The Sperner Property

Richard P. Stanley
M.I.T. and U. Miami

January 20, 2019

Sperner's theorem

Theorem (E. Sperner, 1927). Let $S_{1}, S_{2}, \ldots, S_{m}$ be subsets of an n-element set X such that $S_{i} \nsubseteq S_{j}$ for $i \neq j$, Then $m \leq\binom{ n}{\lfloor n / 2\rfloor}$, achieved by taking all $\lfloor n / 2\rfloor$-element subsets of X.

Sperner's theorem

Theorem (E. Sperner, 1927). Let $S_{1}, S_{2}, \ldots, S_{m}$ be subsets of an n-element set X such that $S_{i} \nsubseteq S_{j}$ for $i \neq j$, Then $m \leq\binom{ n}{\lfloor n / 2\rfloor}$, achieved by taking all $\lfloor n / 2\rfloor$-element subsets of X.

Emanuel Sperner
9 December 1905-31 January 1980

Posets

A poset (partially ordered set) is a set P with a binary relation \leq satisfying:

- Reflexivity: $t \leq t$
- Antisymmetry: $s \leq t, t \leq s \Rightarrow s=t$
- Transitivity: $s \leq t, t \leq u \Rightarrow s \leq u$

Graded posets

chain: $u_{1}<u_{2}<\cdots<u_{k}$

Graded posets

chain: $u_{1}<u_{2}<\cdots<u_{k}$
Assume P is finite. P is graded of rank \boldsymbol{n} if

$$
P=P_{0} \cup P_{1} \cup \cdots \cup P_{n},
$$

such that every maximal chain has the form

$$
t_{0}<t_{1}<\cdots<t_{n}, \quad t_{i} \in P_{i}
$$

Diagram of a graded poset

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{i}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$
Rank-unimodal: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}$ for some j

Rank-symmetry and unimodality

Let $\boldsymbol{p}_{\boldsymbol{i}}=\# P_{i}$.
Rank-generating function: $F_{P}(q)=\sum_{i=0}^{n} p_{i} q^{i}$
Rank-symmetric: $p_{i}=p_{n-i} \forall i$
Rank-unimodal: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \geq \cdots \geq p_{n}$ for some j
rank-unimodal and rank-symmetric $\Rightarrow j=\lfloor n / 2\rfloor$

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

Note. P_{i} is an antichain

The Sperner property

antichain $A \subseteq P$:

$$
s, t \in A, \quad s \leq t \Rightarrow s=t
$$

Note. P_{i} is an antichain
P is Sperner (or has the Sperner property) if

$$
\max _{A} \# A=\max _{i} p_{i}
$$

An example

rank-symmetric, rank-unimodal, $F_{P}(q)=3+3 q$

An example

rank-symmetric, rank-unimodal, $F_{P}(q)=3+3 q$ not Sperner

The boolean algebra

B_{n} : subsets of $\{1,2, \ldots, n\}$, ordered by inclusion

The boolean algebra

B_{n} : subsets of $\{1,2, \ldots, n\}$, ordered by inclusion

$$
\begin{aligned}
& p_{i}=\binom{n}{i}, \quad F_{B_{n}}(q)=(1+q)^{n} \\
& \text { rank-symmetric, rank-unimodal }
\end{aligned}
$$

Diagram of B_{3}

Sperner's theorem, restated

Theorem. The boolean algebra B_{n} is Sperner.
Proof (D. Lubell, 1966).

- B_{n} has n ! maximal chains.

Sperner's theorem, restated

Theorem. The boolean algebra B_{n} is Sperner.
Proof (D. Lubell, 1966).

- B_{n} has n ! maximal chains.
- If $S \in B_{n}$ and $\# S=i$, then $i!(n-i)$! maximal chains of B_{n} contain S.

Sperner's theorem, restated

Theorem. The boolean algebra B_{n} is Sperner.
Proof (D. Lubell, 1966).

- B_{n} has n ! maximal chains.
- If $S \in B_{n}$ and $\# S=i$, then $i!(n-i)$! maximal chains of B_{n} contain S.
- Let A be an antichain. Since a maximal chain can intersect at most one element of A, we have

$$
\sum_{S \in A}|S|!(n-|S|)!\leq n!
$$

Sperner's theorem, restated

Theorem. The boolean algebra B_{n} is Sperner.
Proof (D. Lubell, 1966).

- B_{n} has n ! maximal chains.
- If $S \in B_{n}$ and $\# S=i$, then $i!(n-i)$! maximal chains of B_{n} contain S.
- Let A be an antichain. Since a maximal chain can intersect at most one element of A, we have

$$
\sum_{S \in A}|S|!(n-|S|)!\leq n!
$$

- Divide by $n!$:

$$
\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1
$$

Lubell's proof (cont.)

- Divide by $n!$:

$$
\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1
$$

Lubell's proof (cont.)

- Divide by $n!$:

$$
\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1
$$

- Now $\binom{n}{|S|} \leq\binom{ n}{\lfloor n / 2\rfloor}$, so

$$
\sum_{A \in S} \frac{1}{\binom{n}{\lfloor n / 2\rfloor}} \leq 1
$$

Lubell's proof (cont.)

- Divide by $n!$:

$$
\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1
$$

- Now $\binom{n}{|S|} \leq\binom{ n}{\lfloor n / 2\rfloor}$, so

$$
\sum_{A \in S} \frac{1}{\binom{n}{\lfloor n / 2\rfloor}} \leq 1
$$

$$
\bullet \Rightarrow|A| \leq\binom{ n}{\lfloor n / 2\rfloor} \quad \square
$$

A q-analogue

Lubell's proof carries over to some other posets.
Theorem. Let $B_{n}(q)$ denote the poset of all subspaces of \mathbb{F}_{q}^{n}. Then $B_{n}(q)$ is Sperner.

Linear algebra

$$
\boldsymbol{P}=P_{0} \cup \cdots \cup P_{m}: \quad \text { graded poset }
$$

$\mathbb{Q} \boldsymbol{P}_{\boldsymbol{i}}$: vector space with basis \mathbb{Q}
$U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is order-raising if for all $s \in P_{i}$,

$$
U(s) \in \operatorname{span}_{\mathbb{Q}}\left\{t \in P_{i+1}: s<t\right\}
$$

Order-matchings

Order matching: $\mu: P_{i} \rightarrow P_{i+1}$: injective and $\mu(t)<t$

Order-matchings

Order matching: $\mu: P_{i} \rightarrow P_{i+1}$: injective and $\mu(t)<t$

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_{i} \rightarrow P_{i+1}$.

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_{i} \rightarrow P_{i+1}$.

Proof. Consider the matrix of U with respect to the bases P_{i} and P_{i+1}.

Key lemma proof

$$
P_{i}\left\{\begin{array}{cccc}
t_{1} & \cdots & t_{m} & \cdots \\
s_{1} \\
\vdots \\
s_{m}
\end{array}\left[\begin{array}{cccc}
\neq 0 & & \mid & * \\
& \ddots & \mid & * \\
& & \neq 0 \mid & *
\end{array}\right]\right.
$$

Key lemma proof

$$
\begin{aligned}
& \overbrace{\begin{array}{lllll}
t_{1} & \cdots & t_{m} & \cdots & t_{n}
\end{array}}^{P_{i+1}} \\
& P_{i}\left\{\begin{array}{c}
s_{1} \\
\vdots \\
s_{m}
\end{array}\left[\begin{array}{llr|c}
\neq 0 & & \mid & * \\
& \ddots & \mid & * \\
& & \neq 0 \mid & *
\end{array}\right]\right. \\
& \operatorname{det} \neq 0 \\
& \Rightarrow s_{1}<t_{1}, \ldots, s_{m}<t_{m}
\end{aligned}
$$

Minor variant

Similarly if there exists surjective order-raising $U: \mathbb{Q} P_{i} \rightarrow \mathbb{Q} P_{i+1}$, then there exists an order-matching $\mu: P_{i+1} \rightarrow P_{i}$.

A criterion for Spernicity

$$
P=P_{0} \cup \cdots \cup P_{n}: \text { finite graded poset }
$$

Proposition. If for some j there exist order-raising operators

$$
\mathbb{Q} P_{0} \xrightarrow{\text { inj. }} \mathbb{Q} P_{1} \xrightarrow{\text { inj. }} \cdots \xrightarrow{\text { inj. }} \mathbb{Q} P_{j} \xrightarrow{\text { surj. }} \mathbb{Q} P_{j+1} \xrightarrow{\text { surj. }} \cdots \xrightarrow{\text { surj. }} \mathbb{Q} P_{n},
$$

then P is rank-unimodal and Sperner.

A criterion for Spernicity

$$
P=P_{0} \cup \cdots \cup P_{n}: \text { finite graded poset }
$$

Proposition. If for some j there exist order-raising operators

$$
\mathbb{Q} P_{0} \xrightarrow{\text { inj. }} \mathbb{Q} P_{1} \xrightarrow{\text { inj. }} \cdots \xrightarrow{\text { inj. }} \mathbb{Q} P_{j} \xrightarrow{\text { surj. }} \mathbb{Q} P_{j+1} \xrightarrow{\text { surj. }} \cdots \xrightarrow{\text { surj. }} \mathbb{Q} P_{n},
$$

then P is rank-unimodal and Sperner.
Proof. Rank-unimodal clear: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \cdots \geq p_{n}$.

A criterion for Spernicity

$$
P=P_{0} \cup \cdots \cup P_{n}: \text { finite graded poset }
$$

Proposition. If for some j there exist order-raising operators

$$
\mathbb{Q} P_{0} \xrightarrow{\text { inj. }} \mathbb{Q} P_{1} \xrightarrow{\text { inj. }} \ldots \xrightarrow{\text { inj. }} \mathbb{Q} P_{j} \xrightarrow{\text { surj. }} \mathbb{Q} P_{j+1} \xrightarrow{\text { surj. }} \ldots \xrightarrow{\text { surj. }} \mathbb{Q} P_{n},
$$

then P is rank-unimodal and Sperner.
Proof. Rank-unimodal clear: $p_{0} \leq p_{1} \leq \cdots \leq p_{j} \geq p_{j+1} \cdots \geq p_{n}$.
"Glue together" the order-matchings.

Gluing example

Gluing example

Gluing example

Gluing example

Gluing example

Gluing example

A chain decomposition

$$
\begin{gathered}
P=C_{1} \cup \cdots \cup C_{p_{j}} \quad \text { (chains) } \\
A=\text { antichain, } C=\text { chain } \Rightarrow \#(A \cap C) \leq 1 \\
\Rightarrow \# A \leq p_{j} .
\end{gathered}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\overline{1} \overline{2} \overline{3} \overline{4} \overline{5} \overline{6} \overline{7} \overline{8} \overline{9} \overline{10} \overline{11} \overline{12} \overline{13}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\frac{)}{1} \frac{-}{2} \frac{)}{4} \frac{)}{5} \frac{)}{6} \frac{)}{7} \frac{-}{9} \frac{)}{10} \frac{)}{11} \frac{}{12}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\frac{)}{1} \frac{(}{2} \frac{(}{3} \frac{)}{4} \frac{(}{5} \frac{)}{6} \frac{)}{7} \frac{(}{8} \frac{(}{9} \frac{(}{10} \frac{)}{11} \frac{(}{12} \frac{(}{13}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\frac{)}{1} \frac{(}{2} \frac{(}{3} \frac{)}{4} \frac{(}{5} \frac{)}{6} \frac{)}{7} \frac{(}{8} \frac{(}{9} \frac{(}{10} \frac{)}{11} \frac{(}{12} \frac{(}{13}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\frac{)}{1} \frac{(\square}{2} \frac{(\square)}{3} \frac{(}{5} \frac{)}{6} \frac{)}{7} \frac{(}{8} \frac{(}{9} \frac{(}{10} \frac{)}{11} \frac{(}{12} \frac{(}{13}
$$

Back to B_{n}

Explicit order matching $\left(B_{n}\right)_{i} \rightarrow\left(B_{n}\right)_{i+1}$ for $i<n / 2$:
Example. $S=\{1,4,6,7,11\} \in\left(B_{13}\right)_{5}$

$$
\frac{)}{1} \frac{(}{2} \frac{(\square)}{3} \frac{(}{4} \frac{)}{6} \frac{)}{7} \frac{(}{8} \frac{(}{9} \frac{(}{10} \frac{)}{11} \frac{(}{12} \frac{(}{13}
$$

Order-raising for B_{n}

Define

$$
\boldsymbol{U}: \mathbb{Q}\left(B_{n}\right)_{i} \rightarrow \mathbb{Q}\left(B_{n}\right)_{i+1}
$$

by

$$
U(S)=\sum_{\substack{\# T=i+1 \\ S \subset T}} T, \quad S \in\left(B_{n}\right)_{i}
$$

Order-raising for B_{n}

Define

$$
\boldsymbol{U}: \mathbb{Q}\left(B_{n}\right)_{i} \rightarrow \mathbb{Q}\left(B_{n}\right)_{i+1}
$$

by

$$
U(S)=\sum_{\substack{\# T=i+1 \\ S \subset T}} T, \quad S \in\left(B_{n}\right)_{i}
$$

Similarly define $D: \mathbb{Q}\left(B_{n}\right)_{i+1} \rightarrow \mathbb{Q}\left(B_{n}\right)_{i}$ by

$$
D(T)=\sum_{\substack{\# S=i \\ S \subset T}} S, \quad T \in\left(B_{n}\right)_{i+1}
$$

Order-raising for B_{n}

Define

$$
\boldsymbol{U}: \mathbb{Q}\left(B_{n}\right)_{i} \rightarrow \mathbb{Q}\left(B_{n}\right)_{i+1}
$$

by

$$
U(S)=\sum_{\substack{\# T=i+1 \\ S \subset T}} T, \quad S \in\left(B_{n}\right)_{i}
$$

Similarly define $D: \mathbb{Q}\left(B_{n}\right)_{i+1} \rightarrow \mathbb{Q}\left(B_{n}\right)_{i}$ by

$$
D(T)=\sum_{\substack{\# S=i \\ S \subset T}} S, \quad T \in\left(B_{n}\right)_{i+1}
$$

Note. $U D$ is positive semidefinite, and hence has nonnegative real eigenvalues, since the matrices of U and D with respect to the bases $\left(B_{n}\right)_{i}$ and $\left(B_{n}\right)_{i+1}$ are transposes.

A commutation relation

Lemma. On $\mathbb{Q}\left(B_{n}\right)_{i}$ we have

$$
D U-U D=(n-2 i) I,
$$

where I is the identity operator.

A commutation relation

Lemma. On $\mathbb{Q}\left(B_{n}\right)_{i}$ we have

$$
D U-U D=(n-2 i) I,
$$

where I is the identity operator.
Corollary. If $i<n / 2$ then U is injective.
Proof. $U D$ has eigenvalues $\theta \geq 0$, and eigenvalues of $D U$ are $\theta+n-2 i>0$. Hence $D U$ is invertible, so U is injective. \square

Similarly U is surjective for $i \geq n / 2$.

A commutation relation

Lemma. On $\mathbb{Q}\left(B_{n}\right)_{i}$ we have

$$
D U-U D=(n-2 i) I,
$$

where I is the identity operator.
Corollary. If $i<n / 2$ then U is injective.
Proof. $U D$ has eigenvalues $\theta \geq 0$, and eigenvalues of $D U$ are $\theta+n-2 i>0$. Hence $D U$ is invertible, so U is injective. \square

Similarly U is surjective for $i \geq n / 2$.
Corollary. B_{n} is Sperner.

What's the point?

What's the point?

The symmetric group \mathfrak{S}_{n} acts on B_{n} by

$$
w \cdot\left\{a_{1}, \ldots, a_{k}\right\}=\left\{w \cdot a_{1}, \ldots, w \cdot a_{k}\right\} .
$$

If G is a subgroup of \mathfrak{S}_{n}, define the quotient poset B_{n} / G to be the poset on the orbits of G (acting on B_{n}), with

$$
\mathfrak{o} \leq \mathfrak{o}^{\prime} \Leftrightarrow \exists S \in \mathfrak{o}, T \in \mathfrak{o}^{\prime}, \quad S \subseteq T
$$

An example

$$
n=3, \quad G=\{(1)(2)(3),(1,2)(3)\}
$$

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.

Spernicity of B_{n} / G

Easy: B_{n} / G is graded of rank n and rank-symmetric.
Theorem. B_{n} / G is rank-unimodal and Sperner.

Spernicity of $B_{\boldsymbol{n}} / G$

Easy: B_{n} / G is graded of rank n and rank-symmetric.
Theorem. B_{n} / G is rank-unimodal and Sperner.
Crux of proof. The action of $w \in G$ on B_{n} commutes with U, so we can "transfer" U to B_{n} / G, preserving injectivity on the bottom half.

An interesting example

R : set of squares of an $m \times n$ rectangle of squares.
$G_{m n} \subset \mathfrak{S}_{R}$: can permute elements in each row, and permute rows among themselves, so $\# G_{m n}=n!^{m} m!$.

$$
G_{m n} \cong \mathfrak{S}_{n}<\mathfrak{S}_{m} \quad(\text { wreath product })
$$

Young diagrams

A subset $S \subseteq R$ is a Young diagram if it is left-justified, with weakly decreasing row lengths from top to bottom.

Young diagrams

A subset $S \subseteq R$ is a Young diagram if it is left-justified, with weakly decreasing row lengths from top to bottom.

$B_{R} / G_{m n}$

Lemma. Each orbit $\mathfrak{o} \in B_{R} / G_{m n}$ contains exactly one Young diagram.

$B_{R} / G_{m n}$

Lemma. Each orbit $\mathfrak{o} \in B_{R} / G_{m n}$ contains exactly one Young diagram.

Proof. Let $S \in B_{R}$. Let α_{i} be the number of elements of S in row
i. Let $\lambda_{1} \geq \cdots \geq \lambda_{m}$ be the decreasing rearrangement of $\alpha_{1}, \ldots, \alpha_{m}$. Then the unique Young diagram in the orbit containing S has λ_{i} elements in row $i . \quad \square$

Poset structure of $B_{r} / G_{m n}$

Y_{0} : Young diagram in the orbit \mathfrak{o}
Easy: $\mathfrak{o} \leq \mathfrak{o}^{\prime}$ in $B_{R} / G_{m n}$ if and only if $Y_{\mathfrak{o}} \subseteq Y_{\mathfrak{o}^{\prime}}$ (containment of Young diagram).

Poset structure of $B_{r} / G_{m n}$

Y_{0} : Young diagram in the orbit \mathfrak{o}
Easy: $\mathfrak{o} \leq \mathfrak{o}^{\prime}$ in $B_{R} / G_{m n}$ if and only if $Y_{\mathfrak{o}} \subseteq Y_{\mathfrak{o}^{\prime}}$ (containment of Young diagram).
$L(m, n)$: poset of Young diagrams in an $m \times n$ rectangle
Corollary. $B_{R} / G_{m n} \cong L(m, n)$

Examples of $L(m, n)$

$L(3,3)$

q-binomial coefficients

For $0 \leq k \leq n$, define the \boldsymbol{q}-binomial coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

q-binomial coefficients

For $0 \leq k \leq n$, define the \boldsymbol{q}-binomial coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

Example. $\left[\begin{array}{l}4 \\ 2\end{array}\right]=1+q+2 q^{2}+q^{3}+q^{4}$

Properties

- $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{N}[q]$

Properties

- $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{N}[q]$
- $\left[\begin{array}{l}n \\ k\end{array}\right]_{q=1}=\binom{n}{k}$

Properties

- $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{N}[q]$
- $\left[\begin{array}{l}n \\ k\end{array}\right]_{q=1}=\binom{n}{k}$
- If q is a prime power, $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the number of k-dimensional subspaces of \mathbb{F}_{q}^{n} (irrelevant here).

Properties

- $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{N}[q]$
- $\left[\begin{array}{l}n \\ k\end{array}\right]_{q=1}=\binom{n}{k}$
- If q is a prime power, $\left[\begin{array}{l}n \\ k\end{array}\right]$ is the number of k-dimensional subspaces of \mathbb{F}_{q}^{n} (irrelevant here).
- $F(L(m, n), q)=\left[\begin{array}{c}m+n \\ m\end{array}\right]$

Unimodality

Corollary. $\left[\begin{array}{c}m+n \\ m\end{array}\right]$ has unimodal coefficients.

Unimodality

Corollary. $\left[\begin{array}{c}m+n \\ m\end{array}\right]$ has unimodal coefficients.

- First proved by J. J. Sylvester (1878) using invariant theory of binary forms.

Unimodality

Corollary. $\left[\begin{array}{c}m+n \\ m\end{array}\right]$ has unimodal coefficients.

- First proved by J. J. Sylvester (1878) using invariant theory of binary forms.
- Combinatorial proof by K. O’Hara (1990): explicit injection $L(m, n)_{i} \rightarrow L(m, n)_{i+1}, 0 \leq i<\frac{1}{2} m n$.

Unimodality

Corollary. $\left[\begin{array}{c}m+n \\ m\end{array}\right]$ has unimodal coefficients.

- First proved by J. J. Sylvester (1878) using invariant theory of binary forms.
- Combinatorial proof by K. O’Hara (1990): explicit injection $L(m, n)_{i} \rightarrow L(m, n)_{i+1}, 0 \leq i<\frac{1}{2} m n$.
- Not an order-matching. Still open to find an explicit order-matching $L(m, n)_{i} \rightarrow L(m, n)_{i+1}$.

Algebraic geometry

X : smooth complex projective variety of dimension n
$H^{*}(X ; \mathbb{C})=H^{0}(X ; \mathbb{C}) \oplus H^{1}(X ; \mathbb{C}) \oplus \cdots \oplus H^{2 n}(X ; \mathbb{C}):$
cohomology ring, so $H^{i} \cong H^{2 n-i}$.
Hard Lefschetz Theorem. There exists $\omega \in H^{2}$ (the class of a generic hyperplane section) such that for $0 \leq i \leq n$, the map

$$
\omega^{n-2 i}: H^{i} \rightarrow H^{2 n-i}
$$

is a bijection. Thus $\omega: H^{i} \rightarrow H^{i+1}$ is injective for $i \leq n$ and surjective for $i \geq n$.

Cellular decompositions

X has a cellular decomposition if $X=\sqcup C_{i}$, each $C_{i} \cong \mathbb{C}^{d_{i}}$ (as affine varieties), and each \bar{C}_{i} is a union of C_{j} 's.

Cellular decompositions

X has a cellular decomposition if $X=\sqcup C_{i}$, each $C_{i} \cong \mathbb{C}^{d_{i}}$ (as affine varieties), and each \bar{C}_{i} is a union of C_{j} 's.

Fact. If X has a cellular decomposition and $\left[C_{i}\right] \in H^{2(n-i)}$ denotes the corresponding cohomology classes, then the $\left[C_{i}\right]$'s form a \mathbb{C}-basis for H^{*}.

The cellular decomposition poset

Let $X=\sqcup C_{i}$ be a cellular decomposition. Define a poset $\boldsymbol{P}_{\boldsymbol{X}}=\left\{C_{i}\right\}$, by

$$
C_{i} \leq C_{j} \text { if } C_{i} \subseteq \bar{C}_{j}
$$

(closure in Zariski or classical topology).

The cellular decomposition poset

Let $X=\sqcup C_{i}$ be a cellular decomposition. Define a poset $P_{X}=\left\{C_{i}\right\}$, by

$$
C_{i} \leq C_{j} \text { if } C_{i} \subseteq \bar{C}_{j}
$$

(closure in Zariski or classical topology).
Easy:

- P_{X} is graded of rank n.
- $\#\left(P_{X}\right)_{i}=\operatorname{dim}_{\mathbb{C}} H^{2(n-i)}(X ; \mathbb{C})$

The cellular decomposition poset

Let $X=\sqcup C_{i}$ be a cellular decomposition. Define a poset $P_{X}=\left\{C_{i}\right\}$, by

$$
C_{i} \leq C_{j} \text { if } C_{i} \subseteq \bar{C}_{j}
$$

(closure in Zariski or classical topology).

Easy:

- P_{X} is graded of rank n.
- $\#\left(P_{X}\right)_{i}=\operatorname{dim}_{\mathbb{C}} H^{2(n-i)}(X ; \mathbb{C})$
- P_{X} is rank-symmetric (Poincaré duality)

The cellular decomposition poset

Let $X=\sqcup C_{i}$ be a cellular decomposition. Define a poset $P_{X}=\left\{C_{i}\right\}$, by

$$
C_{i} \leq C_{j} \text { if } C_{i} \subseteq \bar{C}_{j}
$$

(closure in Zariski or classical topology).

Easy:

- P_{X} is graded of rank n.
- $\#\left(P_{X}\right)_{i}=\operatorname{dim}_{\mathbb{C}} H^{2(n-i)}(X ; \mathbb{C})$
- P_{X} is rank-symmetric (Poincaré duality)
- P_{X} is rank-unimodal (hard Lefschetz)

Spernicity of P_{X}

Identify $\mathbb{C} P$ with $H^{*}(X ; \mathbb{C})$ via $C_{i} \leftrightarrow\left[C_{i}\right]$.

Spernicity of P_{X}

Identify $\mathbb{C} P$ with $H^{*}(X ; \mathbb{C})$ via $C_{i} \leftrightarrow\left[C_{i}\right]$.
Recall: $\omega \in H^{2}(X ; \mathbb{C})$ (class of hyperplane section)
Interpretation of cup product on $H^{*}(X ; \mathbb{C})$ as intersection implies that ω is order-raising.

Hard Lefschetz $\Rightarrow \omega: H^{2 i} \rightarrow H^{2(i+1)}$ is injective for $i<n / 2$ and surjective for $i \geq n / 2$.

Spernicity of P_{X}

Identify $\mathbb{C} P$ with $H^{*}(X ; \mathbb{C})$ via $C_{i} \leftrightarrow\left[C_{i}\right]$.
Recall: $\omega \in H^{2}(X ; \mathbb{C})$ (class of hyperplane section)
Interpretation of cup product on $H^{*}(X ; \mathbb{C})$ as intersection implies that ω is order-raising.

Hard Lefschetz $\Rightarrow \omega: H^{2 i} \rightarrow H^{2(i+1)}$ is injective for $i<n / 2$ and surjective for $i \geq n / 2$.
\Rightarrow Theorem. P_{X} has the Sperner property.

Main example

What smooth projective varieties have cellular decompositions?

Main example

What smooth projective varieties have cellular decompositions?
Generalized flag variety: G / Q, where G is a semisimple algebraic group over \mathbb{C}, and Q is a parabolic subgroup

Main example

What smooth projective varieties have cellular decompositions?
Generalized flag variety: G / Q, where G is a semisimple algebraic group over \mathbb{C}, and Q is a parabolic subgroup

Example. $\operatorname{Gr}(n, k)=\operatorname{SL}(n, \mathbb{C}) / Q$ for a certain Q, the Grassmann variety of all k-dimensional subspaces of \mathbb{C}^{n}.

Main example

What smooth projective varieties have cellular decompositions?
Generalized flag variety: G / Q, where G is a semisimple algebraic group over \mathbb{C}, and Q is a parabolic subgroup

Example. $\operatorname{Gr}(n, k)=\operatorname{SL}(n, \mathbb{C}) / Q$ for a certain Q, the Grassmann variety of all k-dimensional subspaces of \mathbb{C}^{n}.
rational canonical form $\Rightarrow P_{\mathrm{Gr}(m+n, m)} \cong L(m, n)$

"Best" special case

$G=\mathrm{SO}(2 n+1, \mathbb{C}), Q=$ "spin" maximal parabolic subgroup $M(n):=P_{G / Q} \cong \mathfrak{B}_{n} / \mathfrak{S}_{n}$, where \mathfrak{B}_{n} is the hyperoctahedral group (symmetries of n-cube) of order $2^{n} n!$, so $\# M(n)=2^{n}$

"Best" special case

$G=\mathrm{SO}(2 n+1, \mathbb{C}), Q=$ "spin" maximal parabolic subgroup
$M(\boldsymbol{n}):=P_{G / Q} \cong \mathfrak{B}_{n} / \mathfrak{S}_{n}$, where \mathfrak{B}_{n} is the hyperoctahedral group (symmetries of n-cube) of order $2^{n} n!$, so $\# M(n)=2^{n}$
$M(n)$ is isomorphic to the set of all subsets of $\{1,2, \ldots, n\}$ with the ordering

$$
\left\{a_{1}>a_{2}>\cdots>a_{r}\right\} \leq\left\{b_{1}>b_{2}>\cdots>b_{s}\right\},
$$

if $r \leq s$ and $a_{i} \leq b_{i}$ for $1 \leq i \leq r$.

Examples of $M(n)$

Rank-generating function of $M(n)$

rank of $\left\{a_{1}, \ldots, a_{r}\right\}$ in $M(n)$ is $\sum a_{i}$

Rank-generating function of $M(n)$

rank of $\left\{a_{1}, \ldots, a_{r}\right\}$ in $M(n)$ is $\sum a_{i}$

$$
\Rightarrow F(M(n), q):=\sum_{i=0}^{\substack{n \\ 2}}\left|\boldsymbol{M}(n)_{i}\right| \cdot q^{i}=(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

Corollary. The polynomial $(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)$ has unimodal coefficients.

Rank-generating function of $M(n)$

rank of $\left\{a_{1}, \ldots, a_{r}\right\}$ in $M(n)$ is $\sum a_{i}$

$$
\Rightarrow F(M(n), q):=\sum_{i=0}^{\binom{n}{2}}\left|M(n)_{i}\right| \cdot q^{i}=(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

Corollary. The polynomial $(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)$ has unimodal coefficients.

No combinatorial proof known, though can be done with just elementary linear algebra (Proctor).

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}, \# S<\infty, \alpha \in \mathbb{R}$.

$$
f(S, \alpha)=\#\left\{T \subseteq S: \sum_{i \in T} i=\alpha\right\}
$$

Note. $\sum_{i \in \emptyset} i=0$

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}, \# S<\infty, \alpha \in \mathbb{R}$.

$$
f(S, \alpha)=\#\left\{T \subseteq S: \sum_{i \in T} i=\alpha\right\}
$$

Note. $\sum_{i \in \emptyset} i=0$
Example. $f(\{1,2,4,5,7,10\}, 7)=3$:

$$
7=2+5=1+2+4
$$

The Erdős-Moser conjecture for \mathbb{R}^{+}

Let $\mathbb{R}^{+}=\{i \in \mathbb{R}: i>0\}$.
Erdős-Moser Conjecture for \mathbb{R}^{+}

$$
\begin{gathered}
S \subset \mathbb{R}^{+}, \# S=n \\
\Rightarrow f(S, \alpha) \leq f\left(\{1,2, \ldots, n\},\left\lfloor\frac{1}{2}\binom{n+1}{2}\right\rfloor\right)
\end{gathered}
$$

The Erdős-Moser conjecture for \mathbb{R}^{+}

Let $\mathbb{R}^{+}=\{i \in \mathbb{R}: i>0\}$.
Erdős-Moser Conjecture for \mathbb{R}^{+}

$$
\begin{aligned}
& S \subset \mathbb{R}^{+}, \# S=n \\
\Rightarrow f(S, \alpha) & \leq f\left(\{1,2, \ldots, n\},\left\lfloor\frac{1}{2}\binom{n+1}{2}\right\rfloor\right)
\end{aligned}
$$

Note. $\frac{1}{2}\binom{n+1}{2}=\frac{1}{2}(1+2+\cdots+n)$

The proof

Proof. Suppose $S=\left\{a_{1}, \ldots, a_{k}\right\}, a_{1}>\cdots>a_{k}$. Let

$$
a_{i_{1}}+\cdots+a_{i_{r}}=a_{j_{1}}+\cdots+a_{j_{s}},
$$

where $i_{1}>\cdots>i_{r}, j_{1}>\cdots>j_{s}$.

The proof

Proof. Suppose $S=\left\{a_{1}, \ldots, a_{k}\right\}, a_{1}>\cdots>a_{k}$. Let

$$
a_{i_{1}}+\cdots+a_{i_{r}}=a_{j_{1}}+\cdots+a_{j_{s}},
$$

where $i_{1}>\cdots>i_{r}, j_{1}>\cdots>j_{s}$.
Now $\left\{i_{1}, \ldots, i_{r}\right\} \geq\left\{j_{1}, \ldots, j_{s}\right\}$ in $M(n)$

$$
\begin{aligned}
& \Rightarrow \quad r \geq s, i_{1} \geq j_{1}, \ldots, i_{s} \geq j_{s} \\
& \Rightarrow \quad a_{i_{1}} \geq b_{j_{1}}, \ldots, a_{i_{s}} \geq b_{j_{s}} \\
& \Rightarrow \quad r=s, a_{i_{k}}=b_{i_{k}} \forall k .
\end{aligned}
$$

Conclusion of proof

Thus $a_{i_{1}}+\cdots+a_{i_{r}}=b_{j_{1}}+\cdots+b_{j_{s}}$
$\Rightarrow\left\{i_{1}, \ldots, i_{r}\right\}$ and $\left\{j_{1}, \ldots, j_{s}\right\}$ are incomparable or equal in $M(n)$

$$
\Rightarrow \# S \leq \max _{A} \# A=f\left(\{1, \ldots, n\},\left\lfloor\frac{1}{2}\binom{n+1}{2}\right\rfloor\right) \square
$$

The weak order on \mathfrak{S}_{n}

$$
s_{i}:==(i, i+1) \in \mathfrak{S}_{n}, 1 \leq i \leq n-1 \text { (adjacent transposition) }
$$

For $w \in \mathfrak{S}_{n}$,

$$
\begin{aligned}
\ell(w) & :=\#\{(i, j): i<j, w(i)>w(j)\} \\
& =\min \left\{p: w=s_{i_{1}} \cdots s_{i_{p}}\right\} .
\end{aligned}
$$

The weak order on \mathfrak{S}_{n}

$s_{i}:==(i, i+1) \in \mathfrak{S}_{n}, 1 \leq i \leq n-1$ (adjacent transposition)
For $w \in \mathfrak{S}_{n}$,

$$
\begin{aligned}
\ell(w) & :=\#\{(i, j): i<j, w(i)>w(j)\} \\
& =\min \left\{p: w=s_{i_{1}} \cdots s_{i_{p}}\right\} .
\end{aligned}
$$

weak (Bruhat) order W_{n} on $\mathfrak{S}_{n}: u<v$ if

$$
v=u s_{i_{1}} \cdots s_{i_{p}}, p=\ell(v)-\ell(u)
$$

The weak order on \mathfrak{S}_{n}

$s_{i}:==(i, i+1) \in \mathfrak{S}_{n}, 1 \leq i \leq n-1$ (adjacent transposition)
For $w \in \mathfrak{S}_{n}$,

$$
\begin{aligned}
\ell(w) & :=\#\{(i, j): i<j, w(i)>w(j)\} \\
& =\min \left\{p: w=s_{i_{1}} \cdots s_{i_{p}}\right\} .
\end{aligned}
$$

weak (Bruhat) order W_{n} on $\mathfrak{S}_{n}: u<v$ if

$$
v=u s_{i_{1}} \cdots s_{i_{p}}, p=\ell(v)-\ell(u)
$$

ℓ is the rank function of W_{n}, so

$$
F\left(W_{n}, q\right)=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right) .
$$

The weak order on \mathfrak{S}_{n}

$s_{i}:==(i, i+1) \in \mathfrak{S}_{n}, 1 \leq i \leq n-1$ (adjacent transposition)
For $w \in \mathfrak{S}_{n}$,

$$
\begin{aligned}
\ell(w) & :=\#\{(i, j): i<j, w(i)>w(j)\} \\
& =\min \left\{p: w=s_{i_{1}} \cdots s_{i_{p}}\right\} .
\end{aligned}
$$

weak (Bruhat) order W_{n} on $\mathfrak{S}_{n}: u<v$ if

$$
v=u s_{i_{1}} \cdots s_{i_{p}}, p=\ell(v)-\ell(u)
$$

ℓ is the rank function of W_{n}, so

$$
F\left(W_{n}, q\right)=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

A. Björner (1984): does W_{n} have the Sperner property?

Examples of weak order

W_{4}

An order-raising operator

theory of Schubert polynomials suggests:

$$
U(w):=\sum_{\substack{1 \leq i \leq n-1 \\ w s_{i}>s_{i}}} i \cdot w s_{i}
$$

An order-raising operator

theory of Schubert polynomials suggests:

$$
U(w):=\sum_{\substack{1 \leq i \leq n-1 \\ w s_{i}>s_{i}}} i \cdot w s_{i}
$$

Fact (Macdonald, Fomin-S). Let $u<v$ in $W_{n}, \ell(v)-\ell(u)=\boldsymbol{p}$. The coefficient of v in $U^{P}(u)$ is

$$
p!\mathfrak{S}_{v u^{-1}}(1,1, \ldots, 1)
$$

where $\mathfrak{S}_{w}\left(x_{1}, \ldots, x_{n-1}\right)$ is a Schubert polynomial.

A down operator

C. Gaetz and Y. Gao (2018): constructed $D: \mathbb{Q}\left(W_{n}\right)_{i} \rightarrow \mathbb{Q}\left(W_{n}\right)_{i-1}$ such that

$$
D U-U D=\left(\binom{n}{2}-2 i\right)
$$

Suffices for Spernicity.

A down operator

C. Gaetz and Y. Gao (2018): constructed $D: \mathbb{Q}\left(W_{n}\right)_{i} \rightarrow \mathbb{Q}\left(W_{n}\right)_{i-1}$ such that

$$
D U-U D=\left(\binom{n}{2}-2 i\right)
$$

Suffices for Spernicity.
Note. D is order-lowering on the strong Bruhat order. Leads to duality between weak and strong order.

Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt (2018): for $k<\frac{1}{2}\binom{n}{2}$, let

$$
D(n, k)=\text { matrix of } U^{\binom{n}{2}-2 k}: \mathbb{Q}\left(W_{n}\right)_{k} \rightarrow \mathbb{Q}\left(W_{n}\right)_{\binom{n}{2}-k}
$$

with respect to the bases $\left(W_{n}\right)_{k}$ and $\left(W_{n}\right)_{\binom{n}{2}-k}$ (in some order). Then (conjectured by RS):
$\operatorname{det} D(n, k)= \pm\left(\binom{n}{2}-2 k\right)!^{\#\left(W_{n}\right)_{k}} \prod_{i=0}^{k-1}\left(\frac{\binom{n}{2}-(k+i)}{k-i}\right)^{\#\left(W_{n}\right)_{i}}$.

Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt (2018): for $k<\frac{1}{2}\binom{n}{2}$, let

$$
D(n, k)=\text { matrix of } U^{\binom{n}{2}-2 k}: \mathbb{Q}\left(W_{n}\right)_{k} \rightarrow \mathbb{Q}\left(W_{n}\right)_{\binom{n}{2}-k}
$$

with respect to the bases $\left(W_{n}\right)_{k}$ and $\left(W_{n}\right)_{\binom{n}{2}-k}$ (in some order). Then (conjectured by RS):
$\operatorname{det} D(n, k)= \pm\left(\binom{n}{2}-2 k\right)!^{\#\left(W_{n}\right)_{k}} \prod_{i=0}^{k-1}\left(\frac{\binom{n}{2}-(k+i)}{k-i}\right)^{\#\left(W_{n}\right)_{i}}$.
Also suffices to prove Sperner property (just need $\operatorname{det} D(n, k) \neq 0)$.

An open problem

The weak order $W(G)$ can be defined for any (finite) Coxeter group G. Is $W(G)$ Sperner?

The final slide

0

The final slide

