Two Analogues of Pascal's Triangle

Richard P. Stanley
U. Miami \& M.I.T.

April 4, 2023

The diagrams $P_{i b}$

Let $i, b \geq 2$. Define the diagram (or poset) $P_{i b}$ by

- There is a unique maximal element $\hat{1}$

The diagrams $P_{i b}$

Let $i, b \geq 2$. Define the diagram (or poset) $P_{i b}$ by

- There is a unique maximal element $\hat{1}$
- Each element covers exactly i elements.

The diagrams $P_{i b}$

Let $i, b \geq 2$. Define the diagram (or poset) $P_{i b}$ by

- There is a unique maximal element $\hat{1}$
- Each element covers exactly i elements.
- The diagram is planar.

The diagrams $P_{i b}$

Let $i, b \geq 2$. Define the diagram (or poset) $P_{i b}$ by

- There is a unique maximal element $\hat{1}$
- Each element covers exactly i elements.
- The diagram is planar.
- Every \triangle extends to a $2 b$-gon (b edges on each side)

Construction of P_{23}

Construction of P_{23}

Construction of P_{23}

Construction of P_{23}

Some results for any i, b

The rank of an element $t \in P_{i b}$ is the length of a chain from $\hat{1}$ to t, so $\operatorname{rank}(\hat{1})=0$.
$p_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n

Some results for any i, b

The rank of an element $t \in P_{i b}$ is the length of a chain from $\hat{1}$ to t, so $\operatorname{rank}(\hat{1})=0$.
$\boldsymbol{p}_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n
Elementary counting argument gives

$$
p_{i b}(n)=i p_{i b}(n-1)-(i-1) p_{i b}(n-b) .
$$

Some results for any i, b

The rank of an element $t \in P_{i b}$ is the length of a chain from $\hat{1}$ to t, so $\operatorname{rank}(\hat{1})=0$.
$\boldsymbol{p}_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n
Elementary counting argument gives

$$
p_{i b}(n)=i p_{i b}(n-1)-(i-1) p_{i b}(n-b) .
$$

Initial conditions: $p_{i b}(n)=i^{n}, 0 \leq n \leq b-1$

$$
\Rightarrow \sum_{n \geq 0} p_{i b}(n) x^{n}=\frac{1}{1-i x+(i-1) x^{b}}
$$

Some results for any i, b

The rank of an element $t \in P_{i b}$ is the length of a chain from $\hat{1}$ to t, so $\operatorname{rank}(\hat{1})=0$.
$\boldsymbol{p}_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n
Elementary counting argument gives

$$
p_{i b}(n)=i p_{i b}(n-1)-(i-1) p_{i b}(n-b) .
$$

Initial conditions: $p_{i b}(n)=i^{n}, 0 \leq n \leq b-1$

$$
\Rightarrow \sum_{n \geq 0} p_{i b}(n) x^{n}=\frac{1}{1-i x+(i-1) x^{b}}
$$

Note. Thus $p_{i b}(n)$ grows exponentially except for $(i, b)=(2,2)$.

The numbers $e(t)$

For $t \in P_{i b}$, let $\boldsymbol{e}(\boldsymbol{t})$ be the number of paths (saturated chains)
from $\hat{1}$ to t.

The numbers $e(t)$

For $t \in P_{i b}$, let $\boldsymbol{e}(\boldsymbol{t})$ be the number of paths (saturated chains) from $\hat{1}$ to t.

Example. P_{22}

The numbers $e(t)$

For $t \in P_{i b}$, let $\boldsymbol{e}(\boldsymbol{t})$ be the number of paths (saturated chains) from $\hat{1}$ to t.

Example. P_{22}

Pascal's triangle

A generating function for the $e(t)$'s

Fix i and b.
$\boldsymbol{t}_{\boldsymbol{n k}}$: k th element from left in the nth row of $P_{i b}$, beginning with $k=0$.
$\left\langle\begin{array}{l}\boldsymbol{n} \\ \boldsymbol{k}\end{array}\right\rangle=e\left(t_{n k}\right)$
\boldsymbol{q}_{n} : number of elements of $P_{i b}$ of rank n
$r_{n}=\frac{q_{n}-q_{n-1}}{i-1} \in \mathbb{P}=\{1,2, \ldots\}$

A generating function for the $e(t)$'s

Fix i and b.
$\boldsymbol{t}_{\boldsymbol{n k}}$: k th element from left in the nth row of $P_{i b}$, beginning with $k=0$.
$\left\langle\begin{array}{l}\boldsymbol{n} \\ \boldsymbol{k}\end{array}\right\rangle=e\left(t_{n k}\right)$
$\boldsymbol{q}_{\boldsymbol{n}}$: number of elements of $P_{i b}$ of rank n
$r_{n}=\frac{q_{n}-q_{n-1}}{i-1} \in \mathbb{P}=\{1,2, \ldots\}$
Theorem. $\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}=\prod_{j=1}^{n}\left(1+x^{r_{j}}+x^{2 r_{j}}+\cdots+x^{(i-1) r_{j}}\right)$
(analogue of binomial theorem, the case $i=b=2$)

Stability

Theorem (repeated).

$$
\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k}=\prod_{j=1}^{n}\left(1+x^{r_{j}}+x^{2 r_{j}}+\cdots+x^{(i-1) r_{j}}\right)
$$

Stability

Theorem (repeated).
$\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}=\prod_{j=1}^{n}\left(1+x^{r_{j}}+x^{2 r_{j}}+\cdots+x^{(i-1) r_{j}}\right)$
For all $(i, b) \neq(2,2)$, we have $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
\Rightarrow For fixed $k, e\left(t_{0 k}\right), e\left(t_{1 k}\right), e\left(t_{2 k}\right), \ldots$ eventually becomes constant, say \bar{e}_{k}. Then

$$
\sum_{k \geq 0} \bar{e}_{k} x^{k}=\prod_{j=1}^{\infty}\left(1+x^{r_{j}}+x^{2 r_{j}}+\cdots+x^{(i-1) r_{j}}\right)
$$

Sums of powers

$$
\sum_{n}^{(n}\left(n^{n}\right)^{2}=\binom{2 n}{n}
$$

Sums of powers

$$
\begin{gathered}
\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
\end{gathered}
$$

not a rational function (quotient of two polynomials)

Sums of powers

$$
\begin{gathered}
\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
\end{gathered}
$$

not a rational function (quotient of two polynomials)

$$
\sum_{k}\binom{n}{k}^{3}=? ?
$$

Even worse! Generating function is not algebraic.

Sums of powers

$$
\begin{gathered}
\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}
\end{gathered}
$$

not a rational function (quotient of two polynomials)

$$
\sum_{k}\binom{n}{k}^{3}=? ?
$$

Even worse! Generating function is not algebraic.
Much of this behavior is atypical. Different for $(i, b) \neq(2,2)$.

The poset P_{32} (Stern poset)

Very different behavior from P_{22}.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1
1
1

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1

1
1

1
1

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1

2
1
1
1

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

				1				
		1		1				
	1	1	2	1	2	1	1	
1								1

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

							1							
			1				1				1			
	1		1		2		1		2		1			1
1	1	2	1	3	2	3	1	3	2	3	1	2		11

Stern's triangle

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$
- Sum of entries in row $n: 3^{n}$

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)
- $\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$

Stabilization

$$
\sum_{k \geq 0} \bar{e}_{k} x^{k}=\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

The sequence ($\bar{e}_{0}, \bar{e}_{1}, \ldots$) is Stern's diatomic sequence (Moritz Abraham Stern, 1807-1894):

$$
112132314352534154738 \ldots \text {, }
$$

so \bar{e}_{k} is the number of ways to write k as a sum of powers of 2 , where each power of 2 can occur at most twice.

Stabilization

$$
\sum_{k \geq 0} \bar{e}_{k} x^{k}=\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

The sequence ($\bar{e}_{0}, \bar{e}_{1}, \ldots$) is Stern's diatomic sequence (Moritz Abraham Stern, 1807-1894):

$$
112132314352534154738 \ldots \text {, }
$$

so \bar{e}_{k} is the number of ways to write k as a sum of powers of 2 , where each power of 2 can occur at most twice.

Most amazing property: Every positive rational number occurs exactly once among the numbers $\bar{e}_{i} / \bar{e}_{i-1}, i \geq 1$.

Sums of squares

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
\\
& & & & & & & & 1 & & & & & & & \\
& & & 1 & & & & & & & & & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& \boldsymbol{u}_{2}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
& & & & & & & 1 & & & & & & \\
& & & 1 & & & & 1 & & & & 1 & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& \boldsymbol{u}_{2}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \boldsymbol{u}_{2}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1 \\
& \sum_{n \geq 0} u_{2}(n) x^{n}=\frac{1-2 x}{1-5 x+2 x^{2}}
\end{aligned}
$$

Proof

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)^{2}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle
\end{aligned}
$$

Proof

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)^{2}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle
\end{aligned}
$$

Thus define $\boldsymbol{u}_{1,1}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\left\langle\begin{array}{c}n \\ k+1\end{array}\right\rangle$, so

$$
u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n) .
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \cdots+\left(\left\langle\begin{array}{c}
n \\
k-1
\end{array}\right\rangle+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\right)\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle \\
& +\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \cdots+\left(\left\langle\begin{array}{c}
n \\
k-1
\end{array}\right\rangle+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\right)\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle \\
& +\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

Recall also $u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n)$.

Two recurrences in two unknowns

$$
\begin{aligned}
& \text { Let } \boldsymbol{A}:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right] \text {. Then } \\
& \qquad A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] .
\end{aligned}
$$

Two recurrences in two unknowns

$$
\text { Let } \begin{aligned}
& \boldsymbol{A}:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right] . \text { Then } \\
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Two recurrences in two unknowns

Let $A:=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$. Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of A : $x^{2}-5 x+2$

Two recurrences in two unknowns

Let $A:=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$. Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of A : $x^{2}-5 x+2$

$$
\begin{aligned}
\left(A^{2}-5 A+2 I\right) A^{n-1} & =0_{2 \times 2} \\
\Rightarrow u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1)
\end{aligned}
$$

Two recurrences in two unknowns

Let $A:=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]$. Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of A : $x^{2}-5 x+2$

$$
\begin{aligned}
\left(A^{2}-5 A+2 I\right) A^{n-1} & =0_{2 \times 2} \\
\Rightarrow u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1)
\end{aligned}
$$

Also $u_{1,1}(n+1)=5 u_{1,1}(n)-2 u_{1,1}(n-1)$.

Sums of cubes

$$
u_{3}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{3}=1,3,21,147,1029,7203, \ldots
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, n \geq 1
\end{gathered}
$$

Sums of cubes

$$
\begin{gathered}
\boldsymbol{u}_{3}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, n \geq 1 \\
\text { Equivalently, if } \prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)=\sum a_{j} x^{j}, \text { then } \\
\sum a_{j}^{3}=3 \cdot 7^{n-1} .
\end{gathered}
$$

Why so simple?

Same method gives the matrix $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$.

Why so simple?

Same method gives the matrix $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$.
Characteristic polynomial: $x(x-7)$ (zero eigenvalue!)

Why so simple?

Same method gives the matrix $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$.
Characteristic polynomial: $x(x-7)$ (zero eigenvalue!)
Thus $u_{3}(n+1)=7 u_{3}(n), n \geq 1($ not $n \geq 0)$.

Why so simple?

Same method gives the matrix $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]$.
Characteristic polynomial: $x(x-7)$ (zero eigenvalue!)
Thus $u_{3}(n+1)=7 u_{3}(n), n \geq 1($ not $n \geq 0)$.
Much nicer than $\sum_{k}\binom{n}{k}^{3}$

What about $u_{r}(n)$ for general $r \geq 1$?

By the same technique, can show that

$$
\sum_{n \geq 0} u_{r}(n) x^{n}
$$

is rational.

What about $u_{r}(n)$ for general $r \geq 1$?

By the same technique, can show that

$$
\sum_{n \geq 0} u_{r}(n) x^{n}
$$

is rational.
Example. $\sum_{n \geq 0} u_{4}(n) x^{n}=\frac{1-7 x-2 x^{2}}{1-10 x-9 x^{2}+2 x^{3}}$

What about $u_{r}(n)$ for general $r \geq 1$?

By the same technique, can show that

$$
\sum_{n \geq 0} u_{r}(n) x^{n}
$$

is rational.
Example. $\sum_{n \geq 0} u_{4}(n) x^{n}=\frac{1-7 x-2 x^{2}}{1-10 x-9 x^{2}+2 x^{3}}$
Much more can be said!

The Fibonacci poset $\mathfrak{F}=P_{23}$.

Basic properties

\boldsymbol{q}_{n} (number of elements of rank n): $F_{n+2}-1$, where $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$

Basic properties

$\boldsymbol{q}_{\boldsymbol{n}}$ (number of elements of rank n): $F_{n+2}-1$, where $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$
$\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right):=\boldsymbol{I}_{\boldsymbol{n}}(x)$

Basic properties

\boldsymbol{q}_{n} (number of elements of rank n): $F_{n+2}-1$, where $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$
$\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle x^{k}=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right):=\boldsymbol{I}_{\boldsymbol{n}}(x)$
$I_{4}(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right)$
$=1+x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+2 x^{6}+x^{7}+2 x^{8}+x^{9}+x^{10}+x^{11}$

$\Sigma_{k}\left(m_{1}^{2}\right]^{2}$

Can obtain a system of recurrences analogous to

$$
\begin{aligned}
u_{2}(n+1) & =3 u_{2}(n)+2 u_{1,1}(n) \\
u_{1,1}(n+1) & =2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

for Stern's triangle.

$\Sigma_{k}\left(m_{k}^{2}\right]^{2}$

Can obtain a system of recurrences analogous to

$$
\begin{aligned}
u_{2}(n+1) & =3 u_{2}(n)+2 u_{1,1}(n) \\
u_{1,1}(n+1) & =2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

for Stern's triangle.
Quite a bit more complicated (automated by D. Zeilberger).

$\Sigma_{k}\left(m_{k}^{2}\right]^{2}$

Can obtain a system of recurrences analogous to

$$
\begin{aligned}
u_{2}(n+1) & =3 u_{2}(n)+2 u_{1,1}(n) \\
u_{1,1}(n+1) & =2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

for Stern's triangle.
Quite a bit more complicated (automated by D. Zeilberger).
Theorem. $\sum_{n \geq 0} v_{2}(n) x^{n}=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}}$

Higher powers

$\boldsymbol{v}_{r}(\boldsymbol{n})$: sum of r th powers of coefficients of $I_{n}(x)$

$$
V_{r}(x):=\sum_{n \geq 0} v_{r}(n) x^{n}
$$

Higher powers

$\boldsymbol{v}_{r}(\boldsymbol{n})$: sum of r th powers of coefficients of $I_{n}(x)$

$$
V_{r}(x):=\sum_{n \geq 0} v_{r}(n) x^{n}
$$

$V_{r}(x)$ is a rational function.

$V_{r}(x)$ for $r \leq 6$

Theorem. $\quad V_{1}(x)=\frac{1}{1-2 x} \quad$ (clear)

$$
\begin{aligned}
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}} \\
& V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}} \\
& V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}} \\
& V_{6}(x)=\frac{1-17 x^{2}-88 x^{4}-4 x^{6}}{1-2 x-17 x^{2}-28 x^{3}-88 x^{4}+26 x^{5}-4 x^{6}+4 x^{7}}
\end{aligned}
$$

$V_{r}(x)$ for $r \leq 6$

Theorem. $\quad V_{1}(x)=\frac{1}{1-2 x} \quad$ (clear)

$$
\begin{aligned}
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}}
\end{aligned}
$$

$$
V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}}
$$

$$
V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}}
$$

$$
V_{6}(x)=\frac{1-17 x^{2}-88 x^{4}-4 x^{6}}{1-2 x-17 x^{2}-28 x^{3}-88 x^{4}+26 x^{5}-4 x^{6}+4 x^{7}}
$$

Note. Numerator is "even part" of denominator. Why?

Strings of size two and three

Strings of size two and three

Strings of size two and three

What is the sequence of string sizes on each level? E.g., on level 5, the sequence $2,3,2,3,3,2,3,2$.

The limiting sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

The limiting sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.

The limiting sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.
Theorem. The limiting sequence $\left(c_{1}, c_{2}, \ldots\right)$ is given by

$$
c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor .
$$

Properties of $\boldsymbol{c}_{\boldsymbol{n}}=1+\lfloor\boldsymbol{n} \phi\rfloor-\lfloor(\boldsymbol{n}-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).

Properties of $c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \ldots$ (concatenation), where $z_{1}=3, z_{2}=23$, $z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \cdot \cdots
$$

Properties of $c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \ldots$ (concatenation), where $z_{1}=3, z_{2}=23$,
$z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \cdot \cdots
$$

- Sequence of number of 3's between consecutive 2's is the original sequence with 1 subtracted from each term.

Coefficients of $I_{n}(x)$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Coefficients of $I_{n}(x)$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Example. Coefficient of x^{8} in $(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right)\left(1+x^{8}\right)$ is $3:$

$$
8=5+3=5+2+1
$$

Coefficients of $I_{n}(x)$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Example. Coefficient of x^{8} in $(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right)\left(1+x^{8}\right)$ is $3:$

$$
8=5+3=5+2+1
$$

Can we see these sums from \mathfrak{F} ? Each path from the top to a point $t \in \mathfrak{F}$ should correspond to a sum.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

The edges between ranks $2 k-1$ and $2 k$ are labelled alternately $F_{2 k+1}, 0, F_{2 k+1}, 0, \ldots$ from left to right.

Diagram of the edge labeling

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

If $\operatorname{rank}(t)=n$, this gives all ways to write $\sigma(t)$ as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

An example

$$
2+3=F_{3}+F_{4}
$$

An example

$$
5=F_{5}
$$

An ordering of \mathbb{N}

In the limit as rank $\rightarrow \infty$, get an interesting dense linear ordering \prec of \mathbb{N}.

Special case of \prec

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2} (Zeckendorf's theorem).

$$
n=F_{j_{1}}+\cdots+F_{j_{s}}, \quad j_{1}<\cdots<j_{s}
$$

Special case of \prec

Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2} (Zeckendorf's theorem).

$$
n=F_{j_{1}}+\cdots+F_{j_{s}}, \quad j_{1}<\cdots<j_{s}
$$

Then $n \prec 0$ if and only if j_{1} is odd.

Congruence properties

$\boldsymbol{h}_{\boldsymbol{m}, a}(\boldsymbol{n})$: number of coefficients of $I_{n}(x)$ that are $\equiv a(\bmod m)$.

$$
H_{m, a}(x):=\sum_{n \geq 0} h_{m, a}(n) x^{n} .
$$

Congruence properties

$\boldsymbol{h}_{\boldsymbol{m}, a}(\boldsymbol{n})$: number of coefficients of $I_{n}(x)$ that are $\equiv a(\bmod m)$.

$$
H_{m, a}(x):=\sum_{n \geq 0} h_{m, a}(n) x^{n}
$$

Can show that $H_{m, a}(x)$ is a rational function.

$\boldsymbol{n}=2,3$

$H_{2,0}(x)=\frac{x^{3}\left(1-2 x^{2}\right)}{(1-x)\left(1-x-x^{2}\right)\left(1-2 x+2 x^{2}-2 x^{3}\right)}$
$H_{2,1}(x)=\frac{1+2 x^{2}}{1-2 x+2 x^{2}-2 x^{3}}$
$H_{3,0}(x)=\frac{2 x^{5}\left(1-2 x^{2}\right)}{(1-x)\left(1-x-x^{2}\right)\left(1-2 x+2 x^{2}-3 x^{3}+4 x^{4}-4 x^{5}\right)}$
$H_{3,1}(x)=\frac{1-2 x+4 x^{2}-6 x^{3}+8 x^{4}-10 x^{5}+8 x^{6}-6 x^{7}}{(1-x)\left(1-x+x^{2}\right)\left(1-2 x+2 x^{2}-3 x^{3}+4 x^{4}-4 x^{5}\right)}$
$H_{3,2}(x)=\frac{x^{3}\left(1+2 x^{4}\right)}{(1-x)\left(1-x+x^{2}\right)\left(1-2 x+2 x^{2}-3 x^{3}+4 x^{4}-4 x^{5}\right)}$

$n=4$

$$
\begin{aligned}
& H_{4,0}(x)=\frac{x^{6}\left(1-2 x^{2}\right)\left(1-3 x^{2}+4 x^{3}-4 x^{4}\right)}{(1-x)\left(1-x-x^{2}\right)\left(1-x^{2}+2 x^{4}\right)\left(1-2 x+2 x^{2}-2 x^{3}\right)^{2}} \\
& H_{4,1}(x)=\frac{1-2 x+5 x^{2}-8 x^{3}+10 x^{4}-12 x^{5}+8 x^{6}-6 x^{7}}{(1-x)\left(1-2 x+2 x^{2}-2 x^{3}\right)\left(1-x+2 x^{2}-2 x^{3}+2 x^{4}\right)} \\
& H_{4,2}(x)=\frac{x^{3}\left(1+x^{2}\right)\left(1-2 x^{2}\right)}{\left(1-x^{2}+2 x^{4}\right)\left(1-2 x+2 x^{2}-2 x^{3}\right)^{2}} \\
& H_{4,3}(x)=\frac{2 x^{5}\left(1+x^{2}\right)}{(1-x)\left(1-2 x+2 x^{2}-2 x^{3}\right)\left(1-x+2 x^{2}-2 x^{3}+2 x^{4}\right)}
\end{aligned}
$$

$n=4$

$$
\begin{aligned}
& H_{4,0}(x)=\frac{x^{6}\left(1-2 x^{2}\right)\left(1-3 x^{2}+4 x^{3}-4 x^{4}\right)}{(1-x)\left(1-x-x^{2}\right)\left(1-x^{2}+2 x^{4}\right)\left(1-2 x+2 x^{2}-2 x^{3}\right)^{2}} \\
& H_{4,1}(x)=\frac{1-2 x+5 x^{2}-8 x^{3}+10 x^{4}-12 x^{5}+8 x^{6}-6 x^{7}}{(1-x)\left(1-2 x+2 x^{2}-2 x^{3}\right)\left(1-x+2 x^{2}-2 x^{3}+2 x^{4}\right)} \\
& H_{4,2}(x)=\frac{x^{3}\left(1+x^{2}\right)\left(1-2 x^{2}\right)}{\left(1-x^{2}+2 x^{4}\right)\left(1-2 x+2 x^{2}-2 x^{3}\right)^{2}} \\
& H_{4,3}(x)=\frac{2 x^{5}\left(1+x^{2}\right)}{(1-x)\left(1-2 x+2 x^{2}-2 x^{3}\right)\left(1-x+2 x^{2}-2 x^{3}+2 x^{4}\right)}
\end{aligned}
$$

- Why the factorization of the denominators?
- Why so many numerators with two terms?

References

The Stern triangle: Amer. Math. Monthly 127 (2020), 99-111; arXiv:1901.04647
D. Speyer, arXiv:1901:06301

The Fibonacci triangle (and more): arXiv:2101.02131

The final slide

The final slide

