DEF. (1) a_{0}, \ldots, a_{n} is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}, \text { for all } i
$$

(3) no internal zeros if $a_{i}=0 \Rightarrow$ either $a_{1}=\cdots=a_{i-1}=0$ or $a_{i+1}=\cdots=a_{n}=0$.

Log-concave, NIZ, $a_{i} \geq 0 \Rightarrow$ unimodal.

Example. $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$

I. REAL ZEROS

Theorem (Newton). Let

$$
\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R}
$$

and

$$
P(x)=\prod\left(x+\gamma_{i}\right)=\sum a_{i}\binom{n}{i} x^{i} .
$$

Then $a_{0}, a_{1}, \ldots, a_{n}$ is \log-concave.
Proof. $P^{(n-i-1)}(x)$ has real zeros

$$
\begin{aligned}
& \Rightarrow Q(x):=x^{i+1} P^{(n-i-1)}(1 / x) \text { has real zeros } \\
& \quad \Rightarrow Q^{(i-1)}(x) \text { has real zeros. }
\end{aligned}
$$

$$
\text { But } Q^{(i-1)}(x)=\frac{n!}{2}\left(a_{i-1}+2 a_{i} x+a_{i+1} x^{2}\right)
$$

$$
\Rightarrow a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

Example.

Hermite polynomials:

$$
H_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!(2 x)^{n-2 k}}{k!(n-2 k)!}
$$

$H_{n}(x)=-e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n-1}(x)\right)$.
By induction, $H_{n-1}(x)$ has $n-1$ real zeros. Since $e^{-x^{2}} H_{n-1}(x) \rightarrow 0$ as $x \rightarrow$ ∞, it follow that $H_{n}(x)$ has n real zeros interlaced by the zeros of $H_{n-1}(x)$.

Example (Heilmann-Lieb, 1972). Let G be a graph with $t_{i} i$-sets of edges with no vertex in common (matching of size i). Then $\sum_{i} t_{i} x^{i}$ has only real zeros.

Theorem (Aissen-Schoenberg-Whitney, 1952) The polynomial $\sum_{i=0}^{n} a_{i} x^{i}$ has only real nonpositive zeros if and only if every minor of the following matrix is nonnegative:

$$
\left[\begin{array}{ccccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n} & 0 & \cdots \\
0 & a_{0} & a_{1} & \cdots & a_{n-1} & a_{n} & \cdots \\
0 & 0 & a_{0} & \cdots & a_{n-2} & a_{n-1} & \cdots \\
. & \cdot & \cdot & & . & . & \\
\cdot & \cdot & \cdot & & \cdot & \cdot &
\end{array}\right]
$$

Let P be a finite pose with no induce $\mathbf{3}+\mathbf{1}$. Let c_{i} be the number of i-element chains of P.

bad

$$
\begin{aligned}
& c_{0}=1 \\
& c_{1}=5 \\
& c_{2}=5 \\
& c_{3}=1
\end{aligned}
$$

Theorem. $\sum c_{i} x^{i}$ has only real zemos.

Conjecture (Neggers-S, c. 1970). Let P be a (finite) distributive lattice (a collection of sets closed under \cup and \cap, ordered by inclusion), with $\hat{0}$ and $\hat{1}$ removed. Then $\sum c_{i} x^{2}$ has only real zeros.

Example. If A is a (real) symmetric matrix, then every zero of $\operatorname{det}(I+x A)$ is real.

Corollary. Let G be a graph. Let a_{i} be the number of rooted spanning forests with i edges. Then $\sum a_{i} x^{i}$ has only real zeros.

Open for unrooted spanning forests.

II. ANALYTIC METHODS

Let $p(n, k)$ be the number of martitons of n into k parts. E.g., $p(7,3)=4$:

$$
5+1+1,4+2+1,3+3+1,3+2+2 .
$$

$$
\begin{aligned}
& \sum_{n \geq 0} p(n, k) x^{n}=\frac{x^{k}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)} \\
& \Rightarrow p(n, k)=\frac{1}{2 \pi i} \oint \frac{s^{k-n-1} d s}{(1-s)\left(1-s^{2}\right) \cdots\left(1-s^{k}\right)} .
\end{aligned}
$$

Theorem (Szekeres, 1954) For $n>$ N_{0}, the sequence

$$
p(n, 1), p(n, 2), \ldots, p(n, n)
$$

is unimodal, with maximum at

$$
\begin{gathered}
k=c \sqrt{n} L+c^{2}\left(\frac{3}{2}+\frac{3}{2} L-\frac{1}{4} L^{2}\right)-\frac{1}{2} \\
+O\left(\frac{\log ^{4} n}{\sqrt{n}}\right) \\
c=\sqrt{6} / \pi, \quad L=\log c \sqrt{n} .
\end{gathered}
$$

Theorem (Entringer, 1968). The polynomial

$$
(1+q)^{2}\left(1+q^{2}\right)^{2} \cdots\left(1+q^{n}\right)^{2}
$$

has unimodal coefficients.
Theorem (Odlyzko-Richmond, 1980).
For "nice" a_{1}, a_{2}, \ldots, the polynomial

$$
\left(1+q^{a_{1}}\right) \cdots\left(1+q^{a_{n}}\right)
$$

has "almost" unimodal coefficients.

III. ALEKSANDROV-FENCHEL INEQUALITIES (1936-38)

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^{n}, and let $x, y \geq 0$. Define the Minkowski sum $x K+y L=\{x \alpha+y \beta: \alpha \in K, \beta \in L\}$.
Then there exist $V_{i}(K, L) \geq 0$, the (Minkowski) mixed volumes of K and L, satisfying
$\operatorname{Vol}(x K+y L)=\sum_{i=0}^{n}\binom{n}{i} V_{i}(K, L) x^{n-i} y^{i}$.
Note $V_{0}=\operatorname{Vol}(K), V_{n}=\operatorname{Vol}(L)$.
Theorem. $V_{i}^{2} \geq V_{i-1} V_{i+1}$

Corollary. Let P be an n-element poset. Fix $x \in P$. Let N_{i} denote the number of order-preserving bijections (linear extensions)

$$
f: P \rightarrow\{1,2, \ldots, n\}
$$

such that $f(x)=i$. Then

$$
N_{i}^{2} \geq N_{i-1} N_{i+1}
$$

Proof. Find $K, L \subset \mathbb{R}^{n-1}$ such that $V_{i}(K, L)=N_{i+1}$.

123454
123545
124353
213454
213545
214353
241354
$\left(N_{1}, \ldots, N_{5}\right)=(0,1,2,2,2)$

Variation (Kahn-Saks, 1984). Fix $x<y$ in P. Let M_{i} be the number of linear extensions f with $f(y)-f(x)=$ i. Then $M_{i}^{2} \geq M_{i-1} M_{i+1}, i \geq 1$.

Corollary. If P isn't a chain, then there exist $x, y \in P$ such that the probability $P(x<y)$ that $x<y$ in a linear extension of P satisfies

$$
\frac{3}{11} \leq P(x<y) \leq \frac{8}{11} .
$$

Best bound to date (Brightwell-FelsnerTrotter, 1995): $\frac{5+\sqrt{5}}{10}$ (instead of 3/11)

Conjectured bound: $1 / 3$

IV. REPRESENTATIONS OF $\operatorname{SL}(2, \mathbb{C})$ AND $\mathfrak{s l}(2, \mathbb{C})$

Let

$$
\begin{array}{r}
G=\operatorname{SL}(2, \mathbb{C})=\{2 \times 2 \text { complex } \\
\quad \text { matrices with determinant } 1\} .
\end{array}
$$

Let $A \in G$, with eigenvalues θ, θ^{-1}. For all $n \geq 0$, there is a unique irreducible (polynomial) representation

$$
\varphi_{n}: G \rightarrow \mathrm{GL}\left(V_{n+1}\right)
$$

of dimension $n+1$, and $\varphi_{n}(A)$ has eigenvalues

$$
\theta^{-n}, \theta^{-n+2}, \theta^{-n+4}, \ldots, \theta^{n} .
$$

Every representation is a direct sum of irreducibles.

If $\varphi: G \rightarrow \mathrm{GL}(V)$ is any (finitedimensional) representation, then

$$
\begin{aligned}
& \operatorname{tr} \varphi(A)=\sum_{i \in \mathbb{Z}} a_{i} \theta^{i}, \quad a_{i}=a_{-i} \\
& =\sum_{i \geq 0}\left(a_{i}-a_{i-2}\right)\left(\theta^{-i}+\theta^{-i+2}+\cdots+\theta^{i}\right) \\
& \Rightarrow \quad \Rightarrow a_{i} \geq a_{i-2} \\
& \Rightarrow\left\{a_{2 i}\right\},\left\{a_{2 i+1}\right\} \text { are unimodal } \\
& \quad \text { (and symmetric) }
\end{aligned}
$$

(Completely analogous construction for the Lie algebra $\mathfrak{s l}(\mathbf{2}, \mathbb{C})$.)

Example. $S^{k}\left(\varphi_{n}\right)$, eigenvalues

$$
\begin{gathered}
\left(\theta^{-n}\right)^{t_{0}}\left(\theta^{-n+2}\right)^{t_{1}} \cdots\left(\theta^{n}\right)^{t_{n}} \\
t_{0}+t_{1}+\cdots+t_{n}=k \\
\Rightarrow \operatorname{tr} \varphi(A)= \\
\sum_{t_{0}+\cdots+t_{n}=k} \theta^{t_{0}(-n)+t_{1}(-n+2)+\cdots+t_{n} n} \\
=\theta^{-n k}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{\theta^{2}} \\
=\theta^{-n k} \sum_{i \geq 0} P_{i}(n, k) \theta^{2 i}
\end{gathered}
$$

where $P_{i}(n, k)$ is the number of martitions of i with $\leq k$ parts, largest part $\leq n$.

$$
\Rightarrow P_{0}(n, k), \ldots, P_{n k}(n, k)
$$

is unimodal (Sylvester, 1878).
Combinatorial proof by K. O'Hara, 1990.

2

2

5

$\sum_{i} P_{i}(3,2) q^{i}=$
$1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}$

$$
=\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\frac{\left(1-q^{5}\right)\left(1-q^{4}\right)}{\left(1-q^{2}\right)(1-q)}
$$

Superanalogue. Replace $\mathfrak{s l}(2, \mathbb{C})$ with the (five-dimensional) Lie superalgebra $\mathfrak{o s p}(\mathbb{1}, 2)$. One irreducible representation φ_{n} of each dimension $2 n+1$. If $A \in \mathfrak{o s p}(1,2)$ has eigenvalues

$$
\theta^{-2}, \theta^{-1}, 1, \theta, \theta^{2}
$$

then φ_{n} has eigenvalues $\theta^{-n}, \theta^{-n+1}, \ldots, \theta^{n}$.
Example. $S^{k}\left(\varphi_{n}\right)$ leads to unimodality of
$Q_{0}(2 n, k), Q_{1}(2 n, k), \ldots, Q_{2 n k}(2 n, k)$,
where $Q_{i}(2 n, k)$ is the number of partitions of i with largest part $\leq 2 n$, at most k parts, and no repeated odd part.

Example. Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra. Then there exists a principal $\mathfrak{s l}(2, \mathbb{C}) \subset \mathfrak{g}$. A representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ restricts to

$$
\varphi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g l}(V)
$$

Example. $\mathfrak{g}=\mathfrak{s o}(2 n+1, \mathbb{C}), \varphi=$ spin representation:

$$
\Rightarrow(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

has unimodal coefficients (Dynkin 1950, Hughes 1977). (No combinatorial proof known.)

Example. Let X be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$
\beta_{i}=\operatorname{dim}_{\mathbb{C}} H^{i}(X ; \mathbb{C})
$$

$\mathfrak{s l}(2, \mathbb{C}) \operatorname{acts}$ on $H^{*}(X ; \mathbb{C})$, and $H^{i}(X ; \mathbb{C})$
is a weight space with weight $i-N$

$$
\Rightarrow\left\{\beta_{2 i}\right\},\left\{\beta_{2 i+1}\right\} \text { are unimodal. }
$$

Example. $X=G_{k}\left(\mathbb{C}^{n+k}\right)($ Grassmannian). Then

$$
\sum \beta_{i} \theta^{i}=\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{\theta^{2}} .
$$

Example. Let \mathcal{P} be a simplicial polytope, with $f_{i} i$-dimensional faces (with $f_{-1}=0$). E.g., for the octahedron,

$$
f_{0}=6, \quad f_{1}=12, \quad f_{2}=8 .
$$

Define the h-vector $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of \mathcal{P} by

$$
\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}=\sum_{i=0}^{d} h_{i} x^{d-i} .
$$

E.g., for the octahedron,

$$
(x-1)^{3}+6(x-1)^{2}+12(x-1)+8=x^{3}+3 x^{2}+3 x+1 .
$$

Dehn-Sommerville equations $(1905,1927)$:

$$
h_{i}=h_{d-i}
$$

GLBC (McMullen-Walkup, 1971):

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}
$$

(Generalized Lower Bound Conjecture)

Let $X(\mathcal{P})$ be the toric variety corresponding to \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities, and

$$
\begin{aligned}
\beta_{j}(X(\mathcal{P})) & =\left\{\begin{array}{r}
h_{i}, \text { if } j=2 i \\
0, \text { if } j \text { is odd }
\end{array}\right. \\
& \Rightarrow \text { GLBC. }
\end{aligned}
$$

Hessenberg varieties. Fix $1 \leq$ $p \leq n-1$. For $w=w_{1} \cdots w_{n} \in \mathfrak{S}_{n}$, let
$\mathrm{d}_{\mathrm{p}}(\mathrm{w})=\#\left\{(i, j): w_{i}>w_{j}, 1 \leq j-i \leq p\right\}$.
$d_{1}(w)=\#$ descents of w $d_{p-1}(w)=$ \#inversions of w.

Let
$A_{p}(n, k)=\#\left\{w \in \mathfrak{S}_{n}: d_{p}(w)=k\right\}$.
Theorem (de Mari-Shayman, 1987).
The sequence
$A_{p}(n, 0), A_{p}(n, 1), \ldots, A_{p}(n, p(2 n-p-1) / 2)$
is unimodal.
Proof. Construct a "generalized Hessenberg variety" $X_{n p}$ satisfying $\beta_{2 k}\left(X_{n p}\right)=$ $A_{p}(n, k) . \square$

V. REPRESENTATIONS OF FINITE GROUPS

Let $\# S=n$ and $G \subseteq \mathfrak{S}(S)$, the group of all permutations of S. Let \hat{G} denote the set of all (ordinary) irreducible characters of G. Let

$$
\chi_{i}=\text { character of } G \text { on }\binom{S}{i},
$$

where $\binom{S}{i}=\{T \subseteq S: \# T=i\}$.
Note: $\chi_{i}=\chi_{n-i}$.
Write

$$
\chi_{i}=\sum_{\chi \in \hat{G}} m_{i}(\chi) \chi .
$$

Theorem. For all $\chi \in \hat{G}$, the sequence

$$
m_{0}(\chi), m_{1}(\chi), \ldots, m_{n}(\chi)
$$

is symmetric and unimodal.
Proof. Let $0 \leq i<n / 2$. Define

$$
\varphi: \mathbb{C}\binom{S}{i} \rightarrow \mathbb{C}\binom{S}{i+1}
$$

by

$$
\varphi(T)=\sum_{\substack{T^{\prime} \supset T \\ \# T^{\prime}=i+1}} T^{\prime} .
$$

Easy: φ commutes with the action of G.

Not difficult: φ is injective (one-toone).

$$
\Rightarrow \chi_{i} \leq \chi_{i+1}
$$

Corollary (Livingstone and Wagner, 1965). $(\chi=1)$ Let

$$
f_{i}=\left|\binom{S}{i} / G\right|
$$

the number of orbits of G acting on $\binom{S}{i}$. Then $f_{i}=f_{n-i}$ and $f_{0}, f_{1}, \ldots, f_{n}$ is unimodal.

Corollary. Let $N_{p}(q)$ be the number of nonisomorphic graphs (without loops or multiple edges) with p vertices and q edges. Then the sequence

$$
N_{p}(0), N_{p}(1), \ldots, N_{p}(p(p-1) / 2)
$$

is symmetric and unimodal.

$\left(N_{4}(0), \ldots, N_{4}(6)\right)=(1,1,2,3,2,1,1)$

$$
\begin{gathered}
\text { Example. } S=\{1, \ldots, r\} \times\{1, \ldots, s\} \\
G=\mathfrak{S}_{r} \imath \mathfrak{S}_{s} \\
\Rightarrow \sum f_{i} q^{i}=\left[\begin{array}{c}
r+s \\
r
\end{array}\right]_{q}
\end{gathered}
$$

REFERENCES (incomplete)

1. F. Brenti,
2. G. R. Brightwell, S. Felsner, and W. T. Trotter, Balancing pairs and the cross product conjecture, Order 12 (1995), 327-349.
3. F. de Mari and M. A. Shayman,
4. E. B. Dynkin, Some properties of the weight system
5. Hughes,
6. J. Kahn and M. Saks, Balancing poset extensions, Order 1 (1984), 113-126.
7. D. Livingstone and A. Wagner, Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
8. K. M. O'Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combinatorial Theory (A) 53 (1990), 29-52.
9. R. Stanley, The number of faces of a simplicial convex polytope, Advances in Math. 35 (1980), 236-238.
10. R. Stanley, Two combinatorial applications of the AleksandrovFenchel inequalities, J. Combinatorial Theory (A) 31 (1981), 56-65.
11. R. Stanley, Unimodality and Lie superalgebras, Studies in Applied Math. 72 (1985), 263-281.
12. R. Stanley, Unimodal and log-concave sequences in algebra, combinatorics, and geometry, in Graph Theory and Its Applications: East and West, Ann. New York Acad. Sci., vol. 576, 1989, pp. 500-535.
13. D. Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly 96 (1989), 590-602.
