Increasing and decreasing sub-
sequences

318496725 (is.)
318496725 (d.s.)

is(w) = |longest i.s.| =4
ds(w) = |longest d.s.| =3



Application: airplane boarding

Naive model: passengers board in
orderw = aja9 - --apforseats1,2,...,n.
Each passenger takes one time unit to
be seated after arriving at his seat.
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Easy: Total waiting time = is(w).



Bachmat, et al.: more sophisti-
cated model.

Two conclusions:

e Usual system (back-to-front) about
as good as random.

e Better: first board window seats, then
center, then aisle



partition A\ n: A = (A, Ao, .. .)

(Young) diagram of A = (4,4,3,1):

Young diagram of the conjugate par-
tition N = (4, 3,3, 2):




standard Young tableau (SYT) of
shape AFn, eg, A =(4,4,3,1):

<

1 10
3 8|12
41 6|11
9

f>‘ = # of SY'T of shape A

E.g., f<372> = b:

123 124 125 134 135
45 39 34 29 24

3 simple formula for f* (Frame-Robinson-
Thrall hook-length formula)



Note. fA = dim(irrep. of &), where
Sy, is the symmetric group of all
permutations of 1,2...,n.

RSK algorithm: a bijection

w = (P,Q),

where w € G,, and P, () are SY'T of the
same shape A - n.

Write A = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth



w = 4132:




Schensted’s theorem: Let w lﬂg

(P,Q), where sh(P) = sh(Q) = .
Then

is(w) = longest row length = A\
ds(w) = longest column length = M.

Corollary (Erdos-Szekeres, Seiden-
berg). Let w € Gp441. Then either
is(w) > p or ds(w) > q.

Proof. Let A = sh(w). If is(w) < p
and ds(w) < g then A\ < pand \| < ¢,



Corollary. Say p < q. Then
#{w € Gy 1 is(w) = p, ds(w) = g}

_ (f(pq)) .

By hook-length formula, this is

( (pq)! )2
1122...pp(p_|_1)p...qp(q_|_1)p—1,”(p_|_q_1)1 .




Romik: let
we Gy, is(w)=ds(w)=p.

Let P, be the permutation matrix of
w with corners (41, +1). Then (infor-
mally) as p — oo almost surely the 1's
in P, will become dense in the region
bounded by the curve

(2% — y*)* +2(z° + y*) = 3,

and will remain isolated outside this re-
o101,

I_H
LERNIEN
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w=09,11,6,14,2,10,1,5,13,3,16,8, 15,4, 12, 7
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Distribution of is(w)

E(n) = expectation of is(w), w € &y,
1 1) 2
=M ()
AFn

Ulam: what is distribution of is(w)?
rate of growth of E(n)?

Hammersley (1972):
Jce= lim n Y2E(n),

n—oeo

and

A

-
— < c<Le.
2

Conjectured ¢ = 2.
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Logan-Shepp, Vershik-Kerov (1977):
c=2

Idea of proof.

B = S (1)
An

1 2
A~ — max \q (f)‘) .

n! \n

Find “limiting shape” of A = n maxi-
mizing A as n — oo using hook-length
formula.

13



i / /A log(f @)+~ (y) —z—y)de dy,

subject to
// dx dy = 1.
A

14



r =y-+2cost

2
y = —(sinf — 0 cos0)

-

0<O<
2
15
.
0.5
ot o5 1 15 2
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up(n) = #{w e &, : isp(w) < k}.

J. M. Hammersley (1972):
L [2n
i) = Cu= 5 ().

n+1\n

a Catalan number.

For >130 combinatorial interpretations
of C),, see

www-math.mit.edu/~rstan/ec

16



I. Gessel (1990):

Zuk n'2 —det {]h ]|(2:1:)r'

Y
1,7=1
n>0 J

where
MA2]

jlm + )l

7>0

a hyperbolic Bessel function of the
first kind of order m.

Eg.,

> ug(n Up(2x)* — Uy(22)7

n>0

17



Corollary. For fixed k, up(n) is P-
recursive, e.g.,

(n+ 4)(n + 3)*u4(n)
= (20n° +62n% +22n — 24)uy(n — 1)
—64n(n — 1)%uy(n — 2)

(n +6)%(n + 4)%us(n)
= (375—400n—843n*—322n"—35n" Jus(n—1)
+(259n2+622n4+45) (n—1)us(n—2)
—225(n — 1)%(n — 2)%us(n — 3).

Conjectures on form of recurrence due
to Bergeron, Favreau, and Krob.

18



Baik-Deift-Johansson:

Define u(x) by

)
%u(@ = 2u(z)’ +zu(r) (%),

with certain mitial conditions.

() is the Painlevé IT equation (roughly,
the branch points and essential singu-

larities are independent of the initial con-
ditions).

19



Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright;:
set flicht duration record of one hour, 10
minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

20



Tracy-Widom distribution:
F'(t)

— exp (— /t Oo(a; - t)u<x)2dg;>

Theorem (Baik-Deift-Johansson) For
random (uniform) w € &, and all
t € R we have

lim Prob (iS”(w) 2V _ t) — F(t).

n— 00 nl/6

Corollary.
safw) = 2+ ([ 4F(0) 00+ ofa

= 2y/n — (17711 -- -)n1/6 + 0(n1/6>

21



Gessel’s theorem reduces the problem
to “just” analysis, viz., the Riemann-
Hilbert problem in the theory of in-
tegrable systems, and the method of
steepest descent to analyze the asymp-
totic behavior of integrable systems.

Where did the Tracy-Widom distribu-
tion F(t) come from?

22



Gaussian Unitary Ensemble (GUE):

Consider an n X n hermitian matrix

M = (M;;) with probability density

Z—le—tr<M2)dM

n )
dM = | | dM;,

1
1 dRe(M;))d(Im(M;5)),
i<j
where Z,, 1s a normalization constant.

23



Tracy-Widom (1994): let aq de-
note the largest eigenvalue of M. Then

lim
n—ao

Prob ((a1 _ m) Vanl/6 < t)
= F(t).

24



[s the connection between is(w) and
GUE a coincidence?

Okounkov provides a connection, via
the theory of random topologies on
surfaces. Very briefly, a surface can be
described in two ways:

e Gluing polygons along their edges,
connected to random matrices via quan-
tum gravity.

e Ramified covering of a sphere, which
can be formulated in terms of per-
mutations.

25



Joint with:

Bill Chen [R7K I
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Rosena Du L7582
Catherine Yan Eii4AE3E

26



(complete) matching:

SN O,

crossing: 7N N
nesting: ~ —~\

total number of matchings on [2n] :=
{1,2,...,2n} is

2n —1)!:=1-3-5---(2n —1).

Theorem. The number of match-

ings on [2n| with no crossings (or with
no nestings) is

1 2N
C, = ,
" n+1<n)

27




Well-known:

Cp=#{a1--agy, 1 a; = *1,
b= 0.3 a0}

(ballot sequence).

S OO AN

-1

/7@?\ 7
1 1 -1 1 -1 -1 1 -
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What is the analogue of increasing and
decreasing subsequences for matchings

M?

Associate with a matching M on the
vertices 1,2,...,2n a fixed-point free
involution wps € Goy:

PN N

1 2 3 4 5 6 7 1

Whr = <17 5> <27 7> <37 4) <67 8>

Flaw: no symmetry between is and
ds (different distributions on fixed-point
free involutions).

29



NN

3—-crossing
NN
3—-nesting
M = matching

cr(M) = max{k : 3 k-crossing}

|
ne(M) = max{k : 3 k-nesting} = ids(wM)

Theorem. Let f,,(i,j) = # match-
ings M on [2n| with cx(M) = © and
ne(M) =j. Then fn(i,3) = fn(J,1).

Corollary. # matchings M on |2n]

with cr(M) = k equals # matchings
M on 2n] with ne(M) = k.

30



Main tool: oscillating tableaux.

¢ O g O o

shape (3,1), length 8

31




® is a bijection from matchings on
1,2,...,2n tooscillating tableaux of length
2n, shape 0.

Corollary. Number of oscillating
tableaux of length 2n, shape 0, is
2n—1)!! (related to Brauer algebra
of dimension (2n — 1)!1).

Schensted’s theorem for match-
ings. Let

O(M) = (0= AL N =0).
Then

cr(M) = max{(\)} : 0<i<n}

ne(M) = max{A] : 0 <i<n}.

Proof. Reduce to ordinary RSK.
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Now let cr(M) = ¢, ne(M) = 7, and
O(M) = (0= AL N =0).
Define M’ by
O(M') = (0 =\, (A, ... (A2 = 0).
By Schensted’s theorem for matchings,
cr(M') =4, ne(M') =i.

Thus M +— M’ is an involution on
matchings of [2n]| interchanging cr and
ne.

= Theorem. Let f,(¢,7) = # match-
ings M on [2n| with cx(M) = ¢ and
ne(M) =j. Then fn(i,3) = fn(J,1).

Open: simple description of M +—
M’ the analogue of

ajag -+ ap — Gp -+ 0207,

which interchanges is and ds.
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Enumeration of k-noncrossing
matchings (or nestings).

Recall: The number of matchings M

on [2n] with no crossings, i.e., cr(M) =

1, (or with no nestings) is C', = %H (27? .

What about the number with cr(M) <
k7

Assume cr(M) < k. Let
O(M) = (0= AL . N =0).

Regard each A\ = ( 71, L )\7]’{) e NF.

34



Corollary. The number fi.(n) of
matchings M on [2n] with cr(M) <
k 1s the number of lattice paths of
length 2n from O to 0 in the region

Cpn:={lar,...,ar) e NV : aq; <--- < ap}

with steps +e; (e; = ith unit coordi-
nate vector).

Cn @ R>q is a fundamental chamber
for the Weyl group of type Bj.
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Grabiner-Magyar: applied Gessel-
Zeilberger reflection principle to
solve this lattice path problem (not know-
ing connection with matchings).

Theorem. Define

:C2n
Hy(x) = ka(n)(zn)!'
Then

Hk<ilj‘) = det {]’Z_]’(QZIZ) — ]H_j(Q:C)}

where

k
1,)=1

2M+2)
glim + j)!

720

as before.
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Example. k = 1 (noncrossing match-

ings):
Hy(z) = Io(22) —2f2(2$)
= Z@%
j=0
Compare:

up(n) = #{w € &, : longest increasing

subsequence of length < k}.
2n

Z uk(n)x— = det []Z-_j(Qx)] ij=1 :

37



Baik-Rains (implicitly):

lim Prob (CM(M) — V2n < E) = I7(t),

n— 00 (272)1/6 — 9

where

Fi(t) = V(D) exp (; / mu(@dx) |

where F'(t) is the Tracy-Widom distri-
bution and u(x) the Painlevé II func-
tion.




gj,k(n) = #{matchings M on [2n/,
cr(M) < 7, ne(M) < k}

Now

gipn) =#{0 =" ... N =0) -

AN =N +o N Cjxk rectangle},

a walk on the Hasse diagram H(j, k)
of

L(g,k) :={X Cj X k rectangle},

ordered by inclusion.
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A = adjacency matrix of H(j, k)
Ag = adjacency matrix of H(j, k) — {0}.

Transter-matrix method =

det(I — xAp)
° Qn p— O
Z 9j k()2 det(l —zA)
n>0

Theorem (Grabiner, implicitly) Fv-
ery zero of det(I — xA) has the form

2(cos(mry/m) + -+ + COS(?T?“j/m)),
where each r; € Zand m =7+ k + 1.

Corollary. Fvery factor of det(l —
rA) over Q has degree dividing

SO+ k+ 1),

where ¢ s the Euler phi-function.
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Example.
j=2 k=5 3¢(16) = 4:

det(I — zA) = (1 —227)(1 — 42+ 22%)
(1—8z°+8z%)(1—8x°+8x° — 22%)
(1 — 827 — 8z — 22%)

j=k=3 Jo(14) =3
det(I—zA) = (1—2)(1+z)(1+2—9z°—2?)

(1—:13—9:1:2+:133)(1—:1:—2:132+:133)2
(1+z— 2% — 1°)°
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Partition of the set [n]:
{1,5}, {2}, {3,6,8,9}, {4,7,10}

SRS

1 2 3 4 5 o6 ¢ 8 9 1

Generalize oscillating tableaux to
vacillating tableaux (related to the
partition algebra).
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