
Increasing and decreasing sub-
sequences

3 1 84 96 7 2 5 (i.s.)

3 18 4 9 6 72 5 (d.s.)

is(w) = |longest i.s.| = 4

ds(w) = |longest d.s.| = 3
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Application: airplane boarding

Naive model: passengers board in
order w = a1a2 · · · an for seats 1, 2, . . . , n.
Each passenger takes one time unit to
be seated after arriving at his seat.

5 3 2 1

2 1

2536 14

5 3 6 4

6 4

2 5 3 6 1 4

6 5 4 3 2 1

Easy: Total waiting time = is(w).
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Bachmat, et al.: more sophisti-
cated model.

Two conclusions:

• Usual system (back-to-front) about
as good as random.

• Better: first board window seats, then
center, then aisle
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partition λ ⊢ n: λ = (λ1, λ2, . . .)

λ1 ≥ λ2 ≥ · · · ≥ 0
∑

λi = n

(Young) diagram of λ = (4, 4, 3, 1):

Young diagram of the conjugate par-
tition λ′ = (4, 3, 3, 2):
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standard Young tableau (SYT) of
shape λ ⊢ n, e.g., λ = (4, 4, 3, 1):

2

12

1 7 10

3 5 8

4 6 11

9

<

<

fλ = # of SYT of shape λ

E.g., f (3,2) = 5:

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5
4 5 3 5 3 4 2 5 2 4

∃ simple formula for fλ (Frame-Robinson-
Thrall hook-length formula)
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Note. fλ = dim(irrep. of Sn), where
Sn is the symmetric group of all
permutations of 1, 2 . . . , n.

RSK algorithm: a bijection

w
rsk→ (P,Q),

where w ∈ Sn and P,Q are SYT of the
same shape λ ⊢ n.

Write λ = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth
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w = 4132:

4           1          1 3        1 2         1 2        1 2          1   
             4          4           3            3
                                      4

φ

φ

4 123421 3

φ

Q P

(P,Q) =





1 2
3
4

,
1 3
2
4




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Schensted’s theorem: Let w
rsk→

(P,Q), where sh(P ) = sh(Q) = λ.
Then

is(w) = longest row length = λ1

ds(w) = longest column length = λ′1.

Corollary (Erdős-Szekeres, Seiden-
berg). Let w ∈ Spq+1. Then either
is(w) > p or ds(w) > q.

Proof. Let λ = sh(w). If is(w) ≤ p
and ds(w) ≤ q then λ1 ≤ p and λ′1 ≤ q,
so
∑

λi ≤ pq. ✷
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Corollary. Say p ≤ q. Then

#{w ∈ Spq : is(w) = p, ds(w) = q}

=
(

f (pq)
)2

By hook-length formula, this is

(

(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1 · · · (p + q − 1)1

)2

.
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Romik: let

w ∈ Sp2, is(w) = ds(w) = p.

Let Pw be the permutation matrix of
w with corners (±1,±1). Then (infor-
mally) as p → ∞ almost surely the 1’s
in Pw will become dense in the region
bounded by the curve

(x2 − y2)2 + 2(x2 + y2) = 3,

and will remain isolated outside this re-
gion.

w = 9, 11, 6, 14, 2, 10, 1, 5, 13, 3, 16, 8, 15, 4, 12, 7
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–1

–0.5

0.5

1

y

–1 –0.5 0.5 1

x

(x2 − y2)2 + 2(x2 + y2) = 3
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Distribution of is(w)

E(n) = expectation of is(w), w ∈ Sn

=
1

n!

∑

λ⊢n

λ1

(

fλ
)2

Ulam: what is distribution of is(w)?
rate of growth of E(n)?

Hammersley (1972):

∃ c = lim
n→∞n−1/2E(n),

and
π

2
≤ c ≤ e.

Conjectured c = 2.
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Logan-Shepp, Vershik-Kerov (1977):
c = 2

Idea of proof.

E(n) =
1

n!

∑

λ⊢n

λ1

(

fλ
)2

≈ 1

n!
max
λ⊢n

λ1

(

fλ
)2

.

Find “limiting shape” of λ ⊢ n maxi-
mizing λ as n → ∞ using hook-length
formula.
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(x,y)

f(x)−y

−1

x

y

f   (y)−x

A

y = f(x)

min

∫∫

A
log(f (x)+f−1(y)−x−y)dx dy,

subject to
∫∫

A
dx dy = 1.
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x = y + 2 cos θ

y =
2

π
(sin θ − θ cos θ)

0 ≤ θ ≤ π

0

0.5

1

1.5

2

0.5 1 1.5 2
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uk(n) := #{w ∈ Sn : isn(w) ≤ k}.

J. M. Hammersley (1972):

u2(n) = Cn =
1

n + 1

(

2n

n

)

,

a Catalan number.

For≥130 combinatorial interpretations
of Cn, see

www-math.mit.edu/∼rstan/ec
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I. Gessel (1990):

∑

n≥0

uk(n)
x2n

n!2
= det

[

I|i−j|(2x)
]k

i,j=1
,

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!
,

a hyperbolic Bessel function of the
first kind of order m.

E.g.,

∑

n≥0

u2(n)
x2n

n!2
= U0(2x)2 − U1(2x)2

=
∑

n≥0

Cn
x2n

n!2
.
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Corollary. For fixed k, uk(n) is P-
recursive, e.g.,

(n + 4)(n + 3)2u4(n)

= (20n3 +62n2 +22n− 24)u4(n− 1)

−64n(n − 1)2u4(n − 2)

(n + 6)2(n + 4)2u5(n)

= (375−400n−843n2−322n3−35n4)u5(n−1)

+(259n2+622n+45)(n−1)2u5(n−2)

−225(n − 1)2(n − 2)2u5(n − 3).

Conjectures on form of recurrence due
to Bergeron, Favreau, and Krob.
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Baik-Deift-Johansson:

Define u(x) by

d2

dx2
u(x) = 2u(x)3 + xu(x) (∗),

with certain initial conditions.

(∗) is the Painlevé II equation (roughly,
the branch points and essential singu-
larities are independent of the initial con-
ditions).
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Paul Painlevé

1863: born in Paris.

1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright;
set flight duration record of one hour, 10
minutes.

1917, 1925: Prime Minister of France.

1933: died in Paris.
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Tracy-Widom distribution:

F (t)

= exp

(

−
∫ ∞

t
(x − t)u(x)2 dx

)

Theorem (Baik-Deift-Johansson) For
random (uniform) w ∈ Sn and all
t ∈ R we have

lim
n→∞Prob

(

isn(w) − 2
√

n

n1/6
≤ t

)

= F (t).

Corollary.

isn(w) = 2
√

n +

(∫

t dF (t)

)

n1/6 + o(n1/6)

= 2
√

n − (1.7711 · · ·)n1/6 + o(n1/6)
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Gessel’s theorem reduces the problem
to “just” analysis, viz., the Riemann-
Hilbert problem in the theory of in-
tegrable systems, and the method of
steepest descent to analyze the asymp-
totic behavior of integrable systems.

Where did the Tracy-Widom distribu-
tion F (t) come from?

————————————————-

F (t)

= exp

(

−
∫ ∞

t
(x − t)u(x)2 dx

)

d2

dx2
u(x) = 2u(x)3 + xu(x) (∗),
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Gaussian Unitary Ensemble (GUE):

Consider an n × n hermitian matrix
M = (Mij) with probability density

Z−1
n e−tr(M2)dM,

dM =
∏

i

dMii

·
∏

i<j

d(Re(Mij))d(Im(Mij)),

where Zn is a normalization constant.
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Tracy-Widom (1994): let α1 de-
note the largest eigenvalue of M . Then

lim
n→∞

Prob
((

α1 −
√

2n
)√

2n1/6 ≤ t
)

= F (t).
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Is the connection between is(w) and
GUE a coincidence?

Okounkov provides a connection, via
the theory of random topologies on
surfaces. Very briefly, a surface can be
described in two ways:

• Gluing polygons along their edges,
connected to random matrices via quan-
tum gravity.

• Ramified covering of a sphere, which
can be formulated in terms of per-
mutations.
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Joint with:

Bill Chen �
�

Eva Deng ���

Rosena Du ���

Catherine Yan 	��
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(complete) matching:

crossing:   

nesting:  

total number of matchings on [2n] :=
{1, 2, . . . , 2n} is

(2n − 1)!! := 1 · 3 · 5 · · · (2n − 1).

Theorem. The number of match-
ings on [2n] with no crossings (or with
no nestings) is

Cn :=
1

n + 1

(

2n

n

)

.
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Well-known:

Cn = #{a1 · · · a2n : ai = ±1,

a1 + · · · + ai ≥ 0,
∑

ai = 0}
(ballot sequence).

1 1 1 −1 −1 1 −1−1

1 1 −1 1 −1 −1 1 −1
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What is the analogue of increasing and
decreasing subsequences for matchings
M?

Associate with a matching M on the
vertices 1, 2, . . . , 2n a fixed-point free
involution wM ∈ S2n:

31 2 4 5 6 7 8

wM = (1, 5)(2, 7)(3, 4)(6, 8)

Flaw: no symmetry between is and
ds (different distributions on fixed-point
free involutions).
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3−nesting

3−crossing

M = matching

cr(M ) = max{k : ∃ k-crossing}

ne(M ) = max{k : ∃ k-nesting} =
1

2
ds(wM )

Theorem. Let fn(i, j) = # match-
ings M on [2n] with cr(M ) = i and
ne(M ) = j. Then fn(i, j) = fn(j, i).

Corollary. # matchings M on [2n]
with cr(M ) = k equals # matchings
M on [2n] with ne(M ) = k.
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Main tool: oscillating tableaux.

φ  

shape (3, 1), length 8

24 4 3 1 123
4            2           2          2 3        1 3          1            1
              4                                    2             2

φφ

φ)Φ(Μ) = (  φ
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Φ is a bijection from matchings on
1, 2, . . . , 2n to oscillating tableaux of length
2n, shape ∅.
Corollary. Number of oscillating

tableaux of length 2n, shape ∅, is
(2n−1)!! (related to Brauer algebra

of dimension (2n − 1)!!).

Schensted’s theorem for match-
ings. Let

Φ(M ) = (∅ = λ0, λ1, . . . , λ2n = ∅).
Then

cr(M ) = max{(λi)′1 : 0 ≤ i ≤ n}
ne(M ) = max{λi

1 : 0 ≤ i ≤ n}.

Proof. Reduce to ordinary RSK.
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Now let cr(M ) = i, ne(M ) = j, and

Φ(M ) = (∅ = λ0, λ1, . . . , λ2n = ∅).
Define M ′ by

Φ(M ′) = (∅ = (λ0)′, (λ1)′, . . . , (λ2n)′ = ∅).
By Schensted’s theorem for matchings,

cr(M ′) = j, ne(M ′) = i.

Thus M 7→ M ′ is an involution on
matchings of [2n] interchanging cr and
ne.

⇒Theorem. Let fn(i, j) = # match-
ings M on [2n] with cr(M ) = i and
ne(M ) = j. Then fn(i, j) = fn(j, i).

Open: simple description of M 7→
M ′, the analogue of

a1a2 · · · an 7→ an · · · a2a1,

which interchanges is and ds.
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Enumeration of k-noncrossing
matchings (or nestings).

Recall: The number of matchings M
on [2n] with no crossings, i.e., cr(M ) =

1, (or with no nestings) is Cn = 1
n+1

(2n
n

)

.

What about the number with cr(M ) ≤
k?

Assume cr(M ) ≤ k. Let

Φ(M ) = (∅ = λ0, λ1, . . . , λ2n = ∅).

Regard each λi = (λi
1, . . . , λ

i
k) ∈ Nk.
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Corollary. The number fk(n) of
matchings M on [2n] with cr(M ) ≤
k is the number of lattice paths of
length 2n from 0 to 0 in the region

Cn := {(a1, . . . , ak) ∈ Nk : a1 ≤ · · · ≤ ak}
with steps ±ei (ei = ith unit coordi-
nate vector).

Cn ⊗ R≥0 is a fundamental chamber
for the Weyl group of type Bk.
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Grabiner-Magyar: applied Gessel-
Zeilberger reflection principle to
solve this lattice path problem (not know-
ing connection with matchings).

Theorem. Define

Hk(x) =
∑

n

fk(n)
x2n

(2n)!
.

Then

Hk(x) = det
[

I|i−j|(2x) − Ii+j(2x)
]k

i,j=1

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!

as before.
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Example. k = 1 (noncrossing match-
ings):

H1(x) = I0(2x) − I2(2x)

=
∑

j≥0

Cj
x2j

(2j)!
.

Compare:

uk(n) := #{w ∈ Sn : longest increasing

subsequence of length ≤ k}.
∑

n≥0

uk(n)
x2n

n!2
= det

[

Ii−j(2x)
]k
i,j=1 .
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Baik-Rains (implicitly):

lim
n→∞Prob

(

crn(M ) −
√

2n

(2n)1/6
≤ t

2

)

= F1(t),

where

F1(t) =
√

F (t) exp

(

1

2

∫ ∞

t
u(x)dx

)

,

where F (t) is the Tracy-Widom distri-
bution and u(x) the Painlevé II func-
tion.

————————————————

F (t)

= exp

(

−
∫ ∞

t
(x − t)u(x)2 dx

)

d2

dx2
u(x) = 2u(x)3 + xu(x)
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gj,k(n) := #{matchings M on [2n],

cr(M ) ≤ j, ne(M ) ≤ k}
Now

gj,k(n) = #{(∅ = λ0, λ1, . . . , λ2n = ∅) :

λi+1 = λi ±✷, λi ⊆ j × k rectangle},
a walk on the Hasse diagram H(j, k)
of

L(j, k) := {λ ⊆ j × k rectangle},
ordered by inclusion.
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L(2,3)
φ
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A = adjacency matrix of H(j, k)

A0 = adjacency matrix of H(j, k) − {∅}.
Transfer-matrix method ⇒
∑

n≥0

gj,k(n)x2n =
det(I − xA0)

det(I − xA)
.

Theorem (Grabiner, implicitly) Ev-
ery zero of det(I − xA) has the form

2(cos(πr1/m) + · · · + cos(πrj/m)),

where each ri ∈ Z and m = j + k + 1.

Corollary. Every factor of det(I −
xA) over Q has degree dividing

1

2
φ(2(j + k + 1)),

where φ is the Euler phi-function.
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Example.
j = 2, k = 5, 1

2φ(16) = 4:

det(I−xA) = (1−2x2)(1−4x2 +2x4)

(1−8x2+8x4)(1−8x2+8x3−2x4)

(1 − 8x2 − 8x3 − 2x4)

j = k = 3, 1
2φ(14) = 3:

det(I−xA) = (1−x)(1+x)(1+x−9x2−x3)

(1−x−9x2+x3)(1−x−2x2+x3)2

(1 + x − 2x2 − x3)2
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Partition of the set [n]:

{1, 5}, {2}, {3, 6, 8, 9}, {4, 7, 10}

1 2 3 4 5 6 7 8 9 10

Generalize oscillating tableaux to
vacillating tableaux (related to the
partition algebra).
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