A Survey of Parking Functions

Richard P. Stanley
U. Miami \& M.I.T.

November 24, 2018

A parking scenario

A parking scenario

Parking functions

Car C_{i} prefers space a_{i}. If a_{i} is occupied, then C_{i} takes the next available space. We call $\left(a_{1}, \ldots, a_{n}\right)$ a parking function (of length n) if all cars can park.

Small examples

$$
\begin{array}{lllllllll}
n=2: & 11 & 12 & 21 & & & & & \\
n=3: & 111 & 112 & 121 & 211 & 113 & 131 & 311 & 122 \\
212 & 221 & 123 & 132 & 213 & 231 & 312 & 321
\end{array}
$$

Parking function characterization

Easy: Let $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$. Let $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be the increasing rearrangement of α. Then α is a parking function if and only $b_{i} \leq i$.

Corollary. Every permutation of the entries of a parking function is also a parking function.

Enumeration of parking functions

Theorem (Pyke, 1959; Konheim and Weiss, 1966). Let $f(n)$ be the number of parking functions of length n. Then $f(n)=(n+1)^{n-1}$.

Proof (Pollak, c. 1974). Add an additional space $n+1$, and arrange the spaces in a circle. Allow $n+1$ also as a preferred space.

Pollak's proof

Conclusion of Pollak's proof

Now all cars can park, and there will be one empty space. α is a parking function \Leftrightarrow if the empty space is $n+1$. If $\alpha=\left(a_{1}, \ldots, a_{n}\right)$ leads to car C_{i} parking at space p_{i}, then $\left(a_{1}+j, \ldots, a_{n}+j\right)$ (modulo $n+1$) will lead to car C_{i} parking at space $p_{i}+j$. Hence exactly one of the vectors

$$
\left(a_{1}+i, a_{2}+i, \ldots, a_{n}+i\right)(\text { modulo } n+1)
$$

is a parking function, so

$$
f(n)=\frac{(n+1)^{n}}{n+1}=(n+1)^{n-1}
$$

Prime parking functions

Definition (I. Gessel). A parking function is prime if it remains a parking function when we delete a 1 from it.

Note. A sequence $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is an increasing parking function if and only if $1 \leq b_{1} \leq \cdots \leq b_{n}$ is an increasing prime parking function.

Factorization of increasing PF's

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10
\end{array}
$$

Factorization of increasing PF's

$$
\begin{array}{|cc|cccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10
\end{array}
$$

Factorization of increasing PF's

$$
\begin{array}{cc|c|cccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
& \rightarrow(1,1),(1,1,2,2),(1),(1,1,2,3)
\end{array}
$$

Factorization of increasing PF's

$$
\begin{array}{cc|c|cccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
& \rightarrow(1,1),(1,1,2,2),(1),(1,1,2,3)
\end{array}
$$

$\boldsymbol{p}(\boldsymbol{n})$: number of prime parking functions of length n

$$
\sum_{n \geq 0}(n+1)^{n-1} \frac{x^{n}}{n!}=\frac{1}{1-\sum_{n \geq 1} p(n) \frac{x^{n}}{n!}}
$$

Factorization of increasing PF's

$$
\begin{array}{cc|c|cccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
& \rightarrow(1,1),(1,1,2,2),(1),(1,1,2,3)
\end{array}
$$

$\boldsymbol{p}(\boldsymbol{n})$: number of prime parking functions of length n

$$
\sum_{n \geq 0}(n+1)^{n-1} \frac{x^{n}}{n!}=\frac{1}{1-\sum_{n \geq 1} p(n) \frac{x^{n}}{n!}}
$$

Corollary. $p(n)=(n-1)^{n-1}$

Factorization of increasing PF's

$$
\begin{array}{cc|c|cccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10 \\
& \rightarrow(1,1),(1,1,2,2),(1),(1,1,2,3)
\end{array}
$$

$\boldsymbol{p}(\boldsymbol{n})$: number of prime parking functions of length n

$$
\sum_{n \geq 0}(n+1)^{n-1} \frac{x^{n}}{n!}=\frac{1}{1-\sum_{n \geq 1} p(n) \frac{x^{n}}{n!}}
$$

Corollary. $p(n)=(n-1)^{n-1}$
Exercise. Find a "parking" proof.

Forests

Let F be a rooted forest on the vertex set $\{1, \ldots, n\}$.

Theorem (Sylvester-Borchardt-Cayley). The number of such forests is $(n+1)^{n-1}$.

The case $n=3$

A bijection between forests and parking functions

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 1 & 6 & 2 & 1 & 1 & 4 & 6 & 4
\end{array}
$$

Inversions

An inversion in F is a pair (i, j) so that $i>j$ and i lies on the path from j to the root.

$$
\operatorname{inv}(F)=\# \text { (inversions of } F)
$$

Inversions

An inversion in F is a pair (i, j) so that $i>j$ and i lies on the path from j to the root.

$$
\operatorname{inv}(F)=\#(\text { inversions of } F)
$$

Inversions:
$(5,4),(5,2),(12,4),(12,8),(3,1),(10,1),(10,6),(10,9)$

$$
\operatorname{inv}(F)=8
$$

The inversion enumerator

Let

$$
I_{n}(q)=\sum_{F} q^{\operatorname{inv}(F)}
$$

summed over all forests F with vertex set $\{1, \ldots, n\}$. E.g.,

$$
\begin{aligned}
& I_{1}(q)=1 \\
& I_{2}(q)=2+q \\
& I_{3}(q)=6+6 q+3 q^{2}+q^{3}
\end{aligned}
$$

The inversion enumerator

Let

$$
I_{n}(q)=\sum_{F} q^{\operatorname{inv}(F)}
$$

summed over all forests F with vertex set $\{1, \ldots, n\}$. E.g.,

$$
\begin{aligned}
& I_{1}(q)=1 \\
& I_{2}(q)=2+q \\
& I_{3}(q)=6+6 q+3 q^{2}+q^{3}
\end{aligned}
$$

Theorem (Mallows-Riordan 1968, Gessel-Wang 1979) We have

$$
I_{n}(1+q)=\sum_{G} q^{e(G)-n}
$$

where G ranges over all connected graphs (without loops or multiple edges) on $n+1$ labelled vertices, and where $e(G)$ denotes the number of edges of G.

Generating function

Corollary.

$$
\sum_{n \geq 0} I_{n}(q)(q-1)^{n} \frac{x^{n}}{n!}=\frac{\sum_{n \geq 0} q^{\binom{n+1}{2}} \frac{x^{n}}{n!}}{\sum_{n \geq 0} q^{\binom{n}{2}} \frac{x^{n}}{n!}}
$$

Connection with parking functions

Theorem (Kreweras, 1980) We have

$$
q^{\binom{n}{2}} I_{n}(1 / q)=\sum_{\left(a_{1}, \ldots, a_{n}\right)} q^{a_{1}+\cdots+a_{n}},
$$

where $\left(a_{1}, \ldots, a_{n}\right)$ ranges over all parking functions of length n.

Connection with parking functions

Theorem (Kreweras, 1980) We have

$$
q^{\binom{n}{2}} I_{n}(1 / q)=\sum_{\left(a_{1}, \ldots, a_{n}\right)} q^{a_{1}+\cdots+a_{n}},
$$

where $\left(a_{1}, \ldots, a_{n}\right)$ ranges over all parking functions of length n.
Note. The earlier bijection between forests and parking functions does not send the number of inversions to the sum of the terms. Such a bijection is more complicated.

The Shi arrangement: background

Braid arrangement \mathcal{B}_{n} : the set of hyperplanes

$$
x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n,
$$

in \mathbb{R}^{n}.

$$
\begin{aligned}
\mathcal{R} & =\text { set of regions of } \mathcal{B}_{n} \\
\# \mathcal{R} & =? ?
\end{aligned}
$$

The Shi arrangement: background

Braid arrangement \mathcal{B}_{n} : the set of hyperplanes

$$
x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n,
$$

in \mathbb{R}^{n}.

$$
\begin{aligned}
\mathcal{R} & =\text { set of regions of } \mathcal{B}_{n} \\
\# \mathcal{R} & =n!
\end{aligned}
$$

The Shi arrangement: background

Braid arrangement \mathcal{B}_{n} : the set of hyperplanes

$$
x_{i}-x_{j}=0, \quad 1 \leq i<j \leq n,
$$

in \mathbb{R}^{n}.

$$
\begin{aligned}
\mathcal{R} & =\text { set of regions of } \mathcal{B}_{n} \\
\# \mathcal{R} & =n!
\end{aligned}
$$

To specify a region, we must specify for each $i<j$ whether $x_{i}<x_{j}$ or $x_{i}>x_{j}$. Hence the number of regions is the number of ways to linearly order x_{1}, \ldots, x_{n}.

Labeling the regions

Let R_{0} be the base region

$$
R_{0}: x_{1}>x_{2}>\cdots>x_{n} .
$$

Labeling the regions

Let R_{0} be the base region

$$
R_{0}: x_{1}>x_{2}>\cdots>x_{n}
$$

Label R_{0} with

$$
\lambda\left(R_{0}\right)=(1,1, \ldots, 1) \in \mathbb{Z}^{n}
$$

If R is labelled, R^{\prime} is separated from R only by $x_{i}-x_{j}=0(i<j)$, and R^{\prime} is unlabelled, then set

$$
\lambda\left(R^{\prime}\right)=\lambda(R)+e_{i}
$$

where $\boldsymbol{e}_{\boldsymbol{i}}=i$ th unit coordinate vector.

The labeling rule

Description of labels

Description of labels

Theorem (easy). The labels of \mathcal{B}_{n} are the sequences $\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{Z}^{n}$ such that $1 \leq b_{i} \leq n-i+1$.

The Shi arrangement

Shi Jianyi

The Shi arrangement

Shi Jianyi（时俭益）

The Shi arrangement

Shi Jianyi（时俭益）

Shi arrangement \mathcal{S}_{n} ：the set of hyperplanes

$$
x_{i}-x_{j}=0,1,
$$

$1 \leq i<j \leq n, \quad$ in \mathbb{R}^{n}.

The case $n=3$

Labeling the regions

base region:

$$
R_{0}: \quad x_{n}+1>x_{1}>\cdots>x_{n}
$$

Labeling the regions

base region:

$$
R_{0}: \quad x_{n}+1>x_{1}>\cdots>x_{n}
$$

$$
-\lambda\left(R_{0}\right)=(1,1, \ldots, 1) \in \mathbb{Z}^{n}
$$

The labeling rule

- If R is labelled, R^{\prime} is separated from R only by $x_{i}-x_{j}=0$ ($i<j$), and R^{\prime} is unlabelled, then set

$$
\lambda\left(R^{\prime}\right)=\lambda(R)+e_{i}
$$

- If R is labelled, R^{\prime} is separated from R only by $x_{i}-x_{j}=1$ ($i<j$), and R^{\prime} is unlabelled, then set

$$
\lambda\left(R^{\prime}\right)=\lambda(R)+e_{j}
$$

The labeling rule illustrated

The labeling for $n=3$

Description of the labels

Theorem (Pak, S.). The labels of \mathcal{S}_{n} are the parking functions of length n (each occurring once).

Description of the labels

Theorem (Pak, S.). The labels of \mathcal{S}_{n} are the parking functions of length n (each occurring once).

Corollary (Shi, 1986).

$$
r\left(\mathcal{S}_{n}\right)=(n+1)^{n-1}
$$

The parking function polytope

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}_{\geq 0}$, define $P_{n}=P\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n}$ by:
$\left(y_{1}, \ldots, y_{n}\right) \in P_{n}$ if

$$
0 \leq y_{i}, \quad y_{1}+\cdots+y_{i} \leq x_{1}+\cdots+x_{i}
$$

for $1 \leq i \leq n$.

The parking function polytope

Given $x_{1}, \ldots, x_{n} \in \mathbb{R}_{\geq 0}$, define $P_{n}=P\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n}$ by:
$\left(y_{1}, \ldots, y_{n}\right) \in P_{n}$ if

$$
0 \leq y_{i}, \quad y_{1}+\cdots+y_{i} \leq x_{1}+\cdots+x_{i}
$$

for $1 \leq i \leq n$.
(also called Pitman-Stanley polytope)

Volume of P

Theorem. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}_{\geq 0}$. Then

$$
n!V\left(P_{n}\right)=\sum_{\substack{\text { parking functions } \\\left(i_{1}, \ldots, i_{n}\right)}} x_{i_{1}} \cdots x_{i_{n}} .
$$

Volume of P

Theorem. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}_{\geq 0}$. Then

$$
n!V\left(P_{n}\right)=\sum_{\substack{\text { parking functions } \\\left(i_{1}, \ldots, i_{n}\right)}} x_{i_{1}} \cdots x_{i_{n}} .
$$

Note. If each $x_{i}>0$, then P_{n} has the combinatorial type of an n-cube.

The case $n=2$

Noncrossing partitions

A noncrossing partition of $\{1,2, \ldots, n\}$ is a partition $\left\{B_{1}, \ldots, B_{k}\right\}$ of $\{1, \ldots, n\}$ such that

$$
a<b<c<d, a, c \in B_{i}, b, d \in B_{j} \Rightarrow i=j
$$

$\left(B_{i} \neq \emptyset, B_{i} \cap B_{j}=\emptyset\right.$ if $\left.i \neq j, \bigcup B_{i}=\{1, \ldots, n\}\right)$

Number of noncrossing partitions

Number of noncrossing partitions

Theorem (H. W. Becker, 1948-49). The number of noncrossing partitions of $\{1, \ldots, n\}$ is the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Catalan numbers

214 combinatorial interpretations:

Maximal chains of noncrossing partitions

A maximal chain \mathfrak{m} of noncrossing partitions of $\{1, \ldots, n+1\}$ is a sequence

$$
\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{n}
$$

of noncrossing partitions of $\{1, \ldots, n+1\}$ such that π_{i} is obtained from π_{i-1} by merging two blocks into one. (Hence π_{i} has exactly $n+1-i$ blocks.)

Maximal chains of noncrossing partitions

A maximal chain \mathfrak{m} of noncrossing partitions of $\{1, \ldots, n+1\}$ is a sequence

$$
\pi_{0}, \pi_{1}, \pi_{2}, \ldots, \pi_{n}
$$

of noncrossing partitions of $\{1, \ldots, n+1\}$ such that π_{i} is obtained from π_{i-1} by merging two blocks into one. (Hence π_{i} has exactly $n+1-i$ blocks.)

$$
1-2-3-4-5 \quad 1-25-3-4 \quad 1-25-34
$$

125-34 12345

A maximal chain labeling

Define:

$$
\min \mathrm{B}=\text { least element of } B
$$

$$
\mathrm{j}<\mathrm{B}: j<k \quad \forall k \in B
$$

Suppose π_{i} is obtained from π_{i-1} by merging together blocks B and B^{\prime}, with $\min B<\min B^{\prime}$. Define

$$
\begin{aligned}
\Lambda_{i}(\mathfrak{m}) & =\max \left\{j \in B: j<B^{\prime}\right\} \\
\Lambda(\mathfrak{m}) & =\left(\Lambda_{1}(\mathfrak{m}), \ldots, \Lambda_{n}(\mathfrak{m})\right)
\end{aligned}
$$

A maximal chain labeling

Define:

$$
\min B=\text { least element of } B
$$

$$
\mathrm{j}<\mathrm{B}: j<k \quad \forall k \in B .
$$

Suppose π_{i} is obtained from π_{i-1} by merging together blocks B and B^{\prime}, with $\min B<\min B^{\prime}$. Define

$$
\begin{aligned}
\Lambda_{i}(\mathfrak{m}) & =\max \left\{j \in B: j<B^{\prime}\right\} \\
\Lambda(\mathfrak{m}) & =\left(\Lambda_{1}(\mathfrak{m}), \ldots, \Lambda_{n}(\mathfrak{m})\right)
\end{aligned}
$$

For above example:

$$
\begin{gathered}
1-2-3-4-5 \quad 1-25-3-4 \quad 1-25-34 \\
125-34 \quad 12345
\end{gathered}
$$

we have

$$
\Lambda(\mathfrak{m})=(2,3,1,2) .
$$

Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of noncrossing partitions of $\{1, \ldots, n+1\}$ and parking functions of length n.

Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of noncrossing partitions of $\{1, \ldots, n+1\}$ and parking functions of length n.

Corollary (Kreweras, 1972) The number of maximal chains of noncrossing partitions of $\{1, \ldots, n+1\}$ is

$$
(n+1)^{n-1}
$$

The parking function $\mathfrak{S}_{\boldsymbol{n}}$-module

The symmetric group $\mathfrak{S}_{\boldsymbol{n}}$ acts on the set $\mathcal{P}_{\boldsymbol{n}}$ of all parking functions of length n by permuting coordinates.

Sample properties

- Multiplicity of trivial representation (number of orbits) $=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
n=3: \quad 111 \quad 211 \quad 221 \quad 311 \quad 321
$$

Sample properties

- Multiplicity of trivial representation (number of orbits) $=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
n=3: \quad 111 \quad 211 \quad 221 \quad 311 \quad 321
$$

- Number of elements of \mathcal{P}_{n} fixed by $w \in \mathfrak{S}_{n}$ (character value at w):

$$
\# \operatorname{Fix}(w)=(n+1)^{(\# \text { cycles of } w)-1}
$$

Sample properties

- Multiplicity of trivial representation (number of orbits)

$$
=C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

$$
n=3: \quad 111 \quad 211 \quad 221 \quad 311 \quad 321
$$

- Number of elements of \mathcal{P}_{n} fixed by $w \in \mathfrak{S}_{n}$ (character value at w):

$$
\# \operatorname{Fix}(w)=(n+1)^{(\# \text { cycles of } w)-1}
$$

- Multiplicity of the irreducible representation indexed by $\lambda \vdash n$: $\frac{1}{n+1} s_{\lambda}\left(1^{n+1}\right)$

Background: invariants of $\mathfrak{S}_{\boldsymbol{n}}$

The group \mathfrak{S}_{n} acts on $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables, i.e., $w \cdot x_{i}=x_{w(i)}$. Let

$$
R^{\mathfrak{S}_{n}}=\left\{f \in R: w \cdot f=f \text { for all } w \in \mathfrak{S}_{n}\right\}
$$

Background: invariants of \mathfrak{S}_{n}

The group \mathfrak{S}_{n} acts on $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables, i.e., $w \cdot x_{i}=x_{w(i)}$. Let

$$
R^{\mathfrak{S}_{n}}=\left\{f \in R: w \cdot f=f \text { for all } w \in \mathfrak{S}_{n}\right\} .
$$

Well-known:

$$
R^{\mathfrak{S}_{n}}=\mathbb{C}\left[e_{1}, \ldots, e_{n}\right]
$$

where

$$
\boldsymbol{e}_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

The coinvariant algebra

$R_{+}^{\mathfrak{S}_{n}}$: symmetric functions with 0 constant term (irrelevant ideal of $R^{\mathfrak{S}_{n}}$)

$$
D:=R /\left(R_{+}^{\mathfrak{S}_{n}}\right)=R /\left(e_{1}, \ldots, e_{n}\right)
$$

Then $\operatorname{dim} D=n!$, and \mathfrak{S}_{n} acts on D according to the regular representation.

Diagonal action of \mathfrak{S}_{n}

Now let \mathfrak{S}_{n} act diagonally on

$$
R=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

i.e,

$$
w \cdot x_{i}=x_{w(i)}, \quad w \cdot y_{i}=y_{w(i)}
$$

As before, let

$$
\begin{aligned}
R^{\mathfrak{S}_{n}} & =\left\{f \in R: w \cdot f=f \text { for all } w \in \mathfrak{S}_{n}\right\} \\
D & =R /\left(R_{+}^{\mathfrak{S}_{n}}\right)
\end{aligned}
$$

Haiman's theorem

Theorem (Haiman, 1994, 2001). $\operatorname{dim} D=(n+1)^{n-1}$, and the action of \mathfrak{S}_{n} on D is isomorphic to the action on \mathcal{P}_{n}, tensored with the sign representation.

Haiman's theorem

Theorem (Haiman, 1994, 2001). $\operatorname{dim} D=(n+1)^{n-1}$, and the action of \mathfrak{S}_{n} on D is isomorphic to the action on \mathcal{P}_{n}, tensored with the sign representation.

Connections with Macdonald polynomials, Hilbert scheme of points in the plane, etc.

The last slide

The last slide

