diagram H(j, k)
of

L(j, k) := {λ ⊆ j × k rectangle},

ordered by inclusion.
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L(2,3)
φ
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A = adjacency matrix of H(j, k)

A0 = adjacency matrix of H(j, k) − {∅}.

Transfer-matrix method ⇒
∑

n≥0

gj,k(n)x2n =
det(I − xA0)

det(I − xA)
.

Conjecture. det(I − xA) factors
into polynomials of “small” degree over
Q.
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Example. j = 2, k = 5:

det(I−xA) = (1−2x2)(1−4x2 +2x4)

(1−8x2+8x4)(1−8x2+8x3−2x4)

(1 − 8x2 − 8x3 − 2x4)

j = k = 3:

det(I−xA) = (1−x)(1+x)(1+x−9x2−x3)

(1−x−9x2+x3)(1−x−2x2+x3)2

(1 + x − 2x2 − x3)2
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Variations. Can modify the insertion-
deletion algorithm for vacillating tableaux
so that:

• Isolated points can belong to a nest-
ing.

• Arcs touching at their endpoints can
be part of a crossing.
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