I. Stern's Diatomic Array and Beyond II. Spernicity of the Weak Order on S_{n}

Richard P. Stanley
U. Miami \& M.I.T.

January 20, 2019

PART

Stern's Diatomic Array and Beyond

The arithmetic triangle or Pascal's triangle

Properties

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x} \\
\sum_{k \geq 0}\binom{n}{k}^{2}=\binom{2 n}{n}
\end{gathered}
$$

Properties

$$
\begin{gathered}
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
\sum_{k \geq 0}\binom{n}{k} x^{k}=(1+x)^{n} \\
\sum_{k \geq 0}\binom{n}{k}=2^{n}, \quad \sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x} \\
\sum_{k \geq 0}\binom{n}{k}^{2}=\binom{2 n}{n} \\
\sum_{n \geq 0}\binom{2 n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}(\text { not rational })
\end{gathered}
$$

Sums of cubes

$$
\sum_{k \geq 0}\binom{n}{k}^{3}=? ?
$$

Sums of cubes

$$
\sum_{k \geq 0}\binom{n}{k}^{3}=? ?
$$

If $f(n)=\sum_{k \geq 0}\binom{n}{k}^{3}$ then

$$
(n+2)^{2} f(n+2)-\left(7 n^{2}+21 n+16\right) f(n+1)-8(n+1)^{2} f(n)=0, n \geq 0
$$

Sums of cubes

$$
\begin{aligned}
& \qquad \sum_{k \geq 0}\binom{n}{k}^{3}=? ? \\
& \text { If } f(n)=\sum_{k \geq 0}\binom{n}{k}^{3} \text { then } \\
& (n+2)^{2} f(n+2)-\left(7 n^{2}+21 n+16\right) f(n+1)-8(n+1)^{2} f(n)=0, n \geq 0
\end{aligned}
$$

Etc.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1

1
1
1

1
1 1

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1
1
1
1
1
1
1
1

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

1
 $1 \quad 1$
$1 \quad 2$
2
1
1 -

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

				1				
		1		1				
	1	1	2	1	2	1	1	
1								1

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

$$
\begin{array}{lllllllllllllll}
& & & & & & & & 1 & 1 & & & & & \\
& & & & & & & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array}
$$

A second triangle

Similar to Pascal's triangle, but we also "bring down" (copy) each number from one row to the next.

Stern's triangle

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)

Some properties

- Number of entries in row n (beginning with row 0): $2^{n+1}-1$ (so not really a triangle)
- Sum of entries in row $n: 3^{n}$
- Largest entry in row $n: F_{n+1}$ (Fibonacci number)
- Let $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ be the k th entry (beginning with $k=0$) in row n. Write

$$
P_{n}(x)=\sum_{k \geq 0}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle x^{k}
$$

Then $P_{n+1}(x)=\left(1+x+x^{2}\right) P_{n}\left(x^{2}\right)$, since $x P_{n}\left(x^{2}\right)$ corresponds to bringing down the previous row, and $\left(1+x^{2}\right) P_{n}\left(x^{2}\right)$ to summing two consecutive entries.

Stern's diatomic sequence

$$
\text { Corollary. } P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{n} x^{n}
\end{aligned}
$$

Stern's diatomic sequence

- Corollary. $P_{n}(x)=\prod_{i=0}^{n-1}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)$
- As $n \rightarrow \infty$, the nth row has the limiting generating function

$$
\begin{aligned}
P(x) & =\prod_{i=0}^{\infty}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right) \\
& :=\sum_{n \geq 0} \boldsymbol{b}_{\boldsymbol{n}} x^{n} .
\end{aligned}
$$

- The sequence $b_{0}, b_{1}, b_{2}, \ldots$ is Stern's diatomic sequence:

$$
1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1, \ldots
$$

(often prefixed with 0)

Partition interpretation

$$
\sum_{n \geq 0} b_{n} x^{n}=\prod_{i \geq 0}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

$\Rightarrow b_{n}$ is the number of partitions of n into powers of 2 , where each power of 2 can appear at most twice.

Partition interpretation

$$
\sum_{n \geq 0} b_{n} x^{n}=\prod_{i \geq 0}\left(1+x^{2^{i}}+x^{2 \cdot 2^{i}}\right)
$$

$\Rightarrow b_{n}$ is the number of partitions of n into powers of 2 , where each power of 2 can appear at most twice.

Note. If each power of 2 can appear at most once, then we obtain the (unique) binary expansion of n :

$$
\frac{1}{1-x}=\prod_{i \geq 0}\left(1+x^{2^{i}}\right)
$$

Historical note

An essentially equivalent array is due to Moritz Abraham Stern around 1858 and is known as Stern's diatomic array:

1															1	
1								2								1
1				3				2				3				1
1		4		3		5		2		5		3		4		1
1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1

Amazing property

Theorem (Stern, 1858). Let b_{0}, b_{1}, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_{i} / b_{i+1}, and moreover this expression is in lowest terms.

Amazing property

Theorem (Stern, 1858). Let b_{0}, b_{1}, \ldots be Stern's diatomic sequence. Then every positive rational number occurs exactly once among the ratios b_{i} / b_{i+1}, and moreover this expression is in lowest terms.

Can be proved inductively from

$$
b_{2 n}=b_{n}, b_{2 n+1}=b_{n}+b_{n+1}
$$

but better is to use Calkin-Wilf tree, though following Stigler's law of eponymy was earlier introduced by Jean Berstel and Aldo de Luca as the Raney tree. Closely related tree by Stern, called the Stern-Brocot tree, and a much earlier similar tree by Kepler (1619).

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Stigler's law of eponymy

Stephen M. Stigler (1980): No scientific discovery is named after its original discoverer.

Note. Stigler's law of eponymy implies that Stigler's law of eponymy was not originally discovered by Stigler.

Sums of squares

$$
\begin{aligned}
& \begin{array}{lllllllllllllllll}
\\
& & & & & & & & 1 & & & & & & & & \\
& & & 1 & & & & & & & & & & & \\
& 1 & & 1 & & 2 & & 1 & & 2 & & 1 & & & 1 & \\
1 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 3 & 2 & 3 & 1 & 2 & 1 & 1
\end{array} \\
& \boldsymbol{u}_{2}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \boldsymbol{u}_{2}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1
\end{aligned}
$$

Sums of squares

$$
\begin{aligned}
& \boldsymbol{u}_{2}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}=1,3,13,59,269,1227, \ldots \\
& u_{2}(n+1)=5 u_{2}(n)-2 u_{2}(n-1), \quad n \geq 1 \\
& \sum_{n \geq 0} u_{2}(n) x^{n}=\frac{1-2 x}{1-5 x+2 x^{2}}
\end{aligned}
$$

Sums of cubes

$$
u_{3}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{3}=1,3,21,147,1029,7203, \ldots
$$

Sums of cubes

$$
\begin{gathered}
u_{3}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{3}=1,3,21,147,1029,7203, \ldots \\
u_{3}(n)=3 \cdot 7^{n-1}, \quad n \geq 1
\end{gathered}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & =\cdots+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}+\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)^{2}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle
\end{aligned}
$$

Proof for $u_{2}(n)$

$$
\begin{aligned}
u_{2}(n+1) & \left.=\cdots+\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}+\left(\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)^{2}+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2}+\cdots \\
& =3 u_{2}(n)+2 \sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle
\end{aligned}
$$

Thus define $u_{1,1}(n):=\sum_{k}\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\left\langle\begin{array}{c}n \\ k+1\end{array}\right\rangle$, so

$$
u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n) .
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \left.\cdots+\left(\begin{array}{c}
n \\
k-1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\right)\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle \\
& +\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

What about $u_{1,1}(n)$?

$$
\begin{aligned}
u_{1,1}(n+1)= & \left.\cdots+\left(\begin{array}{c}
n \\
k-1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\right)\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle \\
& +\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right) \\
& +\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\cdots \\
= & 2 u_{2}(n)+2 u_{1,1}(n)
\end{aligned}
$$

Recall also $u_{2}(n+1)=3 u_{2}(n)+2 u_{1,1}(n)$.

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] .
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

minimum (or characteristic) polynomial of A : $x^{2}-5 x+2$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

minimum (or characteristic) polynomial of $A: x^{2}-5 x+2$

$$
\begin{array}{rlll}
\Rightarrow & A^{n-1}\left(A^{2}-5 A+2\right) & =0 \\
\Rightarrow & u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1)
\end{array}
$$

Two recurrences in two unknowns

Let

$$
A:=\left[\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n+1) \\
u_{1,1}(n+1)
\end{array}\right] . \\
& \Rightarrow A^{n}\left[\begin{array}{c}
u_{2}(1) \\
u_{1,1}(1)
\end{array}\right]=\left[\begin{array}{c}
u_{2}(n) \\
u_{1,1}(n)
\end{array}\right]
\end{aligned}
$$

minimum (or characteristic) polynomial of $A: x^{2}-5 x+2$

$$
\begin{aligned}
\Rightarrow & A^{n-1}\left(A^{2}-5 A+2\right) \\
\Rightarrow & =0 \\
u_{2}(n+1) & =5 u_{2}(n)-2 u_{2}(n-1)
\end{aligned}
$$

Also $u_{1,1}(n+1)=5 u_{1,1}(n)-2 u_{1,1}(n-1)$.

What about $\mu_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle \\
& \boldsymbol{u}_{1,2}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2} .
\end{aligned}
$$

What about $\mu_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle \\
& \boldsymbol{u}_{1,2}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2} .
\end{aligned}
$$

However, by symmetry about a vertical axis,

$$
u_{2,1}(n)=u_{1,2}(n)
$$

What about $\mu_{3}(n)$?

Now we need

$$
\begin{aligned}
& \boldsymbol{u}_{2,1}(n):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{2}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle \\
& \boldsymbol{u}_{1,2}(\boldsymbol{n}):=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{2} .
\end{aligned}
$$

However, by symmetry about a vertical axis,

$$
u_{2,1}(n)=u_{1,2}(n)
$$

We get

$$
\left[\begin{array}{ll}
3 & 6 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
u_{3}(n) \\
u_{2,1}(n)
\end{array}\right]=\left[\begin{array}{c}
u_{3}(n+1) \\
u_{2,1}(n+1)
\end{array}\right] .
$$

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$
Thus $u_{3}(n+1)=7 u_{3}(n)$ and $u_{2,1}(n+1)=7 u_{2,1}(n)(n \geq 1)$.

Unexpected eigenvalue

Characteristic polynomial of $\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right]: x(x-7)$
Thus $u_{3}(n+1)=7 u_{3}(n)$ and $u_{2,1}(n+1)=7 u_{2,1}(n)(n \geq 1)$.
In fact, for $n \geq 1$ we have

$$
\begin{aligned}
u_{3}(n) & =3 \cdot 7^{n-1} \\
u_{2,1}(n) & =2 \cdot 7^{n-1}
\end{aligned}
$$

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

What about $u_{r}(n)$ for general $r \geq 1$?

Get a matrix of size $\lceil(r+1) / 2\rceil$, so expect a recurrence of this order.

Conjecture. The least order of a homogenous linear recurrence with constant coeffcients satisfied by $u_{r}(n)$ is $\frac{1}{3} r+O(1)$.

A more accurate conjecture

Write $\left[a_{0}, \ldots, a_{m-1}\right]_{m}$ for the periodic function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $f(n)=a_{i}$ if $n \equiv i(\bmod m)$.
A_{r} : matrix arising from $u_{r}(n)$ $\boldsymbol{e}_{\boldsymbol{i}}(\boldsymbol{r})$: \# eigenvalues of A_{r} equal to i

A more accurate conjecture

Write $\left[a_{0}, \ldots, a_{m-1}\right]_{m}$ for the periodic function $f: \mathbb{N} \rightarrow \mathbb{R}$ satisfying $f(n)=a_{i}$ if $n \equiv i(\bmod m)$.
A_{r} : matrix arising from $u_{r}(n)$ $e_{i}(r)$: \# eigenvalues of A_{r} equal to i

Conjecture. We have

$$
e_{0}(2 k-1)=\frac{1}{3} k+\left[0,-\frac{1}{3}, \frac{1}{3}\right]_{3},
$$

and all 0 eigenvalues are semisimple. There are no other multiple eigenvalues.

Even d

Conjecture. We have

$$
\begin{aligned}
e_{1}(2 k) & =\frac{1}{6} k+\left[-1,-\frac{1}{6},-\frac{1}{3},-\frac{1}{2},-\frac{2}{3}, \frac{1}{6}\right]_{6} \\
e_{-1}(2 k) & =e_{1}(2 k+6)
\end{aligned}
$$

The eigenvalues 1 and -1 are semisimple, and there are no other multiple eigenvalues.

Minimum order of recurrence

$\mathrm{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$
Conjecture. We have $\operatorname{mo}(2)=2, \operatorname{mo}(6)=4$, and otherwise

$$
\begin{aligned}
\operatorname{mo}(2 s) & =2\left\lfloor\frac{s}{3}\right\rfloor+3 \quad(s \neq 1,3) \\
\operatorname{mo}(6 s+1) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+3) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+5) & =2 s+2, \quad s \geq 0
\end{aligned}
$$

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$
Conjecture. We have $\operatorname{mo}(2)=2, \operatorname{mo}(6)=4$, and otherwise

$$
\begin{aligned}
\operatorname{mo}(2 s) & =2\left\lfloor\frac{s}{3}\right\rfloor+3 \quad(s \neq 1,3) \\
\operatorname{mo}(6 s+1) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+3) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+5) & =2 s+2, \quad s \geq 0
\end{aligned}
$$

True for $r \leq 125$.

Minimum order of recurrence

$\operatorname{mo}(r)$: minimum order of recurrence satisfied by $u_{r}(n)$
Conjecture. We have $\operatorname{mo}(2)=2, \operatorname{mo}(6)=4$, and otherwise

$$
\begin{aligned}
\operatorname{mo}(2 s) & =2\left\lfloor\frac{s}{3}\right\rfloor+3 \quad(s \neq 1,3) \\
\operatorname{mo}(6 s+1) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+3) & =2 s+1, \quad s \geq 0 \\
\operatorname{mo}(6 s+5) & =2 s+2, \quad s \geq 0
\end{aligned}
$$

True for $r \leq 125$.

$$
\sum_{r \geq 0} \operatorname{mo}(r) x^{r}=\frac{\text { irred. deg } 13}{(1-x)\left(1-x^{6}\right)}
$$

Work of David Speyer (November 12, 2018)

Theorem. The matrix A_{r} is realized by the operator $\phi: V_{r} \rightarrow V_{r}$ defined by

$$
\phi(f)(x, y)=f(x+y, y)+f(x, x+y)
$$

where V_{r} is the space of homogeneous polynomials (over \mathbb{Z}) of degree r in the variables x, y, modulo the subspace generated by all $f(x, y)-f(y, x)$.

Work of David Speyer (November 12, 2018)

Theorem. The matrix A_{r} is realized by the operator $\phi: V_{r} \rightarrow V_{r}$ defined by

$$
\phi(f)(x, y)=f(x+y, y)+f(x, x+y)
$$

where V_{r} is the space of homogeneous polynomials (over \mathbb{Z}) of degree r in the variables x, y, modulo the subspace generated by all $f(x, y)-f(y, x)$.

Fairly easily implies:
Theorem. A_{r} has at least as many eigenvalues equal to $-1,0,1$ as claimed. (Moreover, all eigenvalues are semisimple and real).

Work of David Speyer (November 12, 2018)

Theorem. The matrix A_{r} is realized by the operator $\phi: V_{r} \rightarrow V_{r}$ defined by

$$
\phi(f)(x, y)=f(x+y, y)+f(x, x+y)
$$

where V_{r} is the space of homogeneous polynomials (over \mathbb{Z}) of degree r in the variables x, y, modulo the subspace generated by all $f(x, y)-f(y, x)$.

Fairly easily implies:
Theorem. A_{r} has at least as many eigenvalues equal to $-1,0,1$ as claimed. (Moreover, all eigenvalues are semisimple and real).

Corollary. The minimum order mo(r) of a recurrence satisfied by u_{r} is no larger than the conjectured value.

General α

$$
\begin{aligned}
\alpha & =\left(\alpha_{0}, \ldots, \alpha_{m-1}\right) \\
u_{\alpha}(n) & :=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{\alpha_{0}}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{\alpha_{1}} \cdots\left\langle\begin{array}{c}
n \\
k+m-1
\end{array}\right\rangle^{\alpha_{m-1}}
\end{aligned}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

$u_{1,1,1,1}(n+1)=$

$$
\begin{aligned}
& \sum_{k}\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
& +\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{aligned}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

$u_{1,1,1,1}(n+1)=$

$$
\begin{gathered}
\sum_{k}\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
+\sum_{k}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{gathered}
$$

$$
A_{(1,1,1,1)}=\left[\begin{array}{cccccc}
3 & 8 & 6 & 0 & 0 & 0 \\
2 & 5 & 3 & 0 & 0 & 0 \\
2 & 4 & 2 & 0 & 0 & 0 \\
1 & 4 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 2 & 1 & 0 \\
0 & 2 & 2 & 2 & 2 & 0
\end{array}\right] \begin{gathered}
\mathbf{4} \\
\mathbf{3 , 1} \\
\mathbf{2 , 2} \\
\mathbf{1 , 2 , 1} \\
\mathbf{2 , 1 , 1} \\
\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}
\end{gathered}
$$

A closer look at $\alpha=(1,1,1,1)$

$$
u_{1,1,1,1}(n)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\left\langle\begin{array}{c}
n \\
k+3
\end{array}\right\rangle
$$

$u_{1,1,1,1}(n+1)=$

$$
\begin{gathered}
\sum_{k}\left(\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle \\
+\sum_{k}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\right)\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle\left(\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle+\left\langle\begin{array}{c}
n \\
k+2
\end{array}\right\rangle\right)
\end{gathered}
$$

$$
A_{(1,1,1,1)}=\left[\begin{array}{ccc|cc|c}
3 & 8 & 6 & 0 & 0 & 0 \\
2 & 5 & 3 & 0 & 0 & 0 \\
2 & 4 & 2 & 0 & 0 & 0 \\
\hline 1 & 4 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 2 & 1 & 0 \\
\hline 0 & 2 & 2 & 2 & 2 & 0
\end{array}\right] \begin{gathered}
\mathbf{4} \\
\mathbf{3 , 1} \\
\mathbf{2 , 2} \\
\mathbf{1 , 2 , 1} \\
\mathbf{2 , 1 , 1} \\
\mathbf{1 , 1 , 1 , 1}
\end{gathered}
$$

Reduction to $\alpha=(r)$

min. polynomial for $\alpha=(4)$: $\quad(x+1)\left(2 x^{2}-11 x+1\right)$
min. polynomial for $\alpha=(1,1,1,1)$: $\quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)$

Reduction to $\alpha=(r)$

$$
\min . \text { polynomial for } \alpha=(4): \quad(x+1)\left(2 x^{2}-11 x+1\right)
$$

$$
\min \text {. polynomial for } \alpha=(1,1,1,1) \text { : } \quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)
$$

$\operatorname{mp}(\alpha)$: minimum polynomial of A_{α}
Theorem. Let $\alpha \in \mathbb{N}^{m}$ and $\sum \alpha_{i}=r$. Then $\operatorname{mp}(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}} \operatorname{mp}(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

Reduction to $\alpha=(r)$

$$
\min . \text { polynomial for } \alpha=(4): \quad(x+1)\left(2 x^{2}-11 x+1\right)
$$

$$
\min \text {. polynomial for } \alpha=(1,1,1,1) \text { : } \quad(x-1)^{2}(x+1)\left(2 x^{2}-11 x+1\right)
$$

$\operatorname{mp}(\alpha)$: minimum polynomial of A_{α}
Theorem. Let $\alpha \in \mathbb{N}^{m}$ and $\sum \alpha_{i}=r$. Then $\operatorname{mp}(\alpha)$ has the form $x^{w_{\alpha}}(x-1)^{z_{\alpha}} \operatorname{mp}(r)$ for some $w_{\alpha}, z_{\alpha} \in \mathbb{N}$.

No conjecture for value of w_{α}, z_{α}.

A generalization

Let $\boldsymbol{p}(x), \boldsymbol{q}(x) \in \mathbb{C}[x], \alpha=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right) \in \mathbb{N}^{m}$, and $b \geq 2$. Set

$$
q(x) \prod_{i=0}^{n-1} p\left(x^{b^{i}}\right)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\boldsymbol{p}, \boldsymbol{q}, \alpha, b^{2}} x^{k}=\sum_{k}\left\langle\begin{array}{l}
\boldsymbol{n} \\
k
\end{array}\right\rangle x^{k}
$$

and

$$
u_{p, q, \alpha, b}(n)=\sum_{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle^{\alpha_{0}}\left\langle\begin{array}{c}
n \\
k+1
\end{array}\right\rangle^{\alpha_{1}} \cdots\left\langle\begin{array}{c}
n \\
k+m-1
\end{array}\right\rangle^{\alpha_{m-1}} .
$$

Main theorem

Theorem. For fixed p, q, α, b, the function $u_{p, q, \alpha, b}(n)$ satisfies a linear recurrence with constant coefficients ($n \gg 0$). Equivalently, $\sum_{n} u_{p, q, \alpha, b}(n) x^{n}$ is a rational function of x.

Main theorem

Theorem. For fixed p, q, α, b, the function $u_{p, q, \alpha, b}(n)$ satisfies a linear recurrence with constant coefficients ($n \gg 0$). Equivalently, $\sum_{n} u_{p, q, \alpha, b}(n) x^{n}$ is a rational function of x.

Note. \exists multivariate generalization.

PART II

A Weak Order Conjecture

Graded posets

$$
\begin{aligned}
P: & \text { finite poset } \\
\text { chain : } & u_{1}<u_{2}<\cdots<u_{k}
\end{aligned}
$$

Graded posets

$$
\begin{aligned}
P: & \text { finite poset } \\
\text { chain : } & u_{1}<u_{2}<\cdots<u_{k}
\end{aligned}
$$

Assume P is finite. P is graded of rank \boldsymbol{n} if

$$
P=P_{0} \cup P_{1} \cup \cdots \cup P_{n}
$$

such that every maximal chain has the form

$$
t_{0}<t_{1}<\cdots<t_{n}, \quad t_{i} \in P_{i}
$$

Diagram of a graded poset

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{i}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$
Rank-unimodal: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}$ for some j

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$
Rank-unimodal: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}$ for some j
rank-unimodal and rank-symmetric $\Rightarrow j=\lfloor n / 2\rfloor$

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

Note. P_{i} is an antichain

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

Note. P_{i} is an antichain
P is Sperner (or has the Sperner property) if

$$
\max _{A} \# A=\max _{i} p_{i}
$$

An example

rank-symmetric, rank-unimodal, $F_{P}(q)=3+3 q$

An example

rank-symmetric, rank-unimodal, $F_{P}(q)=3+3 q$ not Sperner

The boolean algebra

B_{n} : subsets of $\{1,2, \ldots, n\}$, ordered by inclusion

The boolean algebra

B_{n} : subsets of $\{1,2, \ldots, n\}$, ordered by inclusion

$$
\begin{aligned}
& p_{i}=\binom{n}{i}, \quad F_{B_{n}}(q)=(1+q)^{n} \\
& \text { rank-symmetric, rank-unimodal }
\end{aligned}
$$

Diagram of B_{3}

Sperner's theorem, 1927

Theorem. B_{n} is Sperner.

Sperner's theorem, 1927

Theorem. B_{n} is Sperner.
Emanuel Sperner
9 December 1905-31 January 1980

Linear algebra to the rescue!

$$
\boldsymbol{P}=P_{0} \cup \cdots \cup P_{m}: \quad \text { graded poset }
$$

$\mathbb{Q} \boldsymbol{P}_{\boldsymbol{i}}:$ vector space with basis P_{i}
$U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is order-raising if

$$
U(s) \in \operatorname{span}_{\mathbb{Q}}\left\{t \in P_{i+1}: s<t\right\}
$$

Order-matchings

Order matching: $\mu: P_{i} \rightarrow P_{i+1}$: injective and $\mu(t)>t$

Order-matchings

Order matching: $\mu: P_{i} \rightarrow P_{i+1}$: injective and $\mu(t)>t$

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_{i} \rightarrow P_{i+1}$.

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_{i} \rightarrow P_{i+1}$.

Proof. Consider the matrix of U with respect to the bases P_{i} and P_{i+1}.

Key lemma proof

$$
P_{i}\left\{\begin{array}{cccc}
t_{1} & \cdots & t_{m} & \cdots \\
s_{1} \\
\vdots \\
s_{m}
\end{array}\left[\begin{array}{cccc}
\neq 0 & & \mid & * \\
& \ddots & \mid & * \\
& & \neq 0 \mid & *
\end{array}\right]\right.
$$

Key lemma proof

$$
\begin{aligned}
& \overbrace{\begin{array}{lllll}
t_{1} & \cdots & t_{m} & \cdots & t_{n}
\end{array}}^{P_{i+1}} \\
& P_{i}\left\{\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\left[\begin{array}{llr|c}
\neq 0 & & \mid & * \\
& \ddots & \mid & * \\
& & \neq 0 \mid & *
\end{array}\right]\right. \\
& \operatorname{det} \neq 0 \\
& \Rightarrow s_{1}<t_{1}, \ldots, s_{m}<t_{m}
\end{aligned}
$$

Minor variant

Similarly if there exists surjective order-raising $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$, then there exists an order-matching $\mu: P_{i+1} \rightarrow P_{i}$.

A criterion for Spernicity

$$
P=P_{0} \cup \cdots \cup P_{n}: \text { finite graded poset }
$$

Proposition. If for some j there exist order-raising operators

$$
\mathbb{Q} P_{0} \xrightarrow{\text { inj. }} \mathbb{Q} P_{1} \xrightarrow{\text { inj. }} \ldots \xrightarrow{\text { inj. }} \mathbb{Q} P_{j} \xrightarrow{\text { surj. }} \mathbb{Q} P_{j+1} \xrightarrow{\text { surj. }} \cdots \xrightarrow{\text { surj. }} \mathbb{Q} P_{n},
$$

then P is rank-unimodal and Sperner.

A criterion for Spernicity

$$
P=P_{0} \cup \cdots \cup P_{n}: \text { finite graded poset }
$$

Proposition. If for some j there exist order-raising operators

$$
\mathbb{Q} P_{0} \xrightarrow{\text { inj. }} \mathbb{Q} P_{1} \xrightarrow{\text { inj. }} \ldots \xrightarrow{\text { inj. }} \mathbb{Q} P_{j} \xrightarrow{\text { surj. }} \mathbb{Q} P_{j+1} \xrightarrow{\text { surj. }} \ldots \xrightarrow{\text { surj. }} \mathbb{Q} P_{n},
$$

then P is rank-unimodal and Sperner.
Proof. "Glue together" the order-matchings.

Gluing example

Gluing example

Gluing example

Gluing example

Gluing example

Gluing example

A chain decomposition

$$
\begin{gathered}
P=C_{1} \cup \cdots \cup C_{p_{j}} \quad \text { (chains) } \\
A=\text { antichain, } C=\text { chain } \Rightarrow \#(A \cap C) \leq 1 \\
\Rightarrow \# A \leq p_{j} .
\end{gathered}
$$

The weak order $W\left(S_{n}\right)$ on S_{n}

$$
\begin{gathered}
s_{i}=(i, i+1), \quad 1 \leq i \leq n-1 \\
w \in S_{n}, \quad \ell(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}
\end{gathered}
$$

For $u, v \in S_{n}$ define $u \leq v$ if $v=u s_{i_{1}} \cdots s_{i_{k}}$, where $\ell(v)=k+\ell(u)$.

The weak order $W\left(S_{n}\right)$ on S_{n}

$$
\begin{gathered}
s_{i}=(i, i+1), \quad 1 \leq i \leq n-1 \\
w \in S_{n}, \ell(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}
\end{gathered}
$$

For $u, v \in S_{n}$ define $u \leq v$ if $v=u s_{i_{1}} \cdots s_{i_{k}}$, where $\ell(v)=k+\ell(u)$. $W\left(S_{n}\right)$ is graded of rank $\binom{n}{2}$, rank-symmetric, and rank-unimodal, with

$$
\begin{aligned}
F_{W\left(S_{n}\right)}(q) & :=\sum_{k=0}^{\binom{n}{2}} \# W\left(S_{n}\right)_{k} q^{k} \\
& =(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right) .
\end{aligned}
$$

An order-raising operator

How to define $U_{k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{k+1}$?

An order-raising operator

How to define $U_{k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{k+1}$?
Theorem (Macdonald 1991, Fomin-S. 1994). \mathfrak{S}_{w} : Schubert polynomial indexed by $w \in S_{n}$. Let $k=\ell(w)$.

$$
k!\mathfrak{S}_{w}(1,1, \ldots, 1)=\sum_{\left(a_{1}, \ldots, a_{k}\right) \in R(w)} a_{1} \cdots a_{k}
$$

where $R(w)$ is the set of reduced decompositions of w, i.e.,

$$
w=s_{a_{1}} \cdots s_{a_{k}}
$$

An order-raising operator

How to define $U_{k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{k+1}$?
Theorem (Macdonald 1991, Fomin-S. 1994). \mathfrak{S}_{w} : Schubert polynomial indexed by $w \in S_{n}$. Let $k=\ell(w)$.

$$
k!\mathfrak{S}_{w}(1,1, \ldots, 1)=\sum_{\left(a_{1}, \ldots, a_{k}\right) \in R(w)} a_{1} \cdots a_{k}
$$

where $R(w)$ is the set of reduced decompositions of w, i.e.,

$$
w=s_{a_{1}} \cdots s_{a_{k}} .
$$

Example. $321=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$, and

$$
1 \cdot 2 \cdot 1+2 \cdot 1 \cdot 2=6=\ell(321)!
$$

An equivalent formulation

Define for $\ell(w)=k\left(\right.$ or $\left.w \in W\left(S_{n}\right)_{k}\right)$,

$$
U(w)=U_{k}(w)=\sum_{i: s_{i} w>w} i \cdot s_{i} w .
$$

If $u<v$ and $\ell(v)-\ell(u)=r$, then

$$
[v] U^{r}(u)=r!\mathfrak{S}_{u^{-1} v}(1,1, \ldots, 1)
$$

An equivalent formulation

Define for $\ell(w)=k\left(\right.$ or $\left.w \in W\left(S_{n}\right)_{k}\right)$,

$$
U(w)=U_{k}(w)=\sum_{i: s_{i} w>w} i \cdot s_{i} w .
$$

If $u<v$ and $\ell(v)-\ell(u)=r$, then

$$
[v] U^{r}(u)=r!\mathfrak{S}_{u^{-1} v}(1,1, \ldots, 1) .
$$

Thus U is a "natural" order-raising operator for $W\left(S_{n}\right)$.

A matrix

$\mathcal{U}(n, k)$: matrix of

$$
U\binom{n}{2}-2 k: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{\binom{n}{2}-k}
$$

with respect to the bases $W\left(S_{n}\right)_{k}$ and $W\left(S_{n}\right)_{\binom{n}{2}-k}$.

A matrix

$\mathcal{U}(n, k)$: matrix of

$$
U^{\binom{n}{2}-2 k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{\binom{n}{2}-k}
$$

with respect to the bases $W\left(S_{n}\right)_{k}$ and $W\left(S_{n}\right)_{\binom{n}{2}-k}$.
If $u \in W\left(S_{n}\right)_{k}$ and $v \in W\left(S_{n}\right)_{\binom{n}{2}-k}$, then

$$
\mathcal{U}(n, k)_{u v}=\left\{\begin{aligned}
(\cdots) \mathfrak{S}_{u^{-1} v}(1, \ldots, 1), & u \leq v \\
0, & u \not \leq v .
\end{aligned}\right.
$$

A determinant

To show: $\operatorname{det} \mathcal{U}(n, k) \neq 0$ (implies $W\left(S_{n}\right)$ is Sperner).

A determinant

To show: $\operatorname{det} \mathcal{U}(n, k) \neq 0$ (implies $W\left(S_{n}\right)$ is Sperner).
Theorem. Write $W_{n}=W\left(S_{n}\right)$. Then

$$
\operatorname{det} \mathcal{U}(n, k)= \pm\left(\binom{n}{2}-2 k\right)!^{\#\left(W_{n}\right)_{k}} \prod_{i=0}^{k-1}\left(\frac{\binom{n}{2}-(k+i)}{k-i}\right)^{\#\left(W_{n}\right)_{i}}
$$

A determinant

To show: $\operatorname{det} \mathcal{U}(n, k) \neq 0$ (implies $W\left(S_{n}\right)$ is Sperner).
Theorem. Write $W_{n}=W\left(S_{n}\right)$. Then
$\operatorname{det} \mathcal{U}(n, k)= \pm\left(\binom{n}{2}-2 k\right)!^{\#\left(W_{n}\right)_{k}} \prod_{i=0}^{k-1}\left(\frac{\binom{n}{2}-(k+i)}{k-i}\right)^{\#\left(W_{n}\right)_{i}}$.
Conjectured by RS (2018), proved by Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt (2019).

A determinant

To show: $\operatorname{det} \mathcal{U}(n, k) \neq 0$ (implies $W\left(S_{n}\right)$ is Sperner).
Theorem. Write $W_{n}=W\left(S_{n}\right)$. Then
$\operatorname{det} \mathcal{U}(n, k)= \pm\left(\binom{n}{2}-2 k\right)!^{\#\left(W_{n}\right)_{k}} \prod_{i=0}^{k-1}\left(\frac{\binom{n}{2}-(k+i)}{k-i}\right)^{\#\left(W_{n}\right)_{i}}$.
Conjectured by RS (2018), proved by Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt (2019).

Corollary. $W\left(S_{n}\right)$ is Sperner.

Another approach

Theorem (C. Gaetz and Y. Gao, November 13, 2018). There exists a "down" operator

$$
D: \mathbb{C} W\left(S_{n}\right)_{k} \rightarrow \mathbb{C} W\left(S_{n}\right)_{k-1}
$$

such that U (over \mathbb{C}) and D generate $\mathfrak{s l}(2, \mathbb{C})$.

Another approach

Theorem (C. Gaetz and Y. Gao, November 13, 2018). There exists a "down" operator

$$
D: \mathbb{C} W\left(S_{n}\right)_{k} \rightarrow \mathbb{C} W\left(S_{n}\right)_{k-1}
$$

such that U (over \mathbb{C}) and D generate $\mathfrak{s l}(2, \mathbb{C})$.
Corollary. For $k<\frac{1}{2}\binom{n}{2}$ the linear transformation

$$
U^{\binom{n}{2}-2 k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{\binom{n}{2}-k}
$$

is a bijection.

Another approach

Theorem (C. Gaetz and Y. Gao, November 13, 2018). There exists a "down" operator

$$
D: \mathbb{C} W\left(S_{n}\right)_{k} \rightarrow \mathbb{C} W\left(S_{n}\right)_{k-1}
$$

such that U (over \mathbb{C}) and D generate $\mathfrak{s l}(2, \mathbb{C})$.
Corollary. For $k<\frac{1}{2}\binom{n}{2}$ the linear transformation

$$
U^{\binom{n}{2}-2 k}: \mathbb{Q} W\left(S_{n}\right)_{k} \rightarrow \mathbb{Q} W\left(S_{n}\right)_{\binom{n}{2}-k}
$$

is a bijection.
Corollary. $W\left(S_{n}\right)$ is Sperner.

What is D ?

Lehmer code of $w=a_{1} \cdots a_{n} \in S_{n}: L(w)=\left(c_{1}, \ldots, c_{n}\right)$, where

$$
c_{i}=\#\left\{j>i: a_{j}<a_{i}\right\} .
$$

What is D ?

Lehmer code of $w=a_{1} \cdots a_{n} \in S_{n}: L(w)=\left(c_{1}, \ldots, c_{n}\right)$, where

$$
c_{i}=\#\left\{j>i: a_{j}<a_{i}\right\}
$$

If $w \in\left(W_{n}\right)_{k}$, then $D w:=\sum_{v \in\left(W_{n}\right)_{k-1}} \gamma_{v w} v$, where

$$
\gamma_{v w}=\left\{\begin{array}{cl}
\|L(w)-L(v)\|_{1}, & \text { if } v<w \text { (strong order) } \\
0, & \text { otherwise } .
\end{array}\right.
$$

Example of D

$$
\begin{gathered}
v=231654, \quad w=251634 \\
\ell(v)=5, \quad \ell(w)=6, \quad v<w(\text { strong order }) \\
L(v)=(1,1,0,2,1,0), \quad L(w)=(1,3,0,2,0,0) \\
L(w)-L(v)=(0,2,0,0,-1,0) \\
\gamma_{v w}=2+1=3
\end{gathered}
$$

Combining the two proofs

Gaetz and Gao combined their ideas with those of Hamaker, Pechenik, Speyer, and Weigandt to find the Smith normal form of $\mathcal{U}(n, k)$ (stronger result than $\operatorname{det} \mathcal{U}(n, k)$).

Open problems

- Is there a "hard Lefschetz" explanation for $\operatorname{det} \mathcal{U}(n, k) \neq 0$?

Open problems

- Is there a "hard Lefschetz" explanation for $\operatorname{det} \mathcal{U}(n, k) \neq 0$?
- If we replace $\mathfrak{S}_{w}(1,1, \ldots, 1)$ with $\mathfrak{S}_{w}\left(x_{1} \cdot x_{2}, \ldots, x_{m}\right)$ or just $\mathfrak{S}_{w}\left(1, q, \ldots, q^{m-1}\right)$ (formula conjectured by Macdonald and proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?

Open problems

- Is there a "hard Lefschetz" explanation for $\operatorname{det} \mathcal{U}(n, k) \neq 0$?
- If we replace $\mathfrak{S}_{w}(1,1, \ldots, 1)$ with $\mathfrak{S}_{w}\left(x_{1} \cdot x_{2}, \ldots, x_{m}\right)$ or just $\mathfrak{S}_{w}\left(1, q, \ldots, q^{m-1}\right)$ (formula conjectured by Macdonald and proved by Fomin-S.), then the determinant does not factor.

Is there a nice q-analogue?

- Other types, i.e., the weak order of other Coxeter groups?

The final slide

0

The final slide

