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Apparently known to Pingala in or before 2nd century BC (and
hence also known as Pingal’s Meruprastar), and definitely by
Varāhamihira (∼ 505), Al-Karaji (953–1029), Jia Xian
(1010-1070), et al.
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2nxn = 1

1 − 2x
∑
k≥0

(n
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)2 = (2n

n
)

∑
n≥0

(2n
n
)xn = 1√

1 − 4x (not rational)
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Sums of cubes

∑
k≥0

(n
k
)3 =??

If f (n) = ∑k≥0 (nk)3 then

(n+2)2f (n+2)−(7n2 +21n+16)f (n+1)−8(n+1)2f (n) = 0, n ≥ 0

Etc.
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A second triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1⋮

Stern’s triangle
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Some properties

Number of entries in row n (beginning with row 0): 2n+1 − 1
(so not really a triangle)

Sum of entries in row n: 3n

Largest entry in row n: Fn+1 (Fibonacci number)

Let ⟨n
k
⟩ be the kth entry (beginning with k = 0) in row n.

Write

Pn(x) = ∑
k≥0

⟨n
k
⟩xk .

Then Pn+1(x) = (1 + x + x2)Pn(x2) , since x Pn(x2)
corresponds to bringing down the previous row, and(1 + x2)Pn(x2) to summing two consecutive entries.
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Stern’s diatomic sequence

Corollary. Pn(x) = n−1∏
i=0

(1 + x2i + x2⋅2i)
As n →∞, the nth row has the limiting generating function

P(x) = ∞∏
i=0

(1 + x2i + x2⋅2i )
∶= ∑

n≥0

bnx
n
.

The sequence b0,b1,b2, . . . is Stern’s diatomic sequence:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, . . .

(often prefixed with 0)
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⇒ bn is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.



Partition interpretation

∑
n≥0

bnx
n =∏

i≥0

(1 + x2i + x2⋅2i)
⇒ bn is the number of partitions of n into powers of 2, where each
power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain
the (unique) binary expansion of n:

1

1 − x
=∏

i≥0

(1 + x2i ) .



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

⋮



Comparison
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1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

⋮
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Precise statement

Ri : ith row of Stern’s diatomic array, beginnning with row 0

Form the concatenation

R0R1ȂRn−2Rn−1Rn−1Rn−2ȂR1R0

and then merge together the last 1 in each row with the first 1 in
the next row.

We obtain row n of Stern’s triangle. From this observation almost
any property of Stern’s triangle can be carried over
straightforwardly to Stern’s diatomic array and vice versa.
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Theorem (Stern, 1858). Let b0,b1, . . . be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios bi/bi+1, and moreover this expression is in lowest
terms.



Amazing property

Theorem (Stern, 1858). Let b0,b1, . . . be Stern’s diatomic
sequence. Then every positive rational number occurs exactly once
among the ratios bi/bi+1, and moreover this expression is in lowest
terms.

Can be proved inductively from

b2n = bn, b2n+1 = bn + bn+1,
but better is to use Calkin-Wilf tree, though following Stigler’s
law of eponymy was earlier introduced by Jean Berstel and Aldo
de Luca as the Raney tree. Closely related tree by Stern, called
the Stern-Brocot tree, and a much earlier similar tree by Kepler
(1619).
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Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.



Stigler’s law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after
its original discoverer.

Note. Stigler’s law of eponymy implies that Stigler’s law of
eponymy was not originally discovered by Stigler.
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a/b
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The Calkin-Wilf tree

1/4 4/3 3/5 5/2 2/5  5/3 3/4 4/1

1/3 3/2 2/3 3/1

1/2 2/1

1/1



The Calkin-Wilf tree

1/4 4/3 3/5 5/2 2/5  5/3 3/4 4/1

1/3 3/2 2/3 3/1

1/2 2/1

1/1

Numerators (reading order): 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, . . .



The Calkin-Wilf tree

1/4 4/3 3/5 5/2 2/5  5/3 3/4 4/1

1/3 3/2 2/3 3/1

1/2 2/1

1/1

Numerators (reading order): 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, . . .
Denominators: 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, . . .
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continued fraction terms sum to n.



Continued fraction property

Entries in row n − 1 are those rational numbers whose regular
continued fraction terms sum to n.

row 2:
1

3
= 1

3 = 1

2+ 1

1

3

2
= 1 + 1

2 = 1 + 1

1+ 1

1

2

3
= 1

1+ 1

2

= 1

1+ 1

1+ 1

1

3 = 3 = 2 + 1

1



An enumerative property

bn+1 is the number of odd integers (n−k
k
), where 0 ≤ k ≤ ̂n/2̂.



New stuff!

PART II
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Sums of squares
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1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1

⋮

u2(n) ∶= ∑
k

⟨n
k
⟩2 = 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n) − 2u2(n − 1), n ≥ 1

∑
n≥0

u2(n)xn = 1 − 2x

1 − 5x + 2x2
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Sums of cubes

u3(n) ∶= ∑
k

⟨n
k
⟩3 = 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 ⋅ 7n−1, n ≥ 1
Equivalently, if

n−1∏
i=0

(1 + x2i + x2⋅2i) = ∑ajx
j , then

∑a3j = 3 ⋅ 7n−1.
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u1,1(n + 1) = Ȃ+ (⟨n
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k + 1
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= 2u2(n) + 2u1,1(n)

Recall also u2(n + 1) = 3u2(n) + 2u1,1(n).
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Two recurrences in two unknowns

Let

A ∶= [ 3 2
2 2

] .
Then

A [ u2(n)
u1,1(n) ] = [

u2(n + 1)
u1,1(n + 1) ] .

⇒ An [ u2(1)
u1,1(1) ] = [

u2(n)
u1,1(n) ]

Characteristic (or minimum) polynomial of A: x2 − 5x + 2

⇒ u2(n + 1) = 5u2(n) − 2u2(n − 1)
Also u1,1(n + 1) = 5u1,1(n) − 2u1,1(n − 1).
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What about u3(n)?

Now we need

u2,1(n) ∶= ∑
k

⟨n
k
⟩2⟨ n

k + 1
⟩

u1,2(n) ∶= ∑
k

⟨n
k
⟩⟨ n

k + 1
⟩2.

However, by symmetry about a vertical axis,

u2,1(n) = u1,2(n).
We get

[ 3 6
2 4

] [ u3(n)
u2,1(n) ] = [

u3(n + 1)
u2,1(n + 1) ] .
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Unexpected eigenvalue

Characteristic polynomial of [ 3 6
2 4
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Thus u3(n + 1) = 7u3(n) and u2,1(n + 1) = 7u2,1(n) (n ≥ 1).



Unexpected eigenvalue

Characteristic polynomial of [ 3 6
2 4

]: x(x − 7)
Thus u3(n + 1) = 7u3(n) and u2,1(n + 1) = 7u2,1(n) (n ≥ 1).
In fact,

u3(n) = 3 ⋅ 7n−1

u2,1(n) = 2 ⋅ 7n−1.
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Get a matrix of size ̂(r + 1)/2̂, so expect a recurrence of this
order.



What about ur(n) for general r ≥ 1?

Get a matrix of size ̂(r + 1)/2̂, so expect a recurrence of this
order.

Conjecture. The least order of a homogenous linear recurrence
with constant coeffcients satisfied by ur(n) is 1

3
r +O(1).



A more accurate conjecture

Write [a0, . . . ,am−1]m for the periodic function f ∶N → R

satisfying f (n) = ai if n ≡ i (modm).
Ar ∶ matrix arising from ur(n)

ei (r) ∶ # eigenvalues of Ar equal to i
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A more accurate conjecture

Write [a0, . . . ,am−1]m for the periodic function f ∶N → R

satisfying f (n) = ai if n ≡ i (modm).
Ar ∶ matrix arising from ur(n)

ei (r) ∶ # eigenvalues of Ar equal to i

Conjecture. We have

e0(2k − 1) = 1

3
k + [0,−1

3
,
1

3
]
3

,

and all 0 eigenvalues are semisimple. There are no other multiple
eigenvalues.

T. Amdeberhan: e0(2k − 1) > 0



Even d

Conjecture. We have

e1(2k) = 1

6
k + [−1,−1

6
,−

1

3
,−

1

2
,−

2

3
,
1

6
]
6

e−1(2k) = e1(2k + 6).
The eigenvalues 1 and −1 are semisimple, and there are no other
multiple eigenvalues.
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mo(r): minimum order of recurrence satisfied by ur(n)
Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s) = 2 ⌊ s
3
⌋ + 3 (s ≠ 1,3)

mo(6s + 1) = 2s + 1, s ≥ 0
mo(6s + 3) = 2s + 1, s ≥ 0
mo(6s + 5) = 2s + 2, s ≥ 0.



Minimum order of recurrence

mo(r): minimum order of recurrence satisfied by ur(n)
Conjecture. We have mo(2) = 2, mo(6) = 4, and otherwise

mo(2s) = 2 ⌊ s
3
⌋ + 3 (s ≠ 1,3)

mo(6s + 1) = 2s + 1, s ≥ 0
mo(6s + 3) = 2s + 1, s ≥ 0
mo(6s + 5) = 2s + 2, s ≥ 0.

True for r ≤ 125.



General α

α = (α0, . . . , αm−1)

uα(n) ∶= ∑
k
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Ȃ⟨ n

k +m − 1
⟩αm−1
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k+1
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k+1
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⟩ + ⟨ n

k+2
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A(1,1,1,1) =

̂̂̂
̂̂̂
̂̂̂
̂̂̂
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3 8 6 0 0 0
2 5 3 0 0 0
2 4 2 0 0 0
1 4 2 1 0 0
1 3 1 2 1 0
0 2 2 2 2 0

̂̂̂
̂̂̂
̂̂̂
̂̂̂
̂̂
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2,1,1

1,1,1,1



A closer look at α = (1,1,1,1)

u1,1,1,1(n) = ∑
k

⟨n
k
⟩⟨ n

k + 1
⟩⟨ n

k + 2
⟩⟨ n

k + 3
⟩

u1,1,1,1(n + 1) =
∑k (⟨ nk ⟩ + ⟨ n

k+1
⟩) ⟨ n

k+1
⟩ (⟨ n

k+1
⟩ + ⟨ n

k+2
⟩) ⟨ n

k+2
⟩

+∑k ⟨ nk ⟩ (⟨nk ⟩ + ⟨ n

k+1
⟩) ⟨ n

k+1
⟩ (⟨ n

k+1
⟩ + ⟨ n

k+2
⟩)
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3 8 6 0 0 0
2 5 3 0 0 0
2 4 2 0 0 0

1 4 2 1 0 0
1 3 1 2 1 0

0 2 2 2 2 0

̂̂̂
̂̂̂
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3,1
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1,2,1
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Reduction to α = (r)
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min. polynomial for α = (1,1,1,1): (x − 1)2(x + 1)(2x2 − 11x + 1)
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min. polynomial for α = (4): (x + 1)(2x2 − 11x + 1)
min. polynomial for α = (1,1,1,1): (x − 1)2(x + 1)(2x2 − 11x + 1)

mp(α): minimum polynomial of Aα

Theorem. Let α ∈ Nm and ∑αi = r . Then mp(α) has the form
xwα(x − 1)zαmp(r) for some wα, zα ∈ N.
No conjecture for value of wα, zα.
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u1(n + 1)2 = 9u1(n)2 (since u1(n) = 3n),
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P(x) = 3x − 8x2.



Symmetric functions

Let

ε2(n) = ∑
i<j

⟨n
i
⟩⟨n

j
⟩.

Now

ε2(n) = 1

2
(u2(n) + u1(n)2).

Since

u2(n + 1) = 5u2(n) − 2u2(n − 1)
u1(n + 1)2 = 9u1(n)2 (since u1(n) = 3n),

we get ∑n≥0 ε2(n)xn = P(x)/(1 − 5x + 2x2)(1 − 9x). In fact,
P(x) = 3x − 8x2.
Works for any symmetric function instead of e2.



A generalization

Let p(x),q(x) ∈ C[x], α = (α0, . . . , αm−1) ∈ Nr , and b ≥ 2. Set
q(x) n−1∏

i=0

p(xbi ) = ∑
k

⟨n
k
⟩
p,q,α,b

xk = ∑
k

⟨n
k
⟩xk

and

up,q,α,b(n) = ∑
k

⟨n
k
⟩α0⟨ n

k + 1
⟩α1

Ȃ ⟨ n

k +m − 1
⟩αm−1

.



Main theorem

Theorem. For fixed p,q, α,b, the function up,q,α,b(n) satisfies a
linear recurrence with constant coefficients (n Ȃ 0). Equivalently,

∑n up,q,α,b(n)xn is a rational function of x.



Main theorem

Theorem. For fixed p,q, α,b, the function up,q,α,b(n) satisfies a
linear recurrence with constant coefficients (n Ȃ 0). Equivalently,

∑n up,q,α,b(n)xn is a rational function of x.

Note. ∃ multivariate generalization.
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Some data

q(x) = 1,b = 2, α = (r)
I.e.,

n−1∏
i=0

p(x2i ) = ∑
k

⟨n
k
⟩xk , u(n) = ∑

k

⟨n
k
⟩r .

p(x) r = 2 r = 3 r = 4
1 + x + x2 x2 − 5x + 2 x − 7 (x + 1)(x2 − 11x + 2)
1 + 2x + x2 (x − 2)(x − 8) (x − 4)(x − 16) (x − 2)(x − 8)(x − 32)
1 + 3x + x2 x2 − 17x + 54 x2 − 47x + 450 x3 −Ȃ− 30618
1 + 4x + x2 x2 − 26x + 128 x2 − 94x + 1728 x3 −Ȃ− 458752

Aside. 30618 = 2 ⋅ 37 ⋅ 7, 458752 = 216 ⋅ 7



An example

Example. Let p(x) = (1 + x)2, q(x) = 1. Then
up,(2),2(n) = 1

3
(2 ⋅ 23n + 2n)

up,(3),2(n) = 1

2
(24n + 22n)

up,(4),2(n) = 1

15
(6 ⋅ 25n + 10 ⋅ 23n − 2n) .
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An example

Example. Let p(x) = (1 + x)2, q(x) = 1. Then
up,(2),2(n) = 1

3
(2 ⋅ 23n + 2n)

up,(3),2(n) = 1

2
(24n + 22n)

up,(4),2(n) = 1

15
(6 ⋅ 25n + 10 ⋅ 23n − 2n) .

What’s going on?

p(x)p(x2)p(x4)Ȃp(x2n−1) = ((1 + x)(1 + x2)(1 + x4)Ȃ(1 + x2n−1))2
= (1 + x + x2 + x3 +Ȃ+ x2n−1)2 .
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The rest of the story

Example. Let

(1 + x + x2 + x3 +Ȃ+ x2n−1)3 = ∑
j

ajx
j
.

What is ∑j a
r
j ?

(1 + x +Ȃ+ xm−1)3 = (1 − xm
1 − x

)
3

= 1 − 3xm + 3x2m − x3m

(1 − x)3
= m−1∑

k=0

(k + 2
2
)xk + 2m−1∑

k=m

[(k + 2
2
) − 3(k −m + 2

2
)] xk

+

3m−1∑
k=2m

[(k + 2
2
) − 3(k −m + 2

2
) + 3(k − 2m + 2

2
)] xk .



The rest of the story (cont.)

⇒∑
j

arj =
m−1∑
k=0

(k + 2
2
)
r

+

2m−1∑
k=m

[(k + 2
2
) − 3(k −m + 2

2
)]

r

+

3m−1∑
k=2m

[(k + 2
2
) − 3(k −m + 2

2
) + 3(k − 2m + 2

2
)]

r



The rest of the story (cont.)

⇒∑
j

arj =
m−1∑
k=0

(k + 2
2
)
r

+

2m−1∑
k=m

[(k + 2
2
) − 3(k −m + 2

2
)]

r

+

3m−1∑
k=2m

[(k + 2
2
) − 3(k −m + 2

2
) + 3(k − 2m + 2

2
)]

r

= P(m)
for some polynomial P(m) ∈ Q[m].



The rest of the story (cont.)

⇒∑
j

arj =
m−1∑
k=0

(k + 2
2
)
r

+

2m−1∑
k=m

[(k + 2
2
) − 3(k −m + 2

2
)]

r

+

3m−1∑
k=2m

[(k + 2
2
) − 3(k −m + 2

2
) + 3(k − 2m + 2

2
)]

r

= P(m)
for some polynomial P(m) ∈ Q[m].
So P(2n) is a Q-linear combination of terms 2jn, as desired.
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Evenness and oddness

Fact. P(m) is either even (P(m) = P(−m)) or odd
(P(m) = −P(−m)) (depending on degree).

Corollary. ∑ arj has the form ∑ ci2
2in or ∑ ci2

(2i+1)n.

u(1+x)2,(2),2(n) = 1

3
(2 ⋅ 23n + 2n)

u(1+x)2,(3),2(n) = 1

2
(24n + 22n)

u(1+x)2,(4),2(n) = 1

15
(6 ⋅ 25n + 10 ⋅ 23n − 2n) .

Generalizes to u(1+x+x2+Ȃ+xc−1)d ,α,b(n), c ∣b.
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