Catalan Numbers

Richard P. Stanley

March 20, 2018

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$$C_0=1,\ C_1=2,\ C_2=3,\ C_3=5,\ C_4=14,\dots$$

C_n is a **Catalan number**.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 270,000 sequences of integers.

A000108: 1, 1, 2, 5, 14, 42, 132, 429, . . .

$$C_0=1,\ C_1=2,\ C_2=3,\ C_3=5,\ C_4=14,\ldots$$

C_n is a **Catalan number**.

Comments. . . . This is probably the longest entry in OEIS, and rightly so.

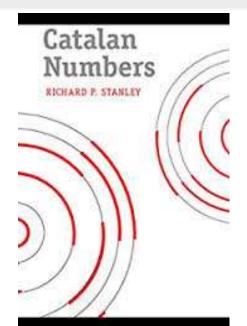
Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of C_n and 68 additional problems.



Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1}\alpha$$

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1} \alpha$$

First example of an infinite trigonometric series.

Sharabiin Myangat, also known as Minggatu, Ming'antu (明安图), and Jing An (c. 1692–c. 1763): a Mongolian astronomer, mathematician, and topographic scientist who worked at the Qing court in China.

Typical result (1730's):

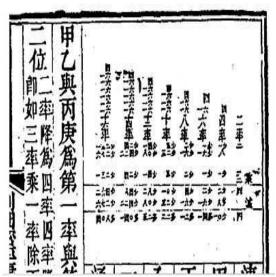
$$\sin(2\alpha) = 2\sin\alpha - \sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin^{2n+1}\alpha$$

First example of an infinite trigonometric series.

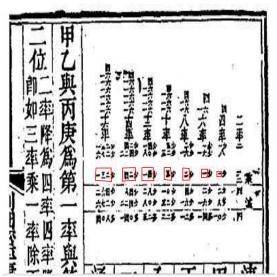
No combinatorics, no further work in China.

Ming'antu

Manuscript of Ming'antu

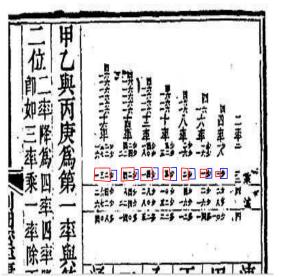


Manuscript of Ming'antu



ロト 4回 ト 4 重 ト 4 重 ト 1 重 の 9 (0)

Manuscript of Ming'antu

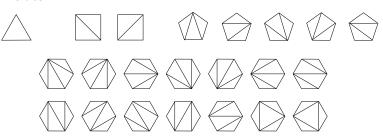


少

ロト 4回 ト 4 重 ト 4 重 ト 9 年 の 9 で

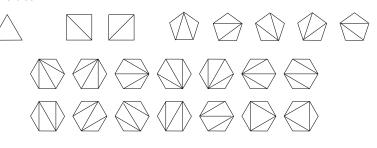
More history, via Igor Pak

• Euler (1751): conjectured formula for the number of triangulations of a convex (n+2)-gon. In other words, draw n-1 noncrossing diagonals of a convex polygon with n+2 sides.



More history, via Igor Pak

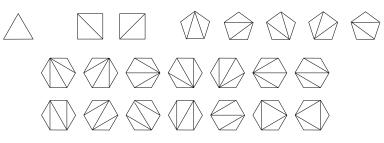
• Euler (1751): conjectured formula for the number of triangulations of a convex (n+2)-gon. In other words, draw n-1 noncrossing diagonals of a convex polygon with n+2 sides.



1, 2, 5, 14, ...

More history, via Igor Pak

• Euler (1751): conjectured formula for the number of triangulations of a convex (n + 2)-gon. In other words, draw n - 1 noncrossing diagonals of a convex polygon with n + 2 sides.



1, 2, 5, 14, ...

We define these numbers to be the Catalan numbers C_n .

Completion of proof

- Goldbach and Segner (1758–1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

Catalan

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n! (n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n+1 letters.

Catalan

• Eugène Charles Catalan (1838): wrote C_n in the form $\frac{(2n)!}{n! (n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of n+1 letters.

Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

• **John Riordan** (1948): introduced the term "Catalan number" in *Math Reviews*.

- **John Riordan** (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.

- **John Riordan** (1948): introduced the term "Catalan number" in *Math Reviews*.
- Riordan (1964): used the term again in Math. Reviews.
- **Riordan** (1968): used the term in his book *Combinatorial Identities*. Finally caught on.

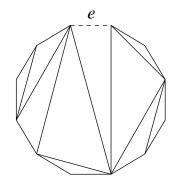
- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- **Riordan** (1968): used the term in his book *Combinatorial Identities*. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in Scientific American. Real popularity began.

The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

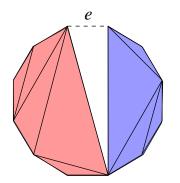
The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$



The primary recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$



Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $y = \sum_{n>0} C_n x^n$ (generating function).

$$\Rightarrow xy^2 - y + 1 = 0$$

Solving the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}, \quad C_0 = 1$$

Let $\mathbf{y} = \sum_{n \geq 0} C_n x^n$ (generating function).

$$\Rightarrow xy^2 - y + 1 = 0$$

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n! (n+1)!}$$

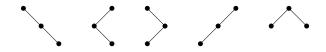
Other combinatorial interpretations

```
\mathcal{P}_n := {triangulations of convex (n+2)-gon} \Rightarrow \#\mathcal{P}_n = C_n (where \#S = number of elements of S)
```

We want other combinatorial interpretations of C_n , i.e., other sets S_n for which $C_n = \#S_n$.

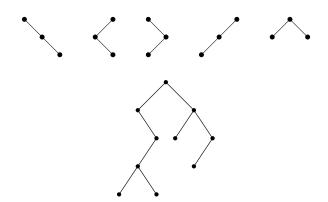
"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



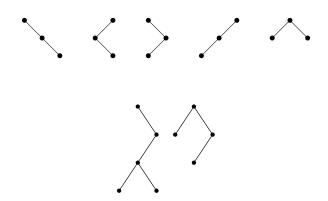
"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



"Transparent" interpretations

4. Binary trees with *n* vertices (each vertex has a left subtree and a right subtree, which may be empty)



Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of n + 1 letters

$$(xx \cdot x)x \quad x(xx \cdot x) \quad (x \cdot xx)x \quad x(x \cdot xx) \quad xx \cdot xx$$
$$((x(xx))x)(x((xx)(xx)))$$

Binary parenthesizations

3. Binary **parenthesizations** or **bracketings** of a string of n + 1 letters

$$((x(xx))x)(x((xx)(xx)))$$

$$((x(xx))x)(x((xx)(xx)))$$

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

The ballot problem

Bertrand's ballot problem: first published by **W. A. Whitworth** in 1878 but named after **Joseph Louis François Bertrand** who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. AABABBBAAB is bad, since after seven votes, A receives 3 while B receives 4.

Definition of ballot sequence

Encode a vote for A by 1, and a vote for B by -1 (abbreviated -). Clearly a sequence $a_1a_2\cdots a_{2n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^k a_i \geq 0$ for all $1\leq k\leq 2n$. Such a sequence is called a **ballot sequence**.

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and n -1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

Ballot sequences

77. Ballot sequences, i.e., sequences of n 1's and n -1's such that every partial sum is nonnegative (with -1 denoted simply as - below)

Note. Answer to original problem (probability that a sequence of n each of 1's and -1's is a ballot sequence) is therefore

$$\frac{C_n}{\binom{2n}{n}} = \frac{\frac{1}{n+1}\binom{2n}{n}}{\binom{2n}{n}} = \frac{1}{n+1}.$$

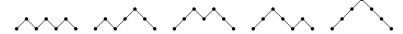
The ballot recurrence

$$11-11-1---1-11-1--\\$$

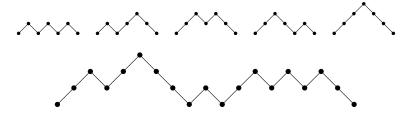
The ballot recurrence

The ballot recurrence

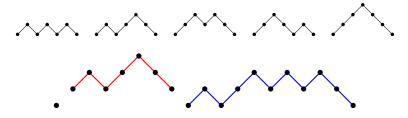
25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



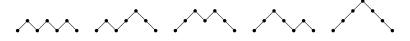
25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



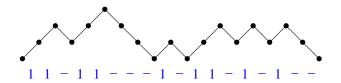
25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



25. Dyck paths of length 2n, i.e., lattice paths from (0,0) to (2n,0) with steps (1,1) and (1,-1), never falling below the x-axis



Walther von Dyck (1856-1934)



For each upstep, record 1. For each downstep, record -1.

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

123 132 213 231 321

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

123 132 213 231 321

34251768

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

123 132 213 231 321

3425 768

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

123 132 213 231 321

3425 768 (note **red**<**blue**)

116. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ for which there does not exist i < j < k and $a_j < a_k < a_i$ (called **312-avoiding**) permutations)

123 132 213 231 321

3425 768 (note **red**<**blue**)

part of the subject of pattern avoidance

Another example of pattern avoidance:

115. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

123 213 132 312 231

Another example of pattern avoidance:

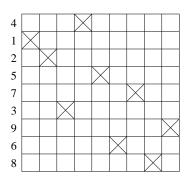
115. Permutations $a_1 a_2 \cdots a_n$ of $1, 2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist i < j < k, $a_i > a_j > a_k$), called **321-avoiding** permutations

123 213 132 312 231

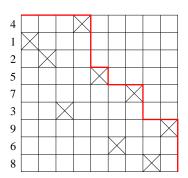
more subtle: no obvious decomposition into two pieces

w = 412573968

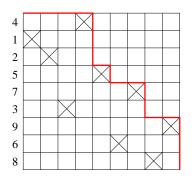
$$w = 412573968$$



$$w = 412573968$$



$$w = 412573968$$



An unexpected interpretation

92. *n*-tuples (a_1, a_2, \ldots, a_n) of integers $a_i \ge 2$ such that in the sequence $1a_1a_2\cdots a_n1$, each a_i divides the sum of its two neighbors

14321 13521 13231 12531 12341

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

1 2 5 3 4 1

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

1 | 2 5 3 4 1

$$|1||\mathbf{2} \ \mathbf{5} \ |\mathbf{3} \ \mathbf{4} \ \mathbf{1}$$

$$| \ 1 \ | \ | \ 2 \ \mathbf{5} \ | \ \mathbf{3} \ \mathbf{4} \ \mathbf{1}$$

$$1 \ - \ 1 \ 1 \ - \ - \ 1 \ -$$

remove largest; insert bar before the element to its left; continue until only 1's remain; then replace bar with 1 and an original number with -1, except last two

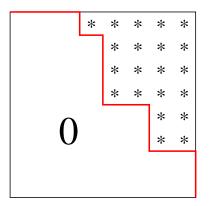
tricky to prove

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all $(n-1)\times(n-1)$ upper triangular matrices over a field

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all $(n-1) \times (n-1)$ upper triangular matrices over a field



Diagonal harmonics

(i) Let the symmetric group \mathfrak{S}_n act on the polynomial ring $A = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]$ by $w \cdot f(x_1, \dots, x_n, y_1, \dots, y_n) = f(x_{w(1)}, \dots, x_{w(n)}, y_{w(1)}, \dots, y_{w(n)})$ for all $w \in \mathfrak{S}_n$. Let I be the ideal generated by all invariants of positive degree, i.e.,

$$I = \langle f \in A : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n, \text{ and } f(0) = 0 \rangle.$$

Diagonal harmonics (cont.)

Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{f \in A/I : w \cdot f = (\operatorname{sgn} w)f \text{ for all } w \in \mathfrak{S}_n\}.$$

Diagonal harmonics (cont.)

Then C_n is the dimension of the subspace of A/I affording the sign representation, i.e.,

$$C_n = \dim\{f \in A/I : w \cdot f = (\operatorname{sgn} w)f \text{ for all } w \in \mathfrak{S}_n\}.$$

Very deep proof by Mark Haiman, 1994.

Generalizations & refinements

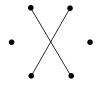
A12. k-triangulation of n-gon: maximal collections of diagonals such that no k+1 of them pairwise intersect in their interiors

k = 1: an ordinary triangulation

superfluous edge: an edge between vertices at most k steps apart (along the boundary of the n-gon). They appear in all k-triangulations and are irrelevant.

An example

Example. 2-triangulations of a hexagon (superfluous edges omitted):



Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All k-triangulations of an n-gon have k(n-2k-1) nonsuperfluous edges.

Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All k-triangulations of an n-gon have k(n-2k-1) nonsuperfluous edges.

Theorem (Jonsson, Serrano-Stump). The number $T_k(n)$ of k-triangulations of an n-gon is given by

$$T_k(n) = \det [C_{n-i-j}]_{i,j=1}^k$$

= $\prod_{1 \le i \le j \le n-2k} \frac{2k+i+j-1}{i+j-1}$.

Representation theory?

Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group Sp(2n-4).

Representation theory?

Note. The number $T_k(n)$ is the dimension of an irreducible representation of the symplectic group Sp(2n-4).

Is there a direct connection?

Number theory

A61. Let b(n) denote the number of 1's in the binary expansion of n. Using Kummer's theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_n is equal to b(n+1)-1.

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

A63. Let g(n) denote the number of integers $1 \le k \le n$ such that C_k is the sum of three squares. Then

$$\lim_{n\to\infty}\frac{g(n)}{n}=??.$$

Sums of three squares

Let f(n) denote the number of integers $1 \le k \le n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$\lim_{n\to\infty}\frac{f(n)}{n}=\frac{5}{6}.$$

A63. Let g(n) denote the number of integers $1 \le k \le n$ such that C_k is the sum of three squares. Then

$$\lim_{n\to\infty}\frac{g(n)}{n}=\frac{7}{8}.$$

$$\sum_{n\geq 0}\frac{1}{C_n}=??$$

$$\sum_{n\geq 0} \frac{1}{C_n} = ??$$

$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

$$\sum_{n\geq 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27}$$
$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

$$\sum_{n\geq 0} \frac{1}{C_n} = 2 + \frac{4\sqrt{3}\pi}{27}$$
$$1 + 1 + \frac{1}{2} + \frac{1}{5} = 2.7$$

$$2 + \frac{4\sqrt{3}\pi}{27} = 2.806133\cdots$$

Why?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Why?

A65.(a)

$$\sum_{n\geq 0} \frac{x^n}{C_n} = \frac{2(x+8)}{(4-x)^2} + \frac{24\sqrt{x}\sin^{-1}\left(\frac{1}{2}\sqrt{x}\right)}{(4-x)^{5/2}}.$$

Based on a (difficult) calculus exercise: let

$$y = 2\left(\sin^{-1}\frac{1}{2}\sqrt{x}\right)^2.$$

Then
$$y = \sum_{n \ge 1} \frac{x^n}{n^2 \binom{2n}{n}}$$
. Use $\sin^{-1} x = \sum_{n \ge 0} 4^{-n} \binom{2n}{n} \frac{x^{2n+1}}{2n+1}$.

The last slide

The last slide

The last slide

