Increasing and Decreasing Subsequences

Richard P. Stanley
U. Miami \& M.I.T.

December 3, 2018

Definitions

$$
\begin{gathered}
318496725 \quad \text { (i.s) } \\
318496725 \quad \text { (d.s) } \\
\text { is }(w)=\mid \text { longest i.s. } \mid=4 \\
\operatorname{ds}(w)=\mid \text { longest d.s. } \mid=3
\end{gathered}
$$

Application: airplane boarding

Naive model: passengers board in order $w=a_{1} a_{2} \cdots a_{n}$ for seats $1,2, \ldots, n$. Each passenger takes one time unit to be seated after arriving at his seat.

Boarding process

Boarding process

Boarding process

Boarding process

Results

Easy: Total waiting time $=$ is (w).
Bachmat, et al.: more sophisticated model.

Results

Easy: Total waiting time $=$ is (w).
Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) not much better than random.
- Better: first board window seats, then center, then aisle.

Results

Easy: Total waiting time $=$ is (w).
Bachmat, et al.: more sophisticated model.

Two conclusions:

- Usual system (back-to-front) not much better than random.
- Better: first board window seats, then center, then aisle.

United Airlines recently switched to window-middle-aisle.

Partitions

partition $\lambda \vdash n: \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$

$$
\begin{gathered}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0 \\
\sum \lambda_{i}=n
\end{gathered}
$$

Young diagrams

(Young) diagram of $\lambda=(4,4,3,1)$:

Conjugate partitions

$\lambda^{\prime}=(4,3,3,2)$, the conjugate partition to $\lambda=(4,4,3,2)$

λ

λ^{\prime}

Standard Young tableau

standard Young tableau (SYT) of shape $\lambda \vdash n$, e.g.,
$\lambda=(4,4,3,1)$:

$\boldsymbol{f}^{\lambda}=\#$ of SYT of shape λ
E.g., $f^{(3,2)}=5$:

123	124	125	134	135
45	35	34	25	24

$$
\begin{aligned}
& f^{\lambda}=\# \text { of SYT of shape } \lambda \\
& \text { E.g., } f^{(3,2)}=5 \text { : } \\
& \begin{array}{lllll}
123 & 124 & 125 & 134 & 135 \\
45 & 35 & 34 & 25 & 24
\end{array}
\end{aligned}
$$

\exists simple formula for f^{λ} (Frame-Robinson-Thrall hook-length formula)
$\boldsymbol{f}^{\lambda}=\#$ of SYT of shape λ
E.g., $f^{(3,2)}=5$:

123	124	125	134	135
45	35	34	25	24

\exists simple formula for f^{λ} (Frame-Robinson-Thrall hook-length formula)

Note. $f^{\lambda}=\operatorname{dim}\left(\right.$ irrep. of $\left.\mathfrak{S}_{n}\right)$, where $\mathfrak{S}_{\boldsymbol{n}}$ is the symmetric group of all permutations of $1,2 \ldots, n$.

RSK algorithm

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.
Write $\lambda=\operatorname{sh}(w)$, the shape of w.

RSK algorithm

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.
Write $\lambda=\operatorname{sh}(w)$, the shape of w.
$\mathbf{R}=$ Gilbert de Beauregard Robinson
$\mathbf{S}=$ Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth

RSK algorithm

RSK algorithm: a bijection

$$
w \xrightarrow{\text { rsk }}(P, Q),
$$

where $w \in \mathfrak{S}_{n}$ and P, Q are SYT of the same shape $\lambda \vdash n$.
Write $\lambda=\operatorname{sh}(w)$, the shape of w.
$\mathbf{R}=$ Gilbert de Beauregard Robinson
$\mathbf{S}=$ Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth
Wikipedia: Ea Ea

Example of RSK: $w=4132$

insert 4, record 1: 41
insert 1, record 2: $\begin{array}{lll}1 & 1 \\ 4 & 2\end{array}$

insert 2, record 4: $\begin{array}{lll}12 & 13 \\ 3 & 2_{2} \\ 4\end{array}$

Example of RSK: $w=4132$

insert 4, record 1: 41
insert 1, record 2: $\begin{array}{lll}1 & 1 \\ 4 & 2\end{array}$
insert 3, record 3: $\begin{array}{ll}13 & 1_{2}^{3}\end{array}$
insert 2, record 4: $\begin{array}{lll}12 & { }^{2} 3 \\ 4 & 4\end{array}$

$$
(P, Q)=\left(\begin{array}{ll}
1_{2}^{2} & 1_{2}^{3} \\
4 & , \\
4
\end{array}\right)
$$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text { rsk }}(P, Q)$, where $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then

$$
\begin{aligned}
\operatorname{is}(w) & =\text { longest row length }=\lambda_{1} \\
\operatorname{ds}(w) & =\text { longest column length }=\lambda_{1}^{\prime}
\end{aligned}
$$

Schensted's theorem

Theorem. Let $w \xrightarrow{\text { rsk }}(P, Q)$, where $\operatorname{sh}(P)=\operatorname{sh}(Q)=\lambda$. Then

$$
\begin{aligned}
\operatorname{is}(w) & =\text { longest row length }=\lambda_{1} \\
\operatorname{ds}(w) & =\text { longest column length }=\lambda_{1}^{\prime}
\end{aligned}
$$

Example. $4132 \xrightarrow{\text { rsk }}\left(\begin{array}{ll}12 \\ 3 \\ 4\end{array}, \quad \begin{array}{l}13 \\ 4\end{array}\right)$

$$
\operatorname{is}(w)=2, \quad \mathrm{ds}(w)=3
$$

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{p q+1}$. Then either $\mathrm{is}(w)>p$ or $\mathrm{ds}(w)>q$.

Erdős-Szekeres theorem

Corollary (Erdős-Szekeres, Seidenberg). Let $w \in \mathfrak{S}_{p q+1}$. Then either $\mathrm{is}(w)>p$ or $\mathrm{ds}(w)>q$.

Proof. Let $\lambda=\operatorname{sh}(w)$. If is $(w) \leq p$ and $\mathrm{ds}(w) \leq q$ then $\lambda_{1} \leq p$ and $\lambda_{1}^{\prime} \leq q$, so $\sum \lambda_{i} \leq p q$. \square

An extremal case

Corollary. Say $p \leq q$. Then

$$
\begin{gathered}
\#\left\{w \in \mathfrak{S}_{p q}: \operatorname{is}(w)=p, \operatorname{ds}(w)=q\right\} \\
=\left(f^{\left(p^{q}\right)}\right)^{2}
\end{gathered}
$$

An extremal case

Corollary. Say $p \leq q$. Then

$$
\begin{gathered}
\#\left\{w \in \mathfrak{S}_{p q}: \text { is }(w)=p, \operatorname{ds}(w)=q\right\} \\
=\left(f^{\left(p^{q}\right)}\right)^{2}
\end{gathered}
$$

By hook-length formula, this is

$$
\left(\frac{(p q)!}{1^{1} 2^{2} \cdots p^{p}(p+1)^{p} \cdots q^{p}(q+1)^{p-1} \cdots(p+q-1)^{1}}\right)^{2} .
$$

Expectation of is (w)

$$
\begin{aligned}
E(n) & =\operatorname{expectation} \text { of is }(w), w \in \mathfrak{S}_{n} \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \text { is }(w) \\
& =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}
\end{aligned}
$$

Expectation of is(w)

$$
\begin{aligned}
E(\boldsymbol{n}) & =\operatorname{expectation} \text { of is }(w), w \in \mathfrak{S}_{n} \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{G}_{n}} \text { is }(w) \\
& =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}
\end{aligned}
$$

Ulam: what is distribution of is($w)$? rate of growth of $E(n)$?

Work of Hammersley

Hammersley (1972):

$$
\exists c=\lim _{n \rightarrow \infty} n^{-1 / 2} E(n)
$$

and

$$
\frac{\pi}{2} \leq c \leq e
$$

Work of Hammersley

Hammersley (1972):

$$
\exists c=\lim _{n \rightarrow \infty} n^{-1 / 2} E(n)
$$

and

$$
\frac{\pi}{2} \leq c \leq e
$$

Conjectured $c=2$.

$c=2$

Logan-Shepp, Vershik-Kerov (1977): $c=2$

$c=2$

Logan-Shepp, Vershik-Kerov (1977): $c=2$
Idea of proof.

$$
\begin{aligned}
E(n) & =\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} \\
& \approx \frac{1}{n!} \max _{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} .
\end{aligned}
$$

Find "limiting shape" of $\lambda \vdash n$ maximizing λ as $n \rightarrow \infty$ using hook-length formula.

A big shape

The limiting curve

Equation of limiting curve

$$
\begin{aligned}
x= & y+2 \cos \theta \\
y= & \frac{2}{\pi}(\sin \theta-\theta \cos \theta) \\
& 0 \leq \theta \leq \pi
\end{aligned}
$$

A limiting distribution

Flip a coin n times, with probability \boldsymbol{p} of heads. Let $\boldsymbol{h}(\boldsymbol{n})$ be the number of heads (a random variable). Then for all $t \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{h(n)-n p}{\sqrt{n p(1-p)}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} x^{2}} d x
$$

A limiting distribution

Flip a coin n times, with probability \boldsymbol{p} of heads. Let $\boldsymbol{h}(\boldsymbol{n})$ be the number of heads (a random variable). Then for all $t \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{h(n)-n p}{\sqrt{n p(1-p)}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} x^{2}} d x
$$

(Central Limit Theorem for the binomial distribution)

A limiting distribution

Flip a coin n times, with probability \boldsymbol{p} of heads. Let $\boldsymbol{h}(\boldsymbol{n})$ be the number of heads (a random variable). Then for all $t \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{h(n)-n p}{\sqrt{n p(1-p)}} \leq t\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\frac{1}{2} x^{2}} d x
$$

(Central Limit Theorem for the binomial distribution)
We want to do something similar for the random variable is (w) when we for choose a permutation w in \mathfrak{S}_{n} at random (uniform distribution).

Painlevé II equation

Define $u(x)$ by

$$
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x)
$$

with certain initial conditions.

Painlevé II equation

Define $u(x)$ by

$$
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x)
$$

with certain initial conditions.
This is the Painlevé II equation (roughly, the branch points and essential singularities are independent of the initial conditions).

Paul Painlevé

1863: born in Paris.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.

Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques
1908: first passenger of Wilbur Wright; set flight duration record of one hour, 10 minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

The Tracy-Widom distribution

$$
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
$$

where $u(x)$ is the Painlevé II function.

The Baik-Deift-Johansson theorem

Theorem (B.-D.-J., 1999).

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\operatorname{is}_{n}(w)-2 \sqrt{n}}{n^{1 / 6}} \leq t\right)=F(t)
$$

where is $_{n}(w)$ denotes is (w) for random $w \in \mathfrak{S}_{n}$.

Expectation redux

Recall $E(n) \sim 2 \sqrt{n}$.

Expectation redux

Recall $E(n) \sim 2 \sqrt{n}$.
Corollary to BDJ theorem.

$$
\begin{aligned}
E(n) & =2 \sqrt{n}+\left(\int t d F(t)\right) n^{1 / 6}+o\left(n^{1 / 6}\right) \\
& =2 \sqrt{n}-(1.7711 \cdots) n^{1 / 6}+o\left(n^{1 / 6}\right)
\end{aligned}
$$

Expectation redux

Recall $E(n) \sim 2 \sqrt{n}$.

Corollary to BDJ theorem.

$$
\begin{aligned}
E(n) & =2 \sqrt{n}+\left(\int t d F(t)\right) n^{1 / 6}+o\left(n^{1 / 6}\right) \\
& =2 \sqrt{n}-(1.7711 \cdots) n^{1 / 6}+o\left(n^{1 / 6}\right)
\end{aligned}
$$

Is there a third term?

Origin of Tracy-Widom distribution

Where did the Tracy-Widom distribution $F(t)$ come from?

$$
\begin{gathered}
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right) \\
\frac{d^{2}}{d x^{2}} u(x)=2 u(x)^{3}+x u(x)
\end{gathered}
$$

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M=\left(M_{i j}\right):$

Gaussian Unitary Ensemble (GUE)

Analogue of normal distribution for $n \times n$ hermitian matrices $M=\left(M_{i j}\right):$

$$
\begin{array}{r}
Z_{n}^{-1} e^{-\operatorname{tr}\left(M^{2}\right)} d M \\
d M=\prod_{i} d M_{i i} \cdot \prod_{i<j} d\left(\Re M_{i j}\right) d\left(\Im M_{i j}\right),
\end{array}
$$

where Z_{n} is a normalization constant.

Tracy-Widom theorem

Tracy-Widom (1994): let α_{1} denote the largest eigenvalue of M. Then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left(\alpha_{1}-\sqrt{2 n}\right) \sqrt{2} n^{1 / 6} \leq t\right)=F(t)
$$

Random topologies

Is the connection between is (w) and GUE a coincidence?

Random topologies

Is the connection between is (w) and GUE a coincidence?
Okounkov provides a connection, via the theory of random topologies on surfaces. Very briefly, a surface can be described in two ways:

- Gluing polygons along their edges, connected to random matrices via quantum gravity.
- Ramified covering of a sphere, which can be formulated in terms of permutations.

A variation

Alternating sequence of length k :

$$
b_{1}>b_{2}<b_{3}>b_{4}<\cdots b_{k}
$$

E_{n} : number of alternating $w \in \mathfrak{S}_{n}$ (Euler number)

$$
E_{4}=5: 2134,3142,3241,4132,4231
$$

A variation

Alternating sequence of length k :

$$
b_{1}>b_{2}<b_{3}>b_{4}<\cdots b_{k}
$$

E_{n} : number of alternating $w \in \mathfrak{S}_{n}$ (Euler number)
$E_{4}=5: 2134,3142,3241,4132,4231$
Désiré André (1840-1917): showed in 1879 that

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

A variation

Alternating sequence of length k :

$$
b_{1}>b_{2}<b_{3}>b_{4}<\cdots b_{k}
$$

E_{n} : number of alternating $w \in \mathfrak{S}_{n}$ (Euler number)
$E_{4}=5: 2134,3142,3241,4132,4231$
Désiré André (1840-1917): showed in 1879 that

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

Aside: basis for combinatorial trigonometry.

Alternating subsequences?

as $(w)=$ length of longest alternating subseq. of w

Alternating subsequences?

as $(w)=$ length of longest alternating subseq. of w

$$
w=56218347 \Rightarrow \operatorname{as}(w)=5
$$

Alternating subsequences?

$$
\text { as }(w)=\text { length of longest alternating subseq. of } w
$$

$$
w=56218347 \Rightarrow \operatorname{as}(w)=5
$$

Main Lemma. $\forall w \in \mathfrak{S}_{n} \exists$ alternating subsequence of maximal length that contains n.

Alternating subsequences?

$$
\text { as }(w)=\text { length of longest alternating subseq. of } w
$$

$$
w=56218347 \Rightarrow \operatorname{as}(w)=5
$$

Main Lemma. $\forall w \in \mathfrak{S}_{n} \exists$ alternating subsequence of maximal length that contains n.

$$
a_{k}(n)=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{as}(w)=k\right\}
$$

The case $n=3$

w	as (w)
123	1
132	2
213	3
231	2
312	3
321	2

The case $n=3$

w	as (w)
123	1
132	2
213	3
231	2
312	3
321	2

$$
a_{1}(3)=1, a_{2}(3)=3, a_{3}(3)=2
$$

Recurrence for $a_{k}(n)$

Main lemma implies:

$$
\begin{gathered}
\Rightarrow a_{k}(n)=\sum_{j=1}^{n}\binom{n-1}{j-1} \\
\sum_{2 r+s=k-1}\left(a_{2 r}(j-1)+a_{2 r+1}(j-1)\right) a_{s}(n-j)
\end{gathered}
$$

Recurrence for $a_{k}(n)$

Main lemma implies:

$$
\begin{gathered}
\Rightarrow a_{k}(n)=\sum_{j=1}^{n}\binom{n-1}{j-1} \\
\sum_{2 r+s=k-1}\left(a_{2 r}(j-1)+a_{2 r+1}(j-1)\right) a_{s}(n-j)
\end{gathered}
$$

Define

$$
A(x, t)=\sum_{k, n \geq 0} a_{k}(n) t^{k} \frac{x^{n}}{n!}
$$

The main generating function

Theorem.

$$
A(x, t)=(1-x)\left(\frac{2 / \rho}{1-\frac{1-\rho}{t} e^{\rho x}}-\frac{1}{\rho}\right)
$$

where $\rho=\sqrt{1-t^{2}}$.

Formulas for $b_{k}(n)$

Corollary.

$$
\begin{aligned}
\Rightarrow \quad a_{1}(n) & =1 \\
a_{2}(n) & =n-1 \\
a_{3}(n) & =\frac{1}{4}\left(3^{n}-6 n+3\right) \\
a_{4}(n) & =\frac{1}{8}\left(4^{n}-2 \cdot 3^{n}-(2 n-4) 2^{n}+4 n-6\right)
\end{aligned}
$$

Formulas for $b_{k}(n)$

Corollary.

$$
\begin{aligned}
\Rightarrow \quad a_{1}(n) & =1 \\
a_{2}(n) & =n-1 \\
a_{3}(n) & =\frac{1}{4}\left(3^{n}-6 n+3\right) \\
a_{4}(n) & =\frac{1}{8}\left(4^{n}-2 \cdot 3^{n}-(2 n-4) 2^{n}+4 n-6\right)
\end{aligned}
$$

no such formulas for longest increasing subsequences

Mean (expectation) of as (w)

$$
\begin{aligned}
\boldsymbol{D}(n) & =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \operatorname{as}(w) \\
& =\frac{1}{n!} \sum_{k=1}^{n} k a_{k}(n)
\end{aligned}
$$

the expectation of $\operatorname{as}(w)$ for $w \in \mathfrak{S}_{n}$

A formula for $D(n)$

$$
A(x, t)=\sum_{k, n \geq 0} a_{k}(n) t^{k} \frac{x^{n}}{n!}=(1-x)\left(\frac{2 / \rho}{1-\frac{1-\rho}{t} e^{\rho x}}-\frac{1}{\rho}\right)
$$

A formula for $D(n)$

$$
\begin{aligned}
A(x, t)=\sum_{k, n \geq 0} a_{k}(n) t^{k} \frac{x^{n}}{n!} & =(1-x)\left(\frac{2 / \rho}{1-\frac{1-\rho}{t} e^{\rho x}}-\frac{1}{\rho}\right) \\
\sum_{n \geq 1} D(n) x^{n} & =\frac{\partial}{\partial t} A(x, 1) \\
& =\frac{6 x-3 x^{2}+x^{3}}{6(1-x)^{2}} \\
& =x+\sum_{n \geq 2} \frac{4 n+1}{6} x^{n}
\end{aligned}
$$

A formula for $D(n)$

$$
\begin{aligned}
& A(x, t)=\sum_{k, n \geq 0} a_{k}(n) t^{k} \frac{x^{n}}{n!}=(1-x)\left(\frac{2 / \rho}{1-\frac{1-\rho}{t} e^{\rho x}}-\frac{1}{\rho}\right) \\
& \sum_{n \geq 1} D(n) x^{n}
\end{aligned}=\frac{\partial}{\partial t} A(x, 1) \quad \begin{aligned}
& =\frac{6 x-3 x^{2}+x^{3}}{6(1-x)^{2}} \\
& =x+\sum_{n \geq 2} \frac{4 n+1}{6} x^{n} \\
\Rightarrow D(n) & =\frac{4 n+1}{6}, n \geq 2
\end{aligned}
$$

Comparison of $E(n)$ and $D(n)$

$$
\begin{aligned}
& D(n)=\frac{4 n+1}{6}, n \geq 2 \\
& E(n) \sim 2 \sqrt{n}
\end{aligned}
$$

Why such a simple formula for $D(n)$?

Let $w=a_{1} a_{2} \cdots a_{n}$.
peak: $2 \leq i \leq n-1, a_{i-1}<a_{i}>a_{i+1}$
valley: $2 \leq i \leq n-1, a_{i-1}>a_{i}<a_{i+1}$

Why such a simple formula for $D(n)$?

Let $w=a_{1} a_{2} \cdots a_{n}$.
peak: $2 \leq i \leq n-1, a_{i-1}<a_{i}>a_{i+1}$
valley: $2 \leq i \leq n-1, a_{i-1}>a_{i}<a_{i+1}$
A longest alternating subsequence is obtained by taking all peaks and valleys, together with a_{n}, and also with a_{1} if $a_{1}>a_{2}$.

Completion of simple proof

Let $2 \leq i \leq n-1$.

$$
\begin{aligned}
P\left(a_{i-1}<a_{i}>a_{i+1}\right) & =\frac{1}{3} \\
P\left(a_{i-1}>a_{i}<a_{i+1}\right) & =\frac{1}{3} \\
P\left(a_{1}>a_{2}\right) & =\frac{1}{2} \\
P\left(a_{n}=a_{n}\right) & =1
\end{aligned}
$$

Completion of simple proof

Let $2 \leq i \leq n-1$.

$$
\begin{gathered}
P\left(a_{i-1}<a_{i}>a_{i+1}\right)=\frac{1}{3} \\
P\left(a_{i-1}>a_{i}<a_{i+1}\right)=\frac{1}{3} \\
P\left(a_{1}>a_{2}\right)=\frac{1}{2} \\
P\left(a_{n}=a_{n}\right)=1 \\
\Rightarrow D(n)=\frac{2}{3}(n-2)+\frac{1}{2}+1 \\
=\frac{4 n+1}{6}
\end{gathered}
$$

Variance of as (w)

$$
V(\boldsymbol{n})=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}}\left(\operatorname{as}(w)-\frac{4 n+1}{6}\right)^{2}, n \geq 2
$$

the variance of $\operatorname{as}(n)$ for $w \in \mathfrak{S}_{n}$
Corollary.

$$
V(n)=\frac{8}{45} n-\frac{13}{180}, n \geq 4
$$

Variance of as (w)

$$
V(n)=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}}\left(\operatorname{as}(w)-\frac{4 n+1}{6}\right)^{2}, n \geq 2
$$

the variance of as (n) for $w \in \mathfrak{S}_{n}$
Corollary.

$$
V(n)=\frac{8}{45} n-\frac{13}{180}, n \geq 4
$$

similar results for higher moments

A new distribution?

$$
P(t)=\lim _{n \rightarrow \infty} \operatorname{Prob}_{w \in \mathfrak{S}_{n}}\left(\frac{\mathrm{as}_{n}(w)-2 n / 3}{\sqrt{n}} \leq t\right)
$$

A new distribution?

$$
P(t)=\lim _{n \rightarrow \infty} \operatorname{Prob}_{w \in \mathfrak{S}_{n}}\left(\frac{\mathrm{as}_{n}(w)-2 n / 3}{\sqrt{n}} \leq t\right)
$$

Stanley distribution?

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \operatorname{Prob}_{w \in \mathfrak{S}_{n}}\left(\frac{\operatorname{as}(w)-2 n / 3}{\sqrt{n}} \leq t\right) \\
=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{t \sqrt{45} / 4} e^{-s^{2}} d s
\end{gathered}
$$

(Gaussian distribution)

Limiting distribution

Theorem (Pemantle, Widom, (Wilf)).

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \operatorname{Prob}_{w \in \mathfrak{S}_{n}}\left(\frac{\operatorname{as}(w)-2 n / 3}{\sqrt{n}} \leq t\right) \\
=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{t \sqrt{45} / 4} e^{-s^{2}} d s
\end{gathered}
$$

(Gaussian distribution)
\Leftrightarrow

k-alternating sequences

Given $k \geq 1$, define a sequence $a_{1} a_{2} \cdots a_{n}$ of integers to be \boldsymbol{k}-alternating if

$$
a_{i}<a_{i+1} \Leftrightarrow i \equiv 0(\bmod k)
$$

k-alternating sequences

Given $k \geq 1$, define a sequence $a_{1} a_{2} \cdots a_{n}$ of integers to be \boldsymbol{k}-alternating if

$$
a_{i}<a_{i+1} \Leftrightarrow i \equiv 0(\bmod k)
$$

Example. 75264183 is 3-alternating

$a_{k}(w)$ and $E_{k}(n)$

$$
a_{k}(w): \text { length of longest } k \text {-alt. subsequence of } w
$$

$a_{k}(w)$ and $E_{k}(n)$

$$
a_{k}(w): \text { length of longest } k \text {-alt. subsequence of } w
$$

$$
\begin{aligned}
a_{n-1}(w) & =\operatorname{ds}(w) \\
a_{2}(w) & =\operatorname{as}(w)
\end{aligned}
$$

$a_{k}(w)$ and $E_{k}(n)$

$a_{k}(w)$: length of longest k-alt. subsequence of w

$$
\begin{aligned}
a_{n-1}(w) & =\operatorname{ds}(w) \\
a_{2}(w) & =\operatorname{as}(w)
\end{aligned}
$$

$$
\begin{aligned}
E_{k}(n) & =\text { expectation of } a_{k}(w) \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} a_{k}(w)
\end{aligned}
$$

A problem

$E_{k}(n)$ interpolates between $E(n) \sim 2 \sqrt{n}$ and $D(n) \sim 2 n / 3$. Is there a sharp cutoff between $c \sqrt{n}$ and $c n$ behavior, or do we get intermediate values like $c n^{\alpha}, \frac{1}{2}<\alpha<1$, say for $k=\sqrt{n}$?

A problem

$E_{k}(n)$ interpolates between $E(n) \sim 2 \sqrt{n}$ and $D(n) \sim 2 n / 3$. Is there a sharp cutoff between $c \sqrt{n}$ and $c n$ behavior, or do we get intermediate values like $c n^{\alpha}, \frac{1}{2}<\alpha<1$, say for $k=\sqrt{n}$?

Similar questions for the limiting distribution: do we interpolate between Tracy-Widom and Gaussian?

A variant

Same questions if we replace k-alternating with $k-1$ increases (ascents), then $k-1$ decreases (descents), then $k-1$ ascents, etc. E.g., $k=3$:

$$
a_{1}>a_{2}>a_{3}<a_{4}<a_{5}>a_{6}>a_{7}<\cdots
$$

The final slide

\Leftrightarrow

The final slide

