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Sperner’s theorem

Theorem (E. Sperner, 1927). Let S1,S2, . . . ,Sm be subsets of an
n-element set X such that Si 6⊆ Sj for i 6= j , Then m ≤

(
n

⌊n/2⌋

)
,

achieved by taking all ⌊n/2⌋-element subsets of X .
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Theorem (E. Sperner, 1927). Let S1,S2, . . . ,Sm be subsets of an
n-element set X such that Si 6⊆ Sj for i 6= j , Then m ≤

(
n
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)
,

achieved by taking all ⌊n/2⌋-element subsets of X .

Emanuel Sperner
9 December 1905 – 31 January 1980



Posets

A poset (partially ordered set) is a set P with a binary relation ≤

satisfying:

Reflexivity: t ≤ t

Antisymmetry: s ≤ t, t ≤ s ⇒ s = t

Transitivity: s ≤ t, t ≤ u ⇒ s ≤ u



Graded posets

chain: u1 < u2 < · · · < uk



Graded posets

chain: u1 < u2 < · · · < uk

Assume P is finite. P is graded of rank n if

P = P0 ∪ P1 ∪ · · · ∪ Pn,

such that every maximal chain has the form

t0 < t1 < · · · < tn, ti ∈ Pi .
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Rank-symmetry and unimodality
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Rank-generating function: FP(q) =
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Rank-symmetry and unimodality

Let pi = #Pi .

Rank-generating function: FP(q) =

n∑

i=0

piq
i

Rank-symmetric: pi = pn−i ∀i

Rank-unimodal: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 ≥ · · · ≥ pn for some j

rank-unimodal and rank-symmetric ⇒ j = ⌊n/2⌋
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• • • •



The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •

Note. Pi is an antichain



The Sperner property

antichain A ⊆ P :

s, t ∈ A, s ≤ t ⇒ s = t

• • • •

Note. Pi is an antichain

P is Sperner (or has the Sperner property) if

max
A

#A = max
i

pi



An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q



An example

rank-symmetric, rank-unimodal, FP(q) = 3 + 3q not Sperner



The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion



The boolean algebra

Bn: subsets of {1, 2, . . . , n}, ordered by inclusion

pi =
(
n
i

)
, FBn

(q) = (1 + q)n

rank-symmetric, rank-unimodal
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Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.
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most one element of A, we have

∑

S∈A
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Sperner’s theorem, restated

Theorem. The boolean algebra Bn is Sperner.

Proof (D. Lubell, 1966).

Bn has n! maximal chains.

If S ∈ Bn and #S = i , then i !(n − i)! maximal chains of Bn

contain S .

Let A be an antichain. Since a maximal chain can intersect at
most one element of A, we have

∑

S∈A

|S |! (n − |S |)! ≤ n!.

Divide by n!:
∑

S∈A

1
(
n
|S|

) ≤ 1.
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Lubell’s proof (cont.)

Divide by n!:
∑

S∈A

1
(
n
|S|

) ≤ 1.

Now
(
n
|S|

)
≤
(

n
⌊n/2⌋

)
, so

∑

A∈S

1
(

n
⌊n/2⌋

) ≤ 1.



Lubell’s proof (cont.)

Divide by n!:
∑

S∈A

1
(
n
|S|

) ≤ 1.

Now
(
n
|S|

)
≤
(

n
⌊n/2⌋

)
, so

∑

A∈S

1
(

n
⌊n/2⌋

) ≤ 1.

⇒ |A| ≤
(

n
⌊n/2⌋

)
�



A q-analogue

Lubell’s proof carries over to some other posets.

Theorem. Let Bn(q) denote the poset of all subspaces of Fn
q.

Then Bn(q) is Sperner.



Linear algebra

P = P0 ∪ · · · ∪ Pm : graded poset

QPi : vector space with basis Q

U : QPi → QPi+1 is order-raising if for all s ∈ Pi ,

U(s) ∈ spanQ{t ∈ Pi+1 : s < t}



Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) < t



Order-matchings

Order matching: µ : Pi → Pi+1: injective and µ(t) < t

P

Pi +1

i

µ



Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,
then there exists an order-matching µ : Pi → Pi+1.



Order-raising and order-matchings

Key Lemma. If U : QPi → QPi+1 is injective and order-raising,
then there exists an order-matching µ : Pi → Pi+1.

Proof. Consider the matrix of U with respect to the bases Pi and
Pi+1.



Key lemma proof

Pi+1
︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi







s1
...
sm






6= 0 | ∗
. . . | ∗

6= 0| ∗






det 6= 0



Key lemma proof

Pi+1
︷ ︸︸ ︷

t1 · · · tm · · · tn

Pi







s1
...
sm






6= 0 | ∗
. . . | ∗

6= 0| ∗






det 6= 0

⇒ s1 < t1, . . . , sm < tm �



Minor variant

Similarly if there exists surjective order-raising U : QPi → QPi+1,
then there exists an order-matching µ : Pi+1 → Pi .



A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0
inj.
→ QP1

inj.
→ · · ·

inj.
→ QPj

surj.
→ QPj+1

surj.
→ · · ·

surj.
→ QPn,

then P is rank-unimodal and Sperner.
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A criterion for Spernicity

P = P0 ∪ · · · ∪ Pn : finite graded poset

Proposition. If for some j there exist order-raising operators

QP0
inj.
→ QP1

inj.
→ · · ·

inj.
→ QPj

surj.
→ QPj+1

surj.
→ · · ·

surj.
→ QPn,

then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear: p0 ≤ p1 ≤ · · · ≤ pj ≥ pj+1 · · · ≥ pn.

“Glue together” the order-matchings.
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A chain decomposition

P = C1 ∪ · · · ∪ Cpj (chains)

A = antichain,C = chain ⇒ #(A ∩ C ) ≤ 1

⇒ #A ≤ pj . �



Back to Bn

Explicit order matching (Bn)i → (Bn)i+1 for i < n/2:

Example. S = {1, 4, 6, 7, 11} ∈ (B13)5
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Order-raising for Bn

Define
U : Q(Bn)i → Q(Bn)i+1

by

U(S) =
∑

#T=i+1
S⊂T

T , S ∈ (Bn)i .
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Order-raising for Bn

Define
U : Q(Bn)i → Q(Bn)i+1

by

U(S) =
∑

#T=i+1
S⊂T

T , S ∈ (Bn)i .

Similarly define D : Q(Bn)i+1 → Q(Bn)i by

D(T ) =
∑

#S=i
S⊂T

S , T ∈ (Bn)i+1.

Note. UD is positive semidefinite, and hence has nonnegative real
eigenvalues, since the matrices of U and D with respect to the
bases (Bn)i and (Bn)i+1 are transposes.



A commutation relation

Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.
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Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. UD has eigenvalues θ ≥ 0, and eigenvalues of DU are
θ + n− 2i > 0. Hence DU is invertible, so U is injective. �

Similarly U is surjective for i ≥ n/2.



A commutation relation

Lemma. On Q(Bn)i we have

DU − UD = (n − 2i)I ,

where I is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. UD has eigenvalues θ ≥ 0, and eigenvalues of DU are
θ + n− 2i > 0. Hence DU is invertible, so U is injective. �

Similarly U is surjective for i ≥ n/2.

Corollary. Bn is Sperner.



What’s the point?



What’s the point?

The symmetric group Sn acts on Bn by

w · {a1, . . . , ak} = {w · a1, . . . ,w · ak}.

If G is a subgroup of Sn, define the quotient poset Bn/G to be
the poset on the orbits of G (acting on Bn), with

o ≤ o
′ ⇔ ∃S ∈ o,T ∈ o

′, S ⊆ T .



An example

n = 3, G = {(1)(2)(3), (1, 2)(3)}

3

φ

1,2

12

123

13,23



Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.
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Spernicity of Bn/G

Easy: Bn/G is graded of rank n and rank-symmetric.

Theorem. Bn/G is rank-unimodal and Sperner.

Crux of proof. The action of w ∈ G on Bn commutes with U, so
we can “transfer” U to Bn/G , preserving injectivity on the bottom
half.



An interesting example

R: set of squares of an m × n rectangle of squares.

Gmn ⊂ SR : can permute elements in each row, and permute rows
among themselves, so #Gmn = n!mm!.

Gmn
∼= Sn ≀Sm (wreath product)



Young diagrams

A subset S ⊆ R is a Young diagram if it is left-justified, with
weakly decreasing row lengths from top to bottom.



Young diagrams

A subset S ⊆ R is a Young diagram if it is left-justified, with
weakly decreasing row lengths from top to bottom.



BR/Gmn

Lemma. Each orbit o ∈ BR/Gmn contains exactly one Young
diagram.



BR/Gmn

Lemma. Each orbit o ∈ BR/Gmn contains exactly one Young
diagram.

Proof. Let S ∈ BR . Let αi be the number of elements of S in row
i . Let λ1 ≥ · · · ≥ λm be the decreasing rearrangement of
α1, . . . , αm. Then the unique Young diagram in the orbit
containing S has λi elements in row i . �



Poset structure of Br/Gmn

Yo: Young diagram in the orbit o

Easy : o ≤ o
′ in BR/Gmn if and only if Yo ⊆ Yo′ (containment of

Young diagram).



Poset structure of Br/Gmn

Yo: Young diagram in the orbit o

Easy : o ≤ o
′ in BR/Gmn if and only if Yo ⊆ Yo′ (containment of

Young diagram).

L(m, n): poset of Young diagrams in an m × n rectangle

Corollary. BR/Gmn
∼= L(m, n)



Examples of L(m, n)
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L(3, 3)

11

φ
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q-binomial coefficients

For 0 ≤ k ≤ n, define the q-binomial coefficient

[n

k

]

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
.



q-binomial coefficients

For 0 ≤ k ≤ n, define the q-binomial coefficient

[n

k

]

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q)
.

Example.
[
4
2

]

= 1 + q + 2q2 + q3 + q4
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Properties

[
n
k

]
∈ N[q]

[
n
k

]

q=1
=
(
n
k

)

If q is a prime power,
[
n
k

]
is the number of k-dimensional

subspaces of Fn
q (irrelevant here).

F (L(m, n), q) =
[
m+n
m

]
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First proved by J. J. Sylvester (1878) using invariant theory
of binary forms.

Combinatorial proof by K. O’Hara (1990): explicit injection
L(m, n)i → L(m, n)i+1, 0 ≤ i < 1
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Unimodality

Corollary.
[
m+n
m

]
has unimodal coefficients.

First proved by J. J. Sylvester (1878) using invariant theory
of binary forms.

Combinatorial proof by K. O’Hara (1990): explicit injection
L(m, n)i → L(m, n)i+1, 0 ≤ i < 1

2mn.

Not an order-matching. Still open to find an explicit
order-matching L(m, n)i → L(m, n)i+1.



Algebraic geometry

X : smooth complex projective variety of dimension n

H∗(X ;C) = H0(X ;C)⊕ H1(X ;C)⊕ · · · ⊕ H2n(X ;C):
cohomology ring, so H i ∼= H2n−i .

Hard Lefschetz Theorem. There exists ω ∈ H2 (the class of a
generic hyperplane section) such that for 0 ≤ i ≤ n, the map

ωn−2i : H i → H2n−i

is a bijection. Thus ω : H i → H i+1 is injective for i ≤ n and
surjective for i ≥ n.



Cellular decompositions

X has a cellular decomposition if X = ⊔Ci , each Ci
∼= Cdi (as

affine varieties), and each C̄i is a union of Cj ’s.



Cellular decompositions

X has a cellular decomposition if X = ⊔Ci , each Ci
∼= Cdi (as

affine varieties), and each C̄i is a union of Cj ’s.

Fact. If X has a cellular decomposition and [Ci ] ∈ H2(n−i) denotes
the corresponding cohomology classes, then the [Ci ]’s form a
C-basis for H∗.



The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a poset
PX = {Ci}, by

Ci ≤ Cj if Ci ⊆ C̄j

(closure in Zariski or classical topology).
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The cellular decomposition poset

Let X = ⊔Ci be a cellular decomposition. Define a poset
PX = {Ci}, by

Ci ≤ Cj if Ci ⊆ C̄j

(closure in Zariski or classical topology).

Easy:

PX is graded of rank n.

#(PX )i = dimC H2(n−i)(X ;C)

PX is rank-symmetric (Poincaré duality)

PX is rank-unimodal (hard Lefschetz)
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Identify CP with H∗(X ;C) via Ci ↔ [Ci ].
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Identify CP with H∗(X ;C) via Ci ↔ [Ci ].

Recall: ω ∈ H2(X ;C) (class of hyperplane section)

Interpretation of cup product on H∗(X ;C) as intersection implies
that ω is order-raising.

Hard Lefschetz ⇒ ω : H2i → H2(i+1) is injective for i < n/2 and
surjective for i ≥ n/2.



Spernicity of PX

Identify CP with H∗(X ;C) via Ci ↔ [Ci ].

Recall: ω ∈ H2(X ;C) (class of hyperplane section)

Interpretation of cup product on H∗(X ;C) as intersection implies
that ω is order-raising.

Hard Lefschetz ⇒ ω : H2i → H2(i+1) is injective for i < n/2 and
surjective for i ≥ n/2.

⇒ Theorem. PX has the Sperner property.
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What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimple
algebraic group over C, and Q is a parabolic subgroup

Example. Gr(n, k) = SL(n,C)/Q for a certain Q, the
Grassmann variety of all k-dimensional subspaces of Cn.



Main example

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where G is a semisimple
algebraic group over C, and Q is a parabolic subgroup

Example. Gr(n, k) = SL(n,C)/Q for a certain Q, the
Grassmann variety of all k-dimensional subspaces of Cn.

rational canonical form ⇒ PGr(m+n,m)
∼= L(m, n)



“Best” special case

G = SO(2n + 1,C), Q = “spin” maximal parabolic subgroup

M(n) := PG/Q
∼= Bn/Sn, where Bn is the hyperoctahedral group

(symmetries of n-cube) of order 2nn!, so #M(n) = 2n



“Best” special case

G = SO(2n + 1,C), Q = “spin” maximal parabolic subgroup

M(n) := PG/Q
∼= Bn/Sn, where Bn is the hyperoctahedral group

(symmetries of n-cube) of order 2nn!, so #M(n) = 2n

M(n) is isomorphic to the set of all subsets of {1, 2, . . . , n} with
the ordering

{a1 > a2 > · · · > ar} ≤ {b1 > b2 > · · · > bs},

if r ≤ s and ai ≤ bi for 1 ≤ i ≤ r .



Examples of M(n)
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Rank-generating function of M(n)
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rank of {a1, . . . , ar} in M(n) is
∑

ai

⇒ F (M(n), q) :=

(n2)∑

i=0

|M(n)i | · q
i = (1 + q)(1 + q2) · · · (1 + qn)

Corollary. The polynomial (1 + q)(1 + q2) · · · (1 + qn) has
unimodal coefficients.



Rank-generating function of M(n)

rank of {a1, . . . , ar} in M(n) is
∑

ai

⇒ F (M(n), q) :=

(n2)∑

i=0

|M(n)i | · q
i = (1 + q)(1 + q2) · · · (1 + qn)

Corollary. The polynomial (1 + q)(1 + q2) · · · (1 + qn) has
unimodal coefficients.

No combinatorial proof known, though can be done with just
elementary linear algebra (Proctor).



The function f (S, α)

Let S ⊂ R, #S < ∞, α ∈ R.

f (S, α) = #{T ⊆ S :
∑

i∈T

i = α}

Note.
∑

i∈∅ i = 0



The function f (S, α)

Let S ⊂ R, #S < ∞, α ∈ R.

f (S, α) = #{T ⊆ S :
∑

i∈T

i = α}

Note.
∑

i∈∅ i = 0

Example. f ({1, 2, 4, 5, 7, 10}, 7) = 3:

7 = 2 + 5 = 1 + 2 + 4



The Erdős-Moser conjecture for R+

Let R+ = {i ∈ R : i > 0}.

Erdős-Moser Conjecture for R+

S ⊂ R+, #S = n

⇒ f (S , α) ≤ f
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2 (1 + 2 + · · ·+ n)



The proof

Proof. Suppose S = {a1, . . . , ak}, a1 > · · · > ak . Let

ai1 + · · ·+ air = aj1 + · · ·+ ajs ,

where i1 > · · · > ir , j1 > · · · > js .
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Proof. Suppose S = {a1, . . . , ak}, a1 > · · · > ak . Let

ai1 + · · ·+ air = aj1 + · · ·+ ajs ,

where i1 > · · · > ir , j1 > · · · > js .

Now {i1, . . . , ir} ≥ {j1, . . . , js} in M(n)

⇒ r ≥ s, i1 ≥ j1, . . . , is ≥ js

⇒ ai1 ≥ bj1 , . . . , ais ≥ bjs

⇒ r = s, aik = bik ∀k .



Conclusion of proof

Thus ai1 + · · ·+ air = bj1 + · · ·+ bjs

⇒ {i1, . . . , ir} and {j1, . . . , js} are incomparable

or equal in M(n)

⇒ #S ≤ max
A

#A = f

(

{1, . . . , n},

⌊
1

2

(
n + 1

2

)⌋)
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The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.
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The weak order on Sn

si :== (i , i + 1) ∈ Sn, 1 ≤ i ≤ n− 1 (adjacent transposition)

For w ∈ Sn,

ℓ(w) := #{(i , j) : i < j ,w(i) > w(j)}

= min{p : w = si1 · · · sip}.

weak (Bruhat) order Wn on Sn: u < v if

v = usi1 · · · sip , p = ℓ(v)− ℓ(u).

ℓ is the rank function of Wn, so

F (Wn, q) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

A. Björner (1984): does Wn have the Sperner property?
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An order-raising operator

theory of Schubert polynomials suggests:

U(w) :=
∑

1≤i≤n−1
wsi>si

i · wsi



An order-raising operator

theory of Schubert polynomials suggests:

U(w) :=
∑

1≤i≤n−1
wsi>si

i · wsi

Fact (Macdonald, Fomin-S). Let u < v in Wn, ℓ(v)− ℓ(u) = p.
The coefficient of v in Up(u) is

p!Svu−1(1, 1, . . . , 1),

where Sw (x1, . . . , xn−1) is a Schubert polynomial.



A down operator

C. Gaetz and Y. Gao (2018): constructed
D : Q(Wn)i → Q(Wn)i−1 such that

DU − UD =

((
n
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− 2i

)
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Suffices for Spernicity.



A down operator

C. Gaetz and Y. Gao (2018): constructed
D : Q(Wn)i → Q(Wn)i−1 such that

DU − UD =

((
n

2

)

− 2i

)

I .

Suffices for Spernicity.

Note. D is order-lowering on the strong Bruhat order. Leads to
duality between weak and strong order.



Another method

Z. Hamaker, O. Pechenik, D. Speyer, and A. Weigandt
(2018): for k < 1

2

(
n
2

)
, let

D(n, k) = matrix of U(n2)−2k : Q(Wn)k → Q(Wn)(n2)−k

with respect to the bases (Wn)k and (Wn)(n2)−k
(in some order).

Then (conjectured by RS):
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, let

D(n, k) = matrix of U(n2)−2k : Q(Wn)k → Q(Wn)(n2)−k

with respect to the bases (Wn)k and (Wn)(n2)−k
(in some order).

Then (conjectured by RS):
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)

!
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k−1∏

i=0
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n
2

)
− (k + i)
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)#(Wn)i

.

Also suffices to prove Sperner property (just need detD(n, k) 6= 0).



An open problem

The weak order W (G ) can be defined for any (finite) Coxeter
group G . Is W (G ) Sperner?
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