Increasing and decreasing sub-
sequences

318496725 (is.)
318496725 (d.s.)

is(w) = |longest i.s.| =4
ds(w) = |longest d.s.| =3

partition A - n: A= (A, Ag,...)



(Young) diagram of A = (4,4,3,1):

Young diagram of the conjugate par-
tition X = (4, 3,3, 2):




standard Young tableau (SYT) of
shape AFn, eg, A =(4,4,3,1):

<

1 10
3 8|12
41 6|11
9

f>‘ = # of SY'T of shape A

E.g., f<372> = b:

123 124 125 134 135
45 39 34 29 24

3 simple formula for f* (Frame-Robinson-
Thrall hook-length formula)



Note. fA = dim(irrep. of &), where
Sy, is the symmetric group of all
permutations of 1,2...,n.

RSK algorithm: a bijection

w = (P,Q),

where w € G,, and P, () are SY'T of the
same shape A - n.

Write A = sh(w), the shape of w.

R = Gilbert de Beauregard Robinson
S = Craige Schensted (= Ea Ea)
K = Donald Ervin Knuth



w = 4132:

4 1 13 12 12 12 1o
4 4 3 3
4
[ ] H | | | L[] [ ] ¢




Schensted’s theorem: Let w lﬂg

(P,Q), where sh(P) = sh(Q) = .
Then

is(w) = longest row length = A\
ds(w) = longest column length = M.

Corollary (Erdos-Szekeres, Seiden-
berg). Let w € Gp441. Then either
is(w) > p or ds(w) > q.

Proof. Let A = sh(w). If is(w) < p
and ds(w) < g then A\ < pand \| < ¢,



Corollary. Say p < q. Then
#{w € Gy 1 is(w) = p, ds(w) = g}

_ (f(pq)) .

By hook-length formula, this is

( (pq)! )2
1122...pp(p_|_1)p...qp(q_|_1)p—1,”(p_|_q_1)1 .




Romik: let
we S o is(w)=ds(w)=n.

Let P, be the permutation matrix of
w with corners (41, +1). Then (infor-
mally) as n — oo almost surely the 1's
in P, will become dense in the region
bounded by the curve

(2% — y*)* +2(z° + y*) = 3,

and will remain isolated outside this re-
o101,

I_H
LERNIEN
uiEsEEE=

mii

w=09,11,6,14,2,10,1,5,13,3,16,8, 15,4, 12, 7







Area enclosed by curve:

— 4(0.94545962 - - -)
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Distribution of is(w)

E(n) = expectation of is(w), w € &y,
1 1) 2
=M ()
AFn

Ulam: what is distribution of is(w)?
rate of growth of E(n)?

Hammersley (1972):
Jce= lim n Y2E(n),

n—oeo

and

A

-
— < c<Le.
2

Conjectured ¢ = 2.

11



Logan-Shepp, Vershik-Kerov (1977):
c=2

Idea of proof.

B = S (1)
An

1 2
A~ — max \q (f)‘) .

n! \n

Find “limiting shape” of A = n maxi-
mizing A as n — oo using hook-length
formula.

12



i / /A log(f(2)+f~\(y)—z—y)da dy,

subject to

// dx dy = 1.
A

13



r =y-+2cost

2
y = —(sinf — 0 cos0)

-

0<O<
2
15
.
0.5
ot o5 1 15 2
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up(n) = #{w e &, : isp(w) < k}.

J. M. Hammersley (1972):
L [2n
i) = Cu= 5 ().

n+1\n

a Catalan number.

For >130 combinatorial interpretations
of C),, see

www-math.mit.edu/~rstan/ec

15



I. Gessel (1990):

Zuk n'2 —det {]h ]|(2:1:)r'

Y
1,7=1
n>0 J

where
MA2]

jlm + )l

7>0

a hyperbolic Bessel function of the
first kind of order m.

Eg.,

> ug(n Up(2x)* — Uy(22)7

n>0

16



Corollary. For fixed k, up(n) is P-
recursive, e.g.,

(n+ 4)(n + 3)*u4(n)
= (20n° +62n% +22n — 24)uy(n — 1)
—64n(n — 1)%uy(n — 2)

(n +6)%(n + 4)%us(n)
= (375—400n—843n*—322n"—35n" Jus(n—1)
+(259n2+622n4+45) (n—1)us(n—2)
—225(n — 1)%(n — 2)%us(n — 3).

Conjectures on form of recurrence due
to Bergeron, Favreau, and Krob.

17



Baik-Deift-Johansson:

Define u(x) by

)
%u(@ = 2u(z)’ +zu(r) (%),

with certain mitial conditions.

() is the Painlevé IT equation (roughly,
the branch points and essential singu-

larities are independent of the initial con-
ditions).

18



Paul Painlevé

1863: born in Paris.
1890: Grand Prix des Sciences Mathématiques

1908: first passenger of Wilbur Wright;:
set flicht duration record of one hour, 10
minutes.

1917, 1925: Prime Minister of France.
1933: died in Paris.

19



Tracy-Widom distribution:
F'(t)

— exp (— /t Oo(a; - t)u<x)2dg;>

Theorem (Baik-Deift-Johansson) For
random (uniform) w € &, and all
t € R we have

lim Prob (iS”(w) 2V _ t) — F(t).

n— 00 nl/6

Corollary.
safw) = 2+ ([ 4F(0) 00+ ofa

= 2y/n — (17711 -- -)n1/6 + 0(n1/6>

20



Gessel’s theorem reduces the problem
to “just” analysis, viz., the Riemann-
Hilbert problem in the theory of in-
tegrable systems, and the method of
steepest descent to analyze the asymp-
totic behavior of integrable systems.

Where did the Tracy-Widom distribu-
tion F(t) come from?

21



Gaussian Unitary Ensemble (GUE):

Consider an n X n hermitian matrix
M = (M;;) with probability distribu-
tion

Z—le—tr<M2>dM

n )
dM = | [ db;

1
1 d(Re(M;;))d(Im(M;5)),
i<
where Z,, 1s a normalization constant.

22



Tracy-Widom (1994): let aq de-
note the largest eigenvalue of M. Then

lim
n—ao

Prob ((a1 _ m) Vanl/6 < t)
= F(t).

23



[s the connection between is(w) and
GUE a coincidence?

Okounkov provides a connection, via
the theory of random topologies on
surfaces. Very briefly, a surface can be
described in two ways:

e Gluing polygons along their edges,
connected to random matrices via quan-
tum gravity.

e Ramified covering of a sphere, which
can be formulated in terms of per-
mutations.

24



Symmetry.
T = {we 6, w =1}
35, = lw e Tp 1 w(i) # 1 Vi}.
#3735, = (2n — 1)1 =1-3-5--- (2n—1)

Theorem (Baik-Rains). (a) We have
for random (uniform)w € J,, and all
t € R that

lim Prob (1Sn(w) —2vn < t)

n—00 nl/6

= P2 exp (; / mu(s)ds) |

where F'(t) denotes the Tracy- Widom
distribution and u(s) the Painlevé I1

function. (By symmetry we can re-
place is(w) with ds(w).)

25



(b) We have for random (uniform)
w € J5, and all t € R that

lim Prob (ds%(w) —2ven < t)

n—00 <2n>1/6 —

— P2 exp G /t h u(s)ds)

(same up to scaling as largest eigen-
value of a real symmetric matriz from

GOE model).

26



(c) We have for random (uniform)
w € J5, and all t € R that

lim Prob (182n( w) 2\/% )
: <

2n>1/6

— P62 cosh G /t h u(s)ds)

(same up to scaling as largest eigen-

value of a real skew-symmetric ma-
triz from GSE model).

27



Pattern Avoidance

v =>01--b. € 6}
w = ay---ap € 6y

w avoids v if no subsequence a;, - - - a;,
of w is in the same relative order as v.

352968147 does not avoid 3142.

w has no increasing (decreasing) sub-
sequence of length k£ < w avoids 12 - - - k

(k---21).

28



Let v € 6. Define
Sn(v) = {w e G, : w avoids v}
sn(v) = #6,(v).

Hammersley-Knuth-Rotem:

sn(123) = s,(321) = Cp.

Knuth:

Method of generating trees (Chung-
Graham-Hoggatt-Kleiman, West): de-
fine u < v if u is a subsequence of

V.
3142 < 835196427

29



3129275 132¢7 51 3214321 p3pa218 328l

4312 3412 3142 4132 1432 4321 3421 3241 3214 4231 2431 4213 241:¢
4312 34123124 41231234 4321 3421 3241 3214 2413 2134 42341

black: 123—avoiding
magenta: 132—-avoiding

k children

2,3, ..., k+1 children

30



Define u~wv if sp(u) = sp(v) for all
n.

One equivalence class for k = 3.

Three equivalence classes for k = 4.

Gessel: s,(1234) =

e ()00

Bona:

D sp(1342)2" =

n>0

32X
| + 20z — 822 — (1 — 8x)3/%’

Open: s,(1324)

31



Typical application (Ryan, Lakshmibai-
Sandhya, Haiman): Let w € &,,.
The Schubert variety €2, in the com-
plete flag variety GL(n, C) is smooth if
and only if w avoids 4231 and 3412.

n 1
Z f(n):z: - 22 2z

n=0 l—2z—17 (1+x—(1—x)0(a¢) B 1)7

where

1 —+v1—4x
Clz) =) Cpa" = S

n>0

32



Joint with:

Bill Chen [R7K I

Eva Deng XS =

—1 a

AR

N

7.

|

Rosena Du L7582
Catherine Yan Eii4AE3E
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(complete) matching:

SN O,

crossing: 7N N
nesting: ~ —~\

total number of matchings on [2n] :=
{1,2,...,2n} is

2n —1)!:=1-3-5---(2n —1).

Theorem. The number of match-

ings on [2n| with no crossings (or with
no nestings) is

1 2N
C, = ,
" n+1<n)

34




Well-known:

Cp=#{a1--agy, 1 a; = *1,
b= 0.3 a0}

(ballot sequence).

S OO AN

-1

/7@?\ 7
1 1 -1 1 -1 -1 1 -

35



NN

3—-crossing
NN
3—-nesting
M = matching

cr(M) = max{k : 3 k-crossing}
ne(M) = max{k : 3 k-nesting}.

Theorem. Let f,,(i,j) = # match-
ings M on [2n| with cx(M) = © and
ne(M) =j. Then fn(i,5) = fn(d,12).

Corollary. # matchings M on |2n]
with cr(M) = k equals # matchings
M on 2n] with ne(M) = k.

36



Main tool: oscillating tableaux.

¢ O g O o

shape (3,1), length 8

37




® is a bijection from matchings on

1,2,...,2n tooscillating tableaux of length
2n, shape 0.

f,,i‘ .= #{osc. tab. of shape A, lengthn}

Corollary.
)\ 2
E:(m)::@n—lw
A

Proof. Number of oscillating tableaux
0 =01 A7 =)
of length 2n, shape ), and with A" =
A IS (ﬁi‘)Q Sum on all A to get the

total number of matchings on [2n|, viz.,
(2n — 1. O
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Brauer algebra 5,,: a complex semisim-
ple algebra (depending on a parameter
x) of dimension (2n — 1)!I.

Dimensions of irreducible representa-
tions of By,: fn, confirming

Y (ﬁé) — (2n — 1!

A

Compare

> (1) -

AFn

39



Schensted’s theorem for match-
ings. Let

O(M) = (0= AL . N =0).
Then

cr(M) = max{(\)} : 0<i<n}

ne(M) = max{A] : 0 <i<n}.

Proof. Reduce to ordinary RSK.

40



Now let cr(M) = ¢, ne(M) = 7, and
O(M) = (0= AL N =0).
Define M’ by
O(M') = (0 =\, (A, ... (A2 = 0).
By Schensted’s theorem for matchings,
cr(M') =4, ne(M') =i.

Thus M +— M’ is an involution on
matchings of [2n]| interchanging cr and
ne.

= Theorem. Let f,(¢,7) = # match-
ings M on [2n| with cx(M) = ¢ and
ne(M) =j. Then fn(i,3) = fn(J,1).

Open: simple description of M +—
M’ the analogue of

ajag -+ ap — Gp -+ 0207,

which interchanges is and ds.

41



Enumeration of k-noncrossing
matchings (or nestings).

Recall: The number of matchings M

on [2n] with no crossings, i.e., cr(M) =

1, (or with no nestings) is C', = %H (27? .

What about the number with cr(M) <
k7

Assume cr(M) < k. Let
O(M) = (0= AL . N =0).

Regard each A\ = ( 71, L )\7]’{) e NF.

42



Corollary. The number fi.(n) of
matchings M on [2n] with cr(M) <
k 1s the number of lattice paths of
length 2n from O to 0 in the region

Cpn:={lar,...,ar) e NV : aq; <--- < ap}

with steps +e; (e; = ith unit coordi-
nate vector).

Cn @ R>q is a fundamental chamber
for the Weyl group of type Bj.
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Grabiner-Magyar: applied Gessel-
Zeilberger reflection principle to
solve this lattice path problem (not know-
ing connection with matchings).

Theorem. Define

:C2n
Hy(x) = ka(n)(zn)!'
Then

Hk<ilj‘) = det {]’Z_]’(QZIZ) — ]H_j(Q:C)}

where

k
1,)=1

2M+2)
glim + j)!

720

as before.
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Example. k = 1 (noncrossing match-

ings):
Hy(z) = Io(22) —2f2(2$)
= Z@%
j=0
Compare:

up(n) = #{w € &, : longest increasing

subsequence of length < k}.
2n

Z uk(n)x— = det []Z-_j(Qx)] ij=1 :

45



Baik-Rains (implicitly):

lim Prob (CM(M) — V2n < E) = I7(t),

n— 00 (272)1/6 — 9

where

Fi(t) = V(D) exp (; / mu(@dx) |

where F'(t) is the Tracy-Widom distri-
bution and u(x) the Painlevé II func-
tion.




gj,k(n) = #{matchings M on [2n/,
cr(M) < 7, ne(M) < k}

Now

gipn) =#{0 =" ... N =0) -

AN =N +o N Cjxk rectangle},

a walk on the Hasse diagram H(j, k)
of

L(g,k) :={X Cj X k rectangle},

ordered by inclusion.
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A = adjacency matrix of H(j, k)
Ag = adjacency matrix of H(j, k) — {0}.

Transter-matrix method =

det(I — xAp)
° Qn p— O
Z 9j k()2 det(l —zA)
n>0

Theorem (Grabiner, implicitly) Fv-
ery zero of det(I — xA) has the form

2(cos(mry/m) + -+ + COS(?T?“j/m)),
where each r; € Zand m =7+ k + 1.

Corollary. Fvery factor of det(l —
rA) over Q has degree dividing

SO+ k+ 1),

where ¢ s the Euler phi-function.
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Example.
j=2 k=5 3¢(16) = 4:

det(I — zA) = (1 —227)(1 — 42+ 22%)
(1—82°+8z%)(1—8z%+8z% —22%)
(1 — 827 — 8z — 22%)

j=k=3 Jo(14) =3
det(I—zA) = (1—2)(1+z)(1+2—9z°—2?)

(1—:13—9:1:2+:133)(1—:1:—2:132+:133)2
(1+z— 2% — 1°)°
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Partition of the set [n]:
{1,5}, {2}, {3,6,8,9}, {4,7,10}

SRS

1 2 3 4 5 o6 ¢ 8 9 1

Generalize oscillating tableaux to
vacillating tableaux (related to the
partition algebra).
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Alternating Subsequences

A sequence biby--- by is alternat-
ing it
by > by < bg > by < -+ bp.

FE,,: number of alternating w € &y,
(Euler number)

E, =5 2143, 3142, 3241, 4132, 4231
Desiré André (1879):

wn
E En—' = secx + tan x.
n!
n>0
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asp(w): length of longest alternating
subsequence of w € G,

asg(386419257) =5

br(n) =#{w € &), : asp(w) < k}

1 (w=12---n)
n!
En

S
S 3
S S
N—— ~—
1

bn(n) — bp—1(n)
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Define

CE
B(z,t) = Y  bn tkn',
k.n>0

and set p = V1 — 2.
Theorem. We have
B(x,t) =

1+ p+ 2tePT + (1 — p)e*P?
1+ p—t24+ (1 —p—t2)err

Corollary (with I. Gessel).
by (1) =

= 4%:@: (_2)j<<kk+_i37?2> (Z)Zn

i=k (mod 2)
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Corollary.
1 dn +1
aZasn(w): ; ,n > 2
32n — 3
Var(as,) = - , n >4

Corollary. #{w € &, : as(w) even}
=#{w € G, : as(w) odd}, n > 1

Simple proof due to Bona and Pylyavskyy
(independently).
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Pemantle: limiting distribution of
asy. Let

G(t) = lim Prob (aS”(wz/% 2n/3 t) .

Then G(t) is Gaussian.

Key lemma: Some longest alter-
nating subsequence of w € &, con-
tains n.

Leads to recurrence for

ck(n) = bp(n) — bp_1(n)
= #{w € &), : asp(w) =k},

namely,

Z (cor(J—D)+eor41(J—1))cs(n—17).

2r4+s=k—1
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