Stern's Diatomic Array and Beyond

Richard P. Stanley
U. Miami \& M.I.T.

September 27, 2018

The arithmetic triangle or Pascal's triangle

The arithmetic triangle or Pascal's triangle

Apparently known to Pingala in or before 2nd century BC (and hence also known as Pingal's Meruprastar), and definitely by Varāhamihira (~505), Al-Karaji (953-1029), Jia Xian (1010-1070), et al.

Properties

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x} \\
\sum_{k \geq 0}\binom{n}{k}^{2}=\binom{2 n}{n}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x} \\
\sum_{k \geq 0}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}} \quad \text { (not rational) }
\end{gathered}
$$

Sums of cubes

$$
\sum_{k \geq 0}\binom{n}{k}^{3}=? ?
$$

Sums of cubes

$$
\sum_{k \geq 0}\binom{n}{k}^{3}=? ?
$$

If $f(n)=\sum_{k \geq 0}\binom{n}{k}^{3}$ then
$(n+2)^{2} f(n+2)-\left(7 n^{2}+21 n+16\right) f(n+1)-8(n+1)^{2} f(n)=0, n \geq 0$

Sums of cubes

$$
\begin{aligned}
& \qquad \sum_{k \geq 0}\binom{n}{k}^{3}=? ? \\
& \text { If } f(n)=\sum_{k \geq 0}\binom{n}{k}^{3} \text { then } \\
& (n+2)^{2} f(n+2)-\left(7 n^{2}+21 n+16\right) f(n+1)-8(n+1)^{2} f(n)=0, n \geq 0
\end{aligned}
$$

Etc.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1
1
1
1
1
1
\vdots

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1
1
1
1
1
1
;

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

$$
\begin{array}{lllllllllllllll}
& & & & & & & 1 & & & & & & & \\
& 1 & & 1 & & & & & & & & & & & \\
1 & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 \\
1 & 1 & & & & & & & & & & & &
\end{array}
$$

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)
- Let $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ be the k th entry (beginning with $k=0$) in row n. Write

$$
P_{n}(x)=\sum_{k \geq 0}\binom{n}{k} x^{k} .
$$

Then $P_{n+1}(x)=\left(1+x+x^{2}\right) P_{n}\left(x^{2}\right)$, since $x P_{n}\left(x^{2}\right)$ corresponds to bringing down the previous row, and $\left(1+x^{2}\right) P_{n}\left(x^{2}\right)$ to summing two consecutive entries.

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{\boldsymbol{n}} x^{n} .
\end{aligned}
$$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{\boldsymbol{n}} x^{n} .
\end{aligned}
$$

- The sequence $b_{0}, b_{1}, b_{2}, \ldots$ is Stern's diatomic sequence:

$$
1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, \ldots
$$

(often prefixed with 0)

Partition interpretation

$$
\sum_{n \geq 0} b_{n} x^{n}=\prod_{i \geq 0}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

$\Rightarrow b_{n}$ is the number of partitions of n into powers of 2 , where each power of 2 can appear at most twice.

Partition interpretation

$$
\sum_{n \geq 0} b_{n} x^{n}=\prod_{i \geq 0}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

$\Rightarrow b_{n}$ is the number of partitions of n into powers of 2 , where each power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain the (unique) binary expansion of n :

$$
\frac{1}{1-x}=\prod_{i \geq 0}\left(1+x^{2^{i}}\right) .
$$

Historical note

An essentially equivalent array is due to Moritz Abraham Stern around 1858 and is known as Stern's diatomic array:

1															1
1								2							
1															

Comparison

$$
\begin{array}{llllllllllllllllll}
& & & & & & & & & 1 & & & & & & & & \\
& & & & 1 & & & & & & & & & & & & \\
& & 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 \\
& & & & & & & & \vdots & & & & & & & & \\
1 & & & & & & & & & & & & & & & & 1 \\
1 & & & & & & & & & & & & & & 1 \\
1 & & & & & & & & 2 & & & & & & & 1 \\
1 & & & & 3 & & & & 2 & & & & 3 & & & & 1 \\
1 & & 4 & & 3 & & 5 & & 2 & & 5 & & 3 & & 4 & & 1 \\
1 & 5 & 4 & 7 & 3 & 8 & 5 & 7 & 2 & 7 & 5 & 8 & 3 & 7 & 4 & 5 & 1
\end{array}
$$

Precise statement

$\boldsymbol{R}_{\boldsymbol{i}}$: ith row of Stern's diatomic array, beginnning with row 0

Precise statement

$\boldsymbol{R}_{\boldsymbol{i}}$: ith row of Stern's diatomic array, beginnning with row 0
Form the concatenation

$$
R_{0} R_{1} \cdots R_{n-2} R_{n-1} R_{n-1} R_{n-2} \cdots R_{1} R_{0}
$$

and then merge together the last 1 in each row with the first 1 in the next row.

We obtain row n of Stern's triangle. From this observation almost any property of Stern's triangle can be carried over straightforwardly to Stern's diatomic array and vice versa.

Amazing property

Theorem (Stern, 1858). Let b_{0}, b_{1}, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_{i} / b_{i+1}, and moreover this expression is in lowest terms.

Amazing property

Theorem (Stern, 1858). Let b_{0}, b_{1}, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_{i} / b_{i+1}, and moreover this expression is in lowest terms.

Can be proved inductively from

$$
b_{2 n}=b_{n}, b_{2 n+1}=b_{n}+b_{n+1},
$$

but better is to use Calkin-Wilf tree, though following Stigler's law of eponymy was earlier introduced by Jean Berstel and Aldo de Luca as the Raney tree. Closely related tree by Stern, called the Stern-Brocot tree, and a much earlier similar tree by Kepler (1619).

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Note. Stigler's law of eponymy implies that Stigler's law of eponymy was not originally discovered by Stigler.

The Calkin-Wilf tree definition

root: $1 / 1$

The Calkin-Wilf tree definition

root: $1 / 1$

The Calkin-Wilf tree

The Calkin-Wilf tree

Numerators (reading order): $1,1,2,1,3,2,3,1,4,3,5, \ldots$

The Calkin-Wilf tree

Numerators (reading order): $1,1,2,1,3,2,3,1,4,3,5, \ldots$
Denominators:
$1,2,1,3,2,3,1,4,3,5, \ldots$

Continued fraction property

Entries in row $n-1$ are those rational numbers whose regular continued fraction terms sum to n.

Continued fraction property

Entries in row $n-1$ are those rational numbers whose regular continued fraction terms sum to n.
row 2:

$$
\begin{aligned}
& \frac{1}{3}=\frac{1}{3}=\frac{1}{2+\frac{1}{1}} \\
& \frac{3}{2}=1+\frac{1}{2}=1+\frac{1}{1+\frac{1}{1}} \\
& \frac{2}{3}=\frac{1}{1+\frac{1}{2}}=\frac{1}{1+\frac{1}{1+\frac{1}{1}}} \\
& 3=3=2+\frac{1}{1}
\end{aligned}
$$

An enumerative property

b_{n+1} is the number of odd integers $\binom{n-k}{k}$, where $0 \leq k \leq\lfloor n / 2\rfloor$.

New stuff！

PART II

«ロ〉4司〉4 三>>

Sums of squares

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
\\
& & & & & & & & & 1 & & & & & & \\
& 1 & & & & & 1 & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1 \\
& & & & & & & & & & & & & & &
\end{array} \\
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
\\
& & & & & & & & & 1 & & & & & & & \\
1 & 1 & & & & & 1 & & & \\
& 1 & & 1 & & 2 & & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& \boldsymbol{u}_{2}(n):=\sum_{k}\binom{n}{k}^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1 \\
& \sum_{n \geq 0} u_{2}(n) x^{n}=\frac{1-2 x}{1-5 x+2 x^{2}}
\end{aligned}
$$

Sums of cubes

$$
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, \quad n \geq 1
\end{gathered}
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\binom{n}{k}^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, \quad n \geq 1
\end{gathered}
$$

Equivalently, if $\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)=\sum a_{j} x^{j}$, then

$$
\sum a_{j}^{3}=3 \cdot 7^{n-1}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\binom{n}{k}^{2}+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k+1}\right)^{2}+\binom{n}{k+1}^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right) .
\end{aligned}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\binom{n}{k}^{2}+\left(\binom{n}{k}+\binom{n}{k+1}\right)^{2}+\binom{n}{k+1}^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)
\end{aligned}
$$

Thus define $\boldsymbol{u}_{1,1}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\left\langle\begin{array}{c}n \\ k+1\end{array}\right\rangle$, so

$$
u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n) .
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \left.\cdots+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k-1}\right)\binom{n}{k}+\binom{n}{k}\left(\left\lvert\, \begin{array}{l}
n \\
k
\end{array}\right.\right)+\binom{n}{k+1}\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right)\left(\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \cdots+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\binom{n}{k-1}\right)\binom{n}{k}+\binom{n}{k}\left(\binom{n}{k}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right)+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

Recall also $u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n)$.

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right]
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

$$
\Rightarrow u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1)
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Characteristic (or minimum) polynomial of $A: x^{2}-5 x+2$

$$
\Rightarrow u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1)
$$

Also $u_{1,1}(n+1)=5 u_{1,1}(n)-2 u_{1,1}(n-1)$.

What about $u_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\binom{n}{k}^{2}\binom{n}{k+1} \\
& \boldsymbol{u}_{1,2}(n):=\sum_{k}\binom{n}{k}\binom{n}{k+1}^{2} .
\end{aligned}
$$

What about $u_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\binom{n}{k}^{2}\binom{n}{k+1} \\
& \boldsymbol{u}_{1,2}(n):=\sum_{k}\binom{n}{k}\binom{n}{k+1}^{2} .
\end{aligned}
$$

However, by symmetry about a vertical axis,

$$
u_{2,1}(n)=u_{1,2}(n)
$$

What about $u_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\binom{n}{k}^{2}\binom{n}{k+1} \\
& \boldsymbol{u}_{1,2}(n):=\sum_{k}\binom{n}{k}\binom{n}{k+1}^{2} .
\end{aligned}
$$

However, by symmetry about a vertical axis,

$$
u_{2,1}(n)=u_{1,2}(n)
$$

We get

$$
\left[\begin{array}{ll}
3 & 6 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
u_{3}(n) \\
u_{2,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{3}(n+1) \\
u_{2,1}(n+1)
\end{array}\right] .
$$

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$
Thus $u_{3}(n+1)=7 u_{3}(n)$ and $u_{2,1}(n+1)=7 u_{2,1}(n)(n \geq 1)$.

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$
Thus $u_{3}(n+1)=7 u_{3}(n)$ and $u_{2,1}(n+1)=7 u_{2,1}(n)(n \geq 1)$.
In fact,

$$
\begin{aligned}
u_{3}(n) & =3 \cdot 7^{n-1} \\
u_{2,1}(n) & =2 \cdot 7^{n-1} .
\end{aligned}
$$

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

Conjecture. The least order of a homogenous linear recurrence with constant coeffcients satisfied by $u_{r}(n)$ is $\frac{1}{3} r+O(1)$.

A more accurate conjecture

Write $\left[a_{0}, \ldots, a_{m-1}\right]_{m}$ for the periodic function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $f(n)=a_{i}$ if $n \equiv i(\bmod m)$.
A_{r} : matrix arising from $u_{r}(n)$ $\boldsymbol{e}_{i}(r)$: \# eigenvalues of A_{r} equal to i

A more accurate conjecture

Write $\left[a_{0}, \ldots, a_{m-1}\right]_{m}$ for the periodic function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $f(n)=a_{i}$ if $n \equiv i(\bmod m)$.
A_{r} : matrix arising from $u_{r}(n)$ $\boldsymbol{e}_{i}(r)$: \# eigenvalues of A_{r} equal to i

Conjecture. We have

$$
e_{0}(2 k-1)=\frac{1}{3} k+\left[0,-\frac{1}{3}, \frac{1}{3}\right]_{3},
$$

and all 0 eigenvalues are semisimple. There are no other multiple eigenvalues.

A more accurate conjecture

Write $\left[a_{0}, \ldots, a_{m-1}\right]_{m}$ for the periodic function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $f(n)=a_{i}$ if $n \equiv i(\bmod m)$.
A_{r} : matrix arising from $u_{r}(n)$ $\boldsymbol{e}_{i}(r)$: \# eigenvalues of A_{r} equal to i

Conjecture. We have

$$
e_{0}(2 k-1)=\frac{1}{3} k+\left[0,-\frac{1}{3}, \frac{1}{3}\right]_{3},
$$

and all 0 eigenvalues are semisimple. There are no other multiple eigenvalues.
T. Amdeberhan: $e_{0}(2 k-1)>0$

Even d

Conjecture. We have

$$
\begin{aligned}
e_{1}(2 k) & =\frac{1}{6} k+\left[-1,-\frac{1}{6},-\frac{1}{3},-\frac{1}{2},-\frac{2}{3}, \frac{1}{6}\right]_{6} \\
e_{-1}(2 k) & =e_{1}(2 k+6)
\end{aligned}
$$

The eigenvalues 1 and -1 are semisimple, and there are no other multiple eigenvalues.

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$
Conjecture. We have $\operatorname{mo}(2)=2, \operatorname{mo}(6)=4$, and otherwise

$$
\begin{aligned}
\operatorname{mo}(2 s) & =2\left\lfloor\frac{s}{3}\right\rfloor+3 \quad(s \neq 1,3) \\
\operatorname{mo}(6 s+1) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+3) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+5) & =2 s+2, \quad s \geq 0
\end{aligned}
$$

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$
Conjecture. We have $\operatorname{mo}(2)=2, \operatorname{mo}(6)=4$, and otherwise

$$
\begin{aligned}
\operatorname{mo}(2 s) & =2\left\lfloor\frac{s}{3}\right\rfloor+3 \quad(s \neq 1,3) \\
\operatorname{mo}(6 s+1) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+3) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+5) & =2 s+2, \quad s \geq 0
\end{aligned}
$$

True for $r \leq 125$.

General α

$$
\begin{aligned}
\alpha & =\left(\alpha_{0}, \ldots, \alpha_{m-1}\right) \\
u_{\alpha}(n) & :=\sum_{k}\binom{n}{k}^{\alpha_{0}}\binom{n}{k+1}^{\alpha_{1}} \cdots\binom{n}{k+m-1}^{\alpha_{m-1}}
\end{aligned}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\binom{n}{k+2}\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right)
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right)
$$

$u_{1,1,1,1}(n+1)=$

$$
\begin{aligned}
& \sum_{k}\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
& +\sum_{k}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{aligned}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

$$
\begin{aligned}
u_{1,1,1,1}(n+1)= & \\
& \sum_{k}\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
& +\sum_{k}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{aligned}
$$

$$
A_{(1,1,1,1)}=\left[\begin{array}{cccccc}
3 & 8 & 6 & 0 & 0 & 0 \\
2 & 5 & 3 & 0 & 0 & 0 \\
2 & 4 & 2 & 0 & 0 & 0 \\
1 & 4 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 2 & 1 & 0 \\
0 & 2 & 2 & 2 & 2 & 0
\end{array}\right] \begin{gathered}
\mathbf{4} \\
\mathbf{3 , 1} \\
\mathbf{2 , 2} \\
\mathbf{1 , 2}, \mathbf{1} \\
\mathbf{2 , 1 , 1} \\
\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}
\end{gathered}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\binom{n}{k}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right)\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

$$
\begin{aligned}
u_{1,1,1,1}(n+1)= & \\
& \sum_{k}\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
& +\sum_{k}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{aligned}
$$

$$
A_{(1,1,1,1)}=\left[\begin{array}{ccc|cc|c}
3 & 8 & 6 & 0 & 0 & 0 \\
2 & 5 & 3 & 0 & 0 & 0 \\
2 & 4 & 2 & 0 & 0 & 0 \\
\hline 1 & 4 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 2 & 1 & 0 \\
\hline 0 & 2 & 2 & 2 & 2 & 0
\end{array}\right] \begin{gathered}
\mathbf{4} \\
\mathbf{3 , 1} \\
\mathbf{2 , 2} \\
\mathbf{1 , 2 , 1} \\
\mathbf{2 , 1 , 1} \\
\mathbf{1 , 1} \mathbf{1}, \mathbf{1}
\end{gathered}
$$

Reduction to $\alpha=(r)$

min. polynomial for $\alpha=(4)$: $(x+1)\left(2 x^{2}-11 x+1\right)$
\min. polynomial for $\alpha=(1,1,1,1): \quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)$

Reduction to $\alpha=(r)$

min. polynomial for $\alpha=(4)$: $\quad(x+1)\left(2 x^{2}-11 x+1\right)$
min. polynomial for $\alpha=(1,1,1,1): \quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)$
$\operatorname{mp}(\alpha)$: minimum polynomial of A_{α}
Theorem. Let $\alpha \in \mathbb{N}^{m}$ and $\sum \alpha_{i}=r$. Then $\operatorname{mp}(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}} \operatorname{mp}(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

Reduction to $\alpha=(r)$

min. polynomial for $\alpha=(4): \quad(x+1)\left(2 x^{2}-11 x+1\right)$
min. polynomial for $\alpha=(1,1,1,1): \quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)$
$\operatorname{mp}(\alpha)$: minimum polynomial of A_{α}
Theorem. Let $\alpha \in \mathbb{N}^{m}$ and $\sum \alpha_{i}=r$. Then $\operatorname{mp}(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}} \operatorname{mp}(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

No conjecture for value of w_{α}, z_{α}.

Symmetric functions

Let

$$
\varepsilon_{2}(n)=\sum_{i<j}\left(\begin{array}{l}
n \\
i
\end{array} \left\lvert\,\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle .\right.\right.
$$

Symmetric functions

Let

$$
\varepsilon_{2}(n)=\sum_{i<j}\left\langle\begin{array}{l}
n \\
i
\end{array}\right\rangle\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle .
$$

Now

$$
\varepsilon_{2}(n)=\frac{1}{2}\left(u_{2}(n)+u_{1}(n)^{2}\right)
$$

Since

$$
\begin{aligned}
u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1) \\
u_{1}(n+1)^{2} & =9 u_{1}(n)^{2} \quad\left(\text { since } u_{1}(n)=3^{n}\right)
\end{aligned}
$$

we get $\sum_{n \geq 0} \varepsilon_{2}(n) x^{n}=P(x) /\left(1-5 x+2 x^{2}\right)(1-9 x)$. In fact, $P(x)=3 x-8 x^{2}$.

Symmetric functions

Let

$$
\varepsilon_{2}(n)=\sum_{i<j}\left(\begin{array}{l}
n \\
i
\end{array}\right\rangle\left\langle\begin{array}{l}
n \\
j
\end{array}\right\rangle .
$$

Now

$$
\varepsilon_{2}(n)=\frac{1}{2}\left(u_{2}(n)+u_{1}(n)^{2}\right)
$$

Since

$$
\begin{aligned}
u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1) \\
u_{1}(n+1)^{2} & =9 u_{1}(n)^{2} \quad\left(\text { since } u_{1}(n)=3^{n}\right)
\end{aligned}
$$

we get $\sum_{n \geq 0} \varepsilon_{2}(n) x^{n}=P(x) /\left(1-5 x+2 x^{2}\right)(1-9 x)$. In fact, $P(x)=3 x-8 x^{2}$.

Works for any symmetric function instead of e_{2}.

A generalization

Let $\boldsymbol{p}(x), \boldsymbol{q}(x) \in \mathbb{C}[x], \alpha=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right) \in \mathbb{N}^{r}$, and $b \geq 2$. Set

$$
q(x) \prod_{i=0}^{n-1} p\left(x^{b^{i}}\right)=\sum_{k}\left(\begin{array}{l}
n \\
k
\end{array}\right\rangle_{p, \boldsymbol{q}, \alpha, b^{2}} x^{k}=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right) x^{k}
$$

and

$$
u_{p, q, \alpha, b}(n)=\sum_{k}\binom{n}{k}^{\alpha_{0}}\binom{n}{k+1}^{\alpha_{1}} \cdots\binom{n}{k+m-1}^{\alpha_{m-1}}
$$

Main theorem

Theorem. For fixed p, q, α, b, the function $u_{p, q, \alpha, b}(n)$ satisfies a linear recurrence with constant coefficients ($n \gg 0$). Equivalently, $\sum_{n} u_{p, q, \alpha, b}(n) x^{n}$ is a rational function of x.

Main theorem

Theorem. For fixed p, q, α, b, the function $u_{p, q, \alpha, b}(n)$ satisfies a linear recurrence with constant coefficients ($n \gg 0$). Equivalently, $\sum_{n} u_{p, q, \alpha, b}(n) x^{n}$ is a rational function of x.

Note. \exists multivariate generalization.

Some data

$$
q(x)=1, b=2, \alpha=(r)
$$

I.e.,

$$
\prod_{i=0}^{n-1} p\left(x^{2^{i}}\right)=\sum_{k}\binom{n}{k} x^{k}, \quad u(n)=\sum_{k}\binom{n}{k}^{r} .
$$

Some data

$$
q(x)=1, b=2, \alpha=(r)
$$

I.e.,

$$
\prod_{i=0}^{n-1} p\left(x^{2^{i}}\right)=\sum_{k}\binom{n}{k}^{k}, \quad u(n)=\sum_{k}\binom{n}{k}^{r} .
$$

$p(x)$	$r=2$	$r=3$	$r=4$
$1+x+x^{2}$	$x^{2}-5 x+2$	$x-7$	$(x+1)\left(x^{2}-11 x+2\right)$

Some data

$$
q(x)=1, b=2, \alpha=(r)
$$

I.e.,

$$
\prod_{i=0}^{n-1} p\left(x^{2^{i}}\right)=\sum_{k}\binom{n}{k} x^{k}, \quad u(n)=\sum_{k}\binom{n}{k}^{r}
$$

$p(x)$	$r=2$	$r=3$	$r=4$
$1+x+x^{2}$	$x^{2}-5 x+2$	$x-7$	$(x+1)\left(x^{2}-11 x+2\right)$
$1+2 x+x^{2}$	$(x-2)(x-8)$	$(x-4)(x-16)$	$(x-2)(x-8)(x-32)$
$1+3 x+x^{2}$	$x^{2}-17 x+54$	$x^{2}-47 x+450$	$x^{3}-\cdots-30618$
$1+4 x+x^{2}$	$x^{2}-26 x+128$	$x^{2}-94 x+1728$	$x^{3}-\cdots-458752$

Some data

$$
q(x)=1, b=2, \alpha=(r)
$$

I.e.,

$$
\prod_{i=0}^{n-1} p\left(x^{2^{i}}\right)=\sum_{k}\binom{n}{k} x^{k}, \quad u(n)=\sum_{k}\binom{n}{k}^{r} .
$$

$p(x)$	$r=2$	$r=3$	$r=4$
$1+x+x^{2}$	$x^{2}-5 x+2$	$x-7$	$(x+1)\left(x^{2}-11 x+2\right)$
$1+2 x+x^{2}$	$(x-2)(x-8)$	$(x-4)(x-16)$	$(x-2)(x-8)(x-32)$
$1+3 x+x^{2}$	$x^{2}-17 x+54$	$x^{2}-47 x+450$	$x^{3}-\cdots-30618$
$1+4 x+x^{2}$	$x^{2}-26 x+128$	$x^{2}-94 x+1728$	$x^{3}-\cdots-458752$

Aside. $30618=2 \cdot 3^{7} \cdot 7, \quad 458752=2^{16} \cdot 7$

An example

Example. Let $p(x)=(1+x)^{2}, q(x)=1$. Then

$$
\begin{aligned}
& u_{p,(2), 2}(n)=\frac{1}{3}\left(2 \cdot 2^{3 n}+2^{n}\right) \\
& u_{p,(3), 2}(n)=\frac{1}{2}\left(2^{4 n}+2^{2 n}\right) \\
& u_{p,(4), 2}(n)=\frac{1}{15}\left(6 \cdot 2^{5 n}+10 \cdot 2^{3 n}-2^{n}\right)
\end{aligned}
$$

An example

Example. Let $p(x)=(1+x)^{2}, q(x)=1$. Then

$$
\begin{aligned}
& u_{p,(2), 2}(n)=\frac{1}{3}\left(2 \cdot 2^{3 n}+2^{n}\right) \\
& u_{p,(3), 2}(n)=\frac{1}{2}\left(2^{4 n}+2^{2 n}\right) \\
& u_{p,(4), 2}(n)=\frac{1}{15}\left(6 \cdot 2^{5 n}+10 \cdot 2^{3 n}-2^{n}\right) .
\end{aligned}
$$

What's going on?

An example

Example. Let $p(x)=(1+x)^{2}, q(x)=1$. Then

$$
\begin{aligned}
& u_{p,(2), 2}(n)=\frac{1}{3}\left(2 \cdot 2^{3 n}+2^{n}\right) \\
& u_{p,(3), 2}(n)=\frac{1}{2}\left(2^{4 n}+2^{2 n}\right) \\
& u_{p,(4), 2}(n)=\frac{1}{15}\left(6 \cdot 2^{5 n}+10 \cdot 2^{3 n}-2^{n}\right) .
\end{aligned}
$$

What's going on?

$$
\begin{aligned}
p(x) p\left(x^{2}\right) p\left(x^{4}\right) \cdots p\left(x^{2^{n-1}}\right) & =\left((1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \cdots\left(1+x^{2^{n-1}}\right)\right)^{2} \\
& =\left(1+x+x^{2}+x^{3}+\cdots+x^{2^{n}-1}\right)^{2}
\end{aligned}
$$

The rest of the story

Example. Let

$$
\left(1+x+x^{2}+x^{3}+\cdots+x^{2^{n}-1}\right)^{3}=\sum_{j} a_{j} x^{j}
$$

What is $\sum_{j} a_{j}^{r}$?

The rest of the story

Example. Let

$$
\left(1+x+x^{2}+x^{3}+\cdots+x^{2^{n}-1}\right)^{3}=\sum_{j} a_{j} x^{j}
$$

What is $\sum_{j} a_{j}^{r}$?

$$
\begin{aligned}
\left(1+x+\cdots+x^{m-1}\right)^{3} & =\left(\frac{1-x^{m}}{1-x}\right)^{3} \\
& =\frac{1-3 x^{m}+3 x^{2 m}-x^{3 m}}{(1-x)^{3}} \\
& =\sum_{k=0}^{m-1}\binom{k+2}{2} x^{k}+\sum_{k=m}^{2 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}\right] x^{k} \\
& +\sum_{k=2 m}^{3 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}+3\binom{k-2 m+2}{2}\right] x^{k}
\end{aligned}
$$

The rest of the story (cont.)

$$
\begin{gathered}
\Rightarrow \sum_{j} a_{j}^{r}=\sum_{k=0}^{m-1}\binom{k+2}{2}^{r}+\sum_{k=m}^{2 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}\right]^{r} \\
+\sum_{k=2 m}^{3 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}+3\binom{k-2 m+2}{2}\right]^{r}
\end{gathered}
$$

The rest of the story (cont.)

$$
\begin{gathered}
\Rightarrow \sum_{j} a_{j}^{r}=\sum_{k=0}^{m-1}\binom{k+2}{2}^{r}+\sum_{k=m}^{2 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}\right]^{r} \\
+\sum_{k=2 m}^{3 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}+3\binom{k-2 m+2}{2}\right]^{r} \\
=P(m)
\end{gathered}
$$

for some polynomial $P(m) \in \mathbb{Q}[m]$.

The rest of the story (cont.)

$$
\begin{gathered}
\Rightarrow \sum_{j} a_{j}^{r}=\sum_{k=0}^{m-1}\binom{k+2}{2}^{r}+\sum_{k=m}^{2 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}\right]^{r} \\
+\sum_{k=2 m}^{3 m-1}\left[\binom{k+2}{2}-3\binom{k-m+2}{2}+3\binom{k-2 m+2}{2}\right]^{r} \\
=P(m)
\end{gathered}
$$

for some polynomial $P(m) \in \mathbb{Q}[m]$.
So $P\left(2^{n}\right)$ is a \mathbb{Q}-linear combination of terms $2^{j n}$, as desired.

Evenness and oddness

Fact. $P(m)$ is either even $(P(m)=P(-m))$ or odd $(P(m)=-P(-m))$ (depending on degree).

Evenness and oddness

Fact. $P(m)$ is either even $(P(m)=P(-m))$ or odd $(P(m)=-P(-m))$ (depending on degree).

Corollary. $\sum a_{j}^{r}$ has the form $\sum c_{i} 2^{2 i n}$ or $\sum c_{i} 2^{(2 i+1) n}$.

Evenness and oddness

Fact. $P(m)$ is either even $(P(m)=P(-m))$ or odd $(P(m)=-P(-m))$ (depending on degree).

Corollary. $\sum a_{j}^{r}$ has the form $\sum c_{i} 2^{2 i n}$ or $\sum c_{i} 2^{(2 i+1) n}$.

$$
\begin{aligned}
& u_{(1+x)^{2},(2), 2}(n)=\frac{1}{3}\left(2 \cdot 2^{3 n}+2^{n}\right) \\
& u_{(1+x)^{2},(3), 2}(n)=\frac{1}{2}\left(2^{4 n}+2^{2 n}\right) \\
& u_{(1+x)^{2},(4), 2}(n)=\frac{1}{15}\left(6 \cdot 2^{5 n}+10 \cdot 2^{3 n}-2^{n}\right)
\end{aligned}
$$

Evenness and oddness

Fact. $P(m)$ is either even $(P(m)=P(-m))$ or odd $(P(m)=-P(-m))$ (depending on degree).

Corollary. $\sum a_{j}^{r}$ has the form $\sum c_{i} 2^{2 i n}$ or $\sum c_{i} 2^{(2 i+1) n}$.

$$
\begin{aligned}
& u_{(1+x)^{2},(2), 2}(n)=\frac{1}{3}\left(2 \cdot 2^{3 n}+2^{n}\right) \\
& u_{(1+x)^{2},(3), 2}(n)=\frac{1}{2}\left(2^{4 n}+2^{2 n}\right) \\
& u_{(1+x)^{2},(4), 2}(n)=\frac{1}{15}\left(6 \cdot 2^{5 n}+10 \cdot 2^{3 n}-2^{n}\right)
\end{aligned}
$$

Generalizes to $u_{\left(1+x+x^{2}+\cdots+x^{c-1}\right)^{d}, \alpha, b}(n), c \mid b$.

The final slide

0

The final slide

