The Sperner Property

Richard P. Stanley M.I.T. and U. Miami

January 20, 2019

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Sperner's theorem

Theorem (E. Sperner, 1927). Let S_1, S_2, \ldots, S_m be subsets of an *n*-element set X such that $S_i \not\subseteq S_j$ for $i \neq j$, Then $m \leq \binom{n}{\lfloor n/2 \rfloor}$, achieved by taking all $\lfloor n/2 \rfloor$ -element subsets of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sperner's theorem

Theorem (E. Sperner, 1927). Let S_1, S_2, \ldots, S_m be subsets of an *n*-element set X such that $S_i \not\subseteq S_j$ for $i \neq j$, Then $m \leq \binom{n}{\lfloor n/2 \rfloor}$, achieved by taking all $\lfloor n/2 \rfloor$ -element subsets of X.

Emanuel Sperner 9 December 1905 – 31 January 1980

Posets

A **poset** (partially ordered set) is a set P with a binary relation \leq satisfying:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- **Reflexivity:** $t \le t$
- Antisymmetry: $s \le t$, $t \le s \Rightarrow s = t$
- Transitivity: $s \le t$, $t \le u \Rightarrow s \le u$

Graded posets

chain: $u_1 < u_2 < \cdots < u_k$

Graded posets

chain: $u_1 < u_2 < \cdots < u_k$

Assume *P* is **finite**. *P* is **graded of rank** *n* if

$$P=P_0\cup P_1\cup\cdots\cup P_n,$$

such that every maximal chain has the form

$$t_0 < t_1 < \cdots < t_n, \quad t_i \in P_i.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Diagram of a graded poset

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Let $p_i = \#P_i$. Rank-generating function: $F_P(q) = \sum_{i=0}^n p_i q^i$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let $p_i = \#P_i$. Rank-generating function: $F_P(q) = \sum_{i=0}^n p_i q^i$ Rank-symmetric: $p_i = p_{n-i} \quad \forall i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $p_i = \#P_i$. Rank-generating function: $F_P(q) = \sum_{i=0}^n p_i q^i$ Rank-symmetric: $p_i = p_{n-i} \quad \forall i$ Rank-unimodal: $p_0 \le p_1 \le \cdots \le p_i \ge p_{i+1} \ge \cdots \ge p_n$ for some j

Let $p_i = \#P_i$. Rank-generating function: $F_P(q) = \sum_{i=0}^n p_i q^i$ Rank-symmetric: $p_i = p_{n-i} \quad \forall i$ Rank-unimodal: $p_0 \le p_1 \le \cdots \le p_j \ge p_{j+1} \ge \cdots \ge p_n$ for some j

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

rank-unimodal and rank-symmetric $\Rightarrow j = \lfloor n/2 \rfloor$

The Sperner property

antichain $\mathbf{A} \subseteq P$:

$$s, t \in A, s \leq t \Rightarrow s = t$$

. . . .

The Sperner property

antichain $\mathbf{A} \subseteq P$:

$$s, t \in A, s \leq t \Rightarrow s = t$$

....

Note. P_i is an antichain

The Sperner property

antichain $\mathbf{A} \subseteq P$:

$$s, t \in A, s \leq t \Rightarrow s = t$$

....

Note. *P_i* is an antichain *P* is **Sperner** (or has the **Sperner property**) if

$$\max_{A} \#A = \max_{i} p_{i}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An example

rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$

An example

rank-symmetric, rank-unimodal, $F_P(q) = 3 + 3q$ not Sperner

The boolean algebra

 B_n : subsets of $\{1, 2, \ldots, n\}$, ordered by inclusion

The boolean algebra

 B_n : subsets of $\{1, 2, \ldots, n\}$, ordered by inclusion

$$p_i = \binom{n}{i}, \quad F_{B_n}(q) = (1+q)^n$$

rank-symmetric, rank-unimodal

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Diagram of B₃

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Theorem. The boolean algebra B_n is Sperner.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proof (D. Lubell, 1966).

• B_n has n! maximal chains.

Theorem. The boolean algebra B_n is Sperner.

Proof (D. Lubell, 1966).

- B_n has n! maximal chains.
- If $S \in B_n$ and #S = i, then i!(n-i)! maximal chains of B_n contain S.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. The boolean algebra B_n is Sperner.

Proof (D. Lubell, 1966).

- B_n has n! maximal chains.
- If $S \in B_n$ and #S = i, then i!(n-i)! maximal chains of B_n contain S.
- Let A be an antichain. Since a maximal chain can intersect at most one element of A, we have

$$\sum_{S\in\mathcal{A}}|S|!\,(n-|S|)!\leq n!.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem. The boolean algebra B_n is Sperner.

Proof (D. Lubell, 1966).

- B_n has n! maximal chains.
- If $S \in B_n$ and #S = i, then i!(n-i)! maximal chains of B_n contain S.
- Let A be an antichain. Since a maximal chain can intersect at most one element of A, we have

$$\sum_{S\in A} |S|! (n-|S|)! \leq n!.$$

• Divide by *n*!:

$$\sum_{S\in\mathcal{A}}\frac{1}{\binom{n}{|S|}}\leq 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lubell's proof (cont.)

• Divide by *n*!:

$$\sum_{S\in A}\frac{1}{\binom{n}{|S|}}\leq 1.$$

Lubell's proof (cont.)

• Divide by n!: $\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1.$ • Now $\binom{n}{|S|} \leq \binom{n}{\lfloor n/2 \rfloor}$, so $\sum_{A \in S} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \leq 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lubell's proof (cont.)

• Divide by n!:

$$\sum_{S \in A} \frac{1}{\binom{n}{|S|}} \leq 1.$$
• Now $\binom{n}{|S|} \leq \binom{n}{\lfloor n/2 \rfloor}$, so

$$\sum_{A \in S} \frac{1}{\binom{n}{\lfloor n/2 \rfloor}} \leq 1.$$
• $\Rightarrow |A| \leq \binom{n}{\lfloor n/2 \rfloor} \square$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Lubell's proof carries over to some other posets.

Theorem. Let $B_n(q)$ denote the poset of all subspaces of \mathbb{F}_q^n . Then $B_n(q)$ is Sperner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Linear algebra

 $P = P_0 \cup \cdots \cup P_m$: graded poset

 QP_i : vector space with basis Q

 $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is order-raising if for all $s \in P_i$,

$$U(s) \in \operatorname{span}_{\mathbb{Q}} \{ t \in P_{i+1} : s < t \}$$

Order-matchings

Order matching: μ : $P_i \rightarrow P_{i+1}$: injective and $\mu(t) < t$

Order-matchings

Order matching: μ : $P_i \rightarrow P_{i+1}$: injective and $\mu(t) < t$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Order-raising and order-matchings

Key Lemma. If $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$ is injective and order-raising, then there exists an order-matching $\mu: P_i \to P_{i+1}$.

Proof. Consider the matrix of *U* with respect to the bases P_i and P_{i+1} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Key lemma proof

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Key lemma proof

 $\Rightarrow s_1 < t_1, \ldots, s_m < t_m$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Minor variant

Similarly if there exists **surjective** order-raising $U: \mathbb{Q}P_i \to \mathbb{Q}P_{i+1}$, then there exists an order-matching $\mu: P_{i+1} \to P_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A criterion for Spernicity

 $P = P_0 \cup \cdots \cup P_n$: finite graded poset

Proposition. If for some *j* there exist order-raising operators

$$\mathbb{Q}P_0 \xrightarrow{\text{inj.}} \mathbb{Q}P_1 \xrightarrow{\text{inj.}} \cdots \xrightarrow{\text{inj.}} \mathbb{Q}P_j \xrightarrow{\text{surj.}} \mathbb{Q}P_{j+1} \xrightarrow{\text{surj.}} \cdots \xrightarrow{\text{surj.}} \mathbb{Q}P_n,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

then P is rank-unimodal and Sperner.
A criterion for Spernicity

 $P = P_0 \cup \cdots \cup P_n$: finite graded poset

Proposition. If for some *j* there exist order-raising operators

$$\mathbb{Q}P_0 \xrightarrow{\text{inj.}} \mathbb{Q}P_1 \xrightarrow{\text{inj.}} \cdots \xrightarrow{\text{inj.}} \mathbb{Q}P_j \xrightarrow{\text{surj.}} \mathbb{Q}P_{j+1} \xrightarrow{\text{surj.}} \cdots \xrightarrow{\text{surj.}} \mathbb{Q}P_n,$$

then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear: $p_0 \le p_1 \le \cdots \le p_j \ge p_{j+1} \cdots \ge p_n$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A criterion for Spernicity

 $P = P_0 \cup \cdots \cup P_n$: finite graded poset

Proposition. If for some *j* there exist order-raising operators

$$\mathbb{Q}P_0 \xrightarrow{\text{inj.}} \mathbb{Q}P_1 \xrightarrow{\text{inj.}} \cdots \xrightarrow{\text{inj.}} \mathbb{Q}P_j \xrightarrow{\text{surj.}} \mathbb{Q}P_{j+1} \xrightarrow{\text{surj.}} \cdots \xrightarrow{\text{surj.}} \mathbb{Q}P_n$$

then P is rank-unimodal and Sperner.

Proof. Rank-unimodal clear: $p_0 \leq p_1 \leq \cdots \leq p_j \geq p_{j+1} \cdots \geq p_n$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

"Glue together" the order-matchings.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

・ロト・日本・日本・日本・日本・日本

・ロト・日本・日本・日本・日本・日本

A chain decomposition

$$P = C_1 \cup \cdots \cup C_{p_j}$$
 (chains)
 $A = ext{antichain}, C = ext{chain} \Rightarrow \#(A \cap C) \le 1$
 $\Rightarrow \#A \le p_j.$

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

1 2 3 4 5 6 7 8 9 10 11 12 13

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

$$\underbrace{)}_{1} \underbrace{-}_{2} \underbrace{-}_{3} \underbrace{)}_{4} \underbrace{-}_{5} \underbrace{)}_{6} \underbrace{)}_{7} \underbrace{-}_{8} \underbrace{-}_{9} \underbrace{-}_{10} \underbrace{)}_{11} \underbrace{-}_{12} \underbrace{-}_{13} \underbrace{$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

 $\begin{array}{c}) \\ 1 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline 8 \\ \hline 9 \\ \hline 10 \\ \hline 11 \\ \hline 11 \\ \hline 12 \\ \hline 13 \\ \hline \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

$$\underbrace{)}_{1} \underbrace{(())}_{2} \underbrace{()}_{3} \underbrace{()}_{4} \underbrace{()}_{5} \underbrace{()}_{6} \underbrace{()}_{7} \underbrace{()}_{8} \underbrace{()}_{9} \underbrace{()}_{10} \underbrace{()}_{11} \underbrace{()}_{12} \underbrace{()}_{13} \underbrace{()}_{1$$

Explicit order matching $(B_n)_i \rightarrow (B_n)_{i+1}$ for i < n/2:

Example. $S = \{1, 4, 6, 7, 11\} \in (B_{13})_5$

$$\underbrace{)}_{1} \underbrace{(())}_{2} \underbrace{(())}_{3} \underbrace{(())}_{4} \underbrace{(())}_{5} \underbrace{(())}_{6} \underbrace{(())}_{7} \underbrace{(())}_{8} \underbrace{(())}_{9} \underbrace{(())}_{10} \underbrace{(())}_{11} \underbrace{(())}_{12} \underbrace{(())}_{13} \underbrace{(())}_{13$$

Order-raising for B_n

Define

$$\boldsymbol{U}:\mathbb{Q}(B_n)_i\to\mathbb{Q}(B_n)_{i+1}$$

by

$$U(S) = \sum_{\substack{\#T=i+1\\S\subset T}} T, S \in (B_n)_i.$$

Order-raising for B_n

Define

$$\boldsymbol{U}:\mathbb{Q}(B_n)_i\to\mathbb{Q}(B_n)_{i+1}$$

by

$$U(S) = \sum_{\substack{\#T=i+1\\S\subset T}} T, S \in (B_n)_i.$$

Similarly define $D: \mathbb{Q}(B_n)_{i+1} \to \mathbb{Q}(B_n)_i$ by

$$D(T) = \sum_{\substack{\#S=i\\S\subset T}} S, \quad T \in (B_n)_{i+1}.$$

Order-raising for B_n

Define

$$\boldsymbol{U}:\mathbb{Q}(B_n)_i\to\mathbb{Q}(B_n)_{i+1}$$

by

$$U(S) = \sum_{\substack{\#T=i+1\\S\subset T}} T, S \in (B_n)_i.$$

Similarly define $D: \mathbb{Q}(B_n)_{i+1} \to \mathbb{Q}(B_n)_i$ by

$$D(T) = \sum_{\substack{\#S=i\\S\subset T}} S, \quad T \in (B_n)_{i+1}.$$

Note. *UD* is positive semidefinite, and hence has nonnegative real eigenvalues, since the matrices of *U* and *D* with respect to the bases $(B_n)_i$ and $(B_n)_{i+1}$ are *transposes*.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A commutation relation

Lemma. On $\mathbb{Q}(B_n)_i$ we have

$$DU - UD = (n - 2i)I,$$

where *I* is the identity operator.

A commutation relation

Lemma. On $\mathbb{Q}(B_n)_i$ we have

$$DU - UD = (n - 2i)I,$$

where *I* is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. *UD* has eigenvalues $\theta \ge 0$, and eigenvalues of *DU* are $\theta + n - 2i > 0$. Hence *DU* is invertible, so *U* is injective. \Box

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Similarly U is surjective for $i \ge n/2$.

A commutation relation

Lemma. On $\mathbb{Q}(B_n)_i$ we have

$$DU - UD = (n - 2i)I,$$

where *I* is the identity operator.

Corollary. If i < n/2 then U is injective.

Proof. *UD* has eigenvalues $\theta \ge 0$, and eigenvalues of *DU* are $\theta + n - 2i > 0$. Hence *DU* is invertible, so *U* is injective. \Box

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Similarly U is surjective for $i \ge n/2$.

Corollary. B_n is Sperner.

What's the point?

What's the point?

The symmetric group \mathfrak{S}_n acts on B_n by

$$w \cdot \{a_1,\ldots,a_k\} = \{w \cdot a_1,\ldots,w \cdot a_k\}.$$

If G is a subgroup of \mathfrak{S}_n , define the **quotient poset** B_n/G to be the poset on the orbits of G (acting on B_n), with

$$\mathfrak{o} \leq \mathfrak{o}' \quad \Leftrightarrow \quad \exists S \in \mathfrak{o}, T \in \mathfrak{o}', \quad S \subseteq T.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An example

$$n = 3, G = \{(1)(2)(3), (1, 2)(3)\}$$

Spernicity of B_n/G

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Spernicity of B_n/G

Easy: B_n/G is graded of rank *n* and rank-symmetric.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem. B_n/G is rank-unimodal and Sperner.

Spernicity of B_n/G

Easy: B_n/G is graded of rank *n* and rank-symmetric.

Theorem. B_n/G is rank-unimodal and Sperner.

Crux of proof. The action of $w \in G$ on B_n commutes with U, so we can "transfer" U to B_n/G , preserving injectivity on the bottom half.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

An interesting example

R: set of squares of an $m \times n$ rectangle of squares.

 $G_{mn} \subset \mathfrak{S}_R$: can permute elements in each row, and permute rows among themselves, so $\#G_{mn} = n!^m m!$.

 $G_{mn} \cong \mathfrak{S}_n \wr \mathfrak{S}_m$ (wreath product)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Young diagrams

A subset $S \subseteq R$ is a **Young diagram** if it is left-justified, with weakly decreasing row lengths from top to bottom.

Young diagrams

A subset $S \subseteq R$ is a **Young diagram** if it is left-justified, with weakly decreasing row lengths from top to bottom.

 B_R/G_{mn}

Lemma. Each orbit $o \in B_R/G_{mn}$ contains exactly one Young diagram.

Lemma. Each orbit $\mathfrak{o} \in B_R/G_{mn}$ contains exactly one Young diagram.

Proof. Let $S \in B_R$. Let α_i be the number of elements of S in row i. Let $\lambda_1 \geq \cdots \geq \lambda_m$ be the decreasing rearrangement of $\alpha_1, \ldots, \alpha_m$. Then the unique Young diagram in the orbit containing S has λ_i elements in row i. \Box

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Poset structure of B_r/G_{mn}

Y_o : Young diagram in the orbit o

Easy : $\mathfrak{o} \leq \mathfrak{o}'$ in B_R/G_{mn} if and only if $Y_\mathfrak{o} \subseteq Y_{\mathfrak{o}'}$ (containment of Young diagram).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Poset structure of B_r/G_{mn}

Y_o : Young diagram in the orbit o

Easy : $\mathfrak{o} \leq \mathfrak{o}'$ in B_R/G_{mn} if and only if $Y_\mathfrak{o} \subseteq Y_{\mathfrak{o}'}$ (containment of Young diagram).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

L(m, n): poset of Young diagrams in an $m \times n$ rectangle

Corollary. $B_R/G_{mn} \cong L(m, n)$

Examples of L(m, n)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●
L(3, 3)

q-binomial coefficients

For $0 \le k \le n$, define the *q*-binomial coefficient

$${n \brack k} = rac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q^k)(1-q^{k-1})\cdots(1-q)}.$$

q-binomial coefficients

For $0 \le k \le n$, define the *q*-binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q^k)(1-q^{k-1})\cdots(1-q)}.$$

Example.
$$\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 1+q+2q^2+q^3+q^4$$

•
$$\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{N}[q]$$

•
$$\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{N}[q]$$

• $\begin{bmatrix} n \\ k \end{bmatrix}_{q=1} = \binom{n}{k}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- $\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{N}[q]$
- $\begin{bmatrix} n \\ k \end{bmatrix}_{q=1} = \binom{n}{k}$
- If q is a prime power, [ⁿ_k] is the number of k-dimensional subspaces of Fⁿ_q (irrelevant here).

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- $\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{N}[q]$
- $\begin{bmatrix} n \\ k \end{bmatrix}_{q=1} = \binom{n}{k}$
- If q is a prime power, [ⁿ_k] is the number of k-dimensional subspaces of Fⁿ_q (irrelevant here).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $F(L(m,n),q) = \begin{bmatrix} m+n \\ m \end{bmatrix}$

Corollary. $\begin{bmatrix} m+n \\ m \end{bmatrix}$ has unimodal coefficients.

Corollary. $\begin{bmatrix} m+n \\ m \end{bmatrix}$ has unimodal coefficients.

• First proved by J. J. Sylvester (1878) using invariant theory of binary forms.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Corollary. $\begin{bmatrix} m+n\\m \end{bmatrix}$ has unimodal coefficients.

- First proved by J. J. Sylvester (1878) using invariant theory of binary forms.
- Combinatorial proof by **K**. **O'Hara** (1990): explicit injection $L(m, n)_i \rightarrow L(m, n)_{i+1}$, $0 \le i < \frac{1}{2}mn$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Corollary. $\begin{bmatrix} m+n\\m \end{bmatrix}$ has unimodal coefficients.

- First proved by J. J. Sylvester (1878) using invariant theory of binary forms.
- Combinatorial proof by **K**. **O'Hara** (1990): explicit injection $L(m, n)_i \rightarrow L(m, n)_{i+1}$, $0 \le i < \frac{1}{2}mn$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 Not an order-matching. Still open to find an explicit order-matching L(m, n)_i → L(m, n)_{i+1}.

Algebraic geometry

X: smooth complex projective variety of dimension n

 $H^*(X; \mathbb{C}) = H^0(X; \mathbb{C}) \oplus H^1(X; \mathbb{C}) \oplus \cdots \oplus H^{2n}(X; \mathbb{C}):$ cohomology ring, so $H^i \cong H^{2n-i}$.

Hard Lefschetz Theorem. There exists $\omega \in H^2$ (the class of a generic hyperplane section) such that for $0 \le i \le n$, the map

$$\omega^{n-2i}: H^i \to H^{2n-i}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is a bijection. Thus $\omega \colon H^i \to H^{i+1}$ is injective for $i \leq n$ and surjective for $i \geq n$.

Cellular decompositions

X has a **cellular decomposition** if $X = \sqcup C_i$, each $C_i \cong \mathbb{C}^{d_i}$ (as affine varieties), and each \overline{C}_i is a union of C_i 's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cellular decompositions

X has a **cellular decomposition** if $X = \sqcup C_i$, each $C_i \cong \mathbb{C}^{d_i}$ (as affine varieties), and each \overline{C}_i is a union of C_i 's.

Fact. If X has a cellular decomposition and $[C_i] \in H^{2(n-i)}$ denotes the corresponding cohomology classes, then the $[C_i]$'s form a \mathbb{C} -basis for H^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $X = \sqcup C_i$ be a cellular decomposition. Define a poset $P_X = \{C_i\}$, by $C_i \leq C_j$ if $C_i \subseteq \overline{C_j}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

(closure in Zariski or classical topology).

Let $X = \sqcup C_i$ be a cellular decomposition. Define a poset $P_X = \{C_i\}$, by $C_i \leq C_j$ if $C_i \subseteq \overline{C_j}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(closure in Zariski or classical topology).

Easy:

- P_X is graded of rank n.
- $\#(P_X)_i = \dim_{\mathbb{C}} H^{2(n-i)}(X;\mathbb{C})$

Let $X = \sqcup C_i$ be a cellular decomposition. Define a poset $P_X = \{C_i\}$, by $C_i \leq C_j$ if $C_i \subseteq \overline{C_j}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(closure in Zariski or classical topology).

Easy:

- P_X is graded of rank n.
- $\#(P_X)_i = \dim_{\mathbb{C}} H^{2(n-i)}(X;\mathbb{C})$
- *P_X* is rank-symmetric (Poincaré duality)

Let $X = \sqcup C_i$ be a cellular decomposition. Define a poset $P_X = \{C_i\}$, by $C_i \leq C_j$ if $C_i \subseteq \overline{C_j}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(closure in Zariski or classical topology).

Easy:

- P_X is graded of rank n.
- $\#(P_X)_i = \dim_{\mathbb{C}} H^{2(n-i)}(X;\mathbb{C})$
- *P_X* is rank-symmetric (Poincaré duality)
- *P_X* is rank-unimodal (hard Lefschetz)

Spernicity of *P*_X

Identify $\mathbb{C}P$ with $H^*(X;\mathbb{C})$ via $C_i \leftrightarrow [C_i]$.

Spernicity of *P*_X

Identify $\mathbb{C}P$ with $H^*(X;\mathbb{C})$ via $C_i \leftrightarrow [C_i]$.

Recall: $\omega \in H^2(X; \mathbb{C})$ (class of hyperplane section)

Interpretation of cup product on $H^*(X; \mathbb{C})$ as intersection implies that ω is order-raising.

Hard Lefschetz $\Rightarrow \omega : H^{2i} \rightarrow H^{2(i+1)}$ is injective for i < n/2 and surjective for $i \ge n/2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Spernicity of *P*_X

Identify $\mathbb{C}P$ with $H^*(X;\mathbb{C})$ via $C_i \leftrightarrow [C_i]$.

Recall: $\omega \in H^2(X; \mathbb{C})$ (class of hyperplane section)

Interpretation of cup product on $H^*(X; \mathbb{C})$ as intersection implies that ω is order-raising.

Hard Lefschetz $\Rightarrow \omega : H^{2i} \rightarrow H^{2(i+1)}$ is injective for i < n/2 and surjective for $i \ge n/2$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 \Rightarrow **Theorem.** P_X has the Sperner property.

What smooth projective varieties have cellular decompositions?

Main example

What smooth projective varieties have cellular decompositions?

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Generalized flag variety: G/Q, where **G** is a semisimple algebraic group over \mathbb{C} , and **Q** is a parabolic subgroup

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where **G** is a semisimple algebraic group over \mathbb{C} , and **Q** is a parabolic subgroup

Example. $\operatorname{Gr}(n, k) = \operatorname{SL}(n, \mathbb{C})/Q$ for a certain Q, the **Grassmann variety** of all *k*-dimensional subspaces of \mathbb{C}^n .

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

What smooth projective varieties have cellular decompositions?

Generalized flag variety: G/Q, where **G** is a semisimple algebraic group over \mathbb{C} , and **Q** is a parabolic subgroup

Example. $\operatorname{Gr}(n, k) = \operatorname{SL}(n, \mathbb{C})/Q$ for a certain Q, the **Grassmann variety** of all *k*-dimensional subspaces of \mathbb{C}^n .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

rational canonical form $\Rightarrow P_{Gr(m+n,m)} \cong L(m,n)$

"Best" special case

 $G = SO(2n + 1, \mathbb{C}), \ Q =$ "spin" maximal parabolic subgroup

 $M(n) := P_{G/Q} \cong \mathfrak{B}_n/\mathfrak{S}_n$, where \mathfrak{B}_n is the hyperoctahedral group (symmetries of *n*-cube) of order $2^n n!$, so $\#M(n) = 2^n$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

"Best" special case

 $G = SO(2n + 1, \mathbb{C}), \ Q =$ "spin" maximal parabolic subgroup

 $M(n) := P_{G/Q} \cong \mathfrak{B}_n/\mathfrak{S}_n$, where \mathfrak{B}_n is the hyperoctahedral group (symmetries of *n*-cube) of order $2^n n!$, so $\#M(n) = 2^n$

M(n) is isomorphic to the set of all subsets of $\{1, 2, ..., n\}$ with the ordering

$$\{a_1 > a_2 > \cdots > a_r\} \leq \{b_1 > b_2 > \cdots > b_s\},\$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

if $r \leq s$ and $a_i \leq b_i$ for $1 \leq i \leq r$.

Examples of M(n)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Rank-generating function of M(n)

rank of $\{a_1, \ldots, a_r\}$ in M(n) is $\sum a_i$

Rank-generating function of M(n)

rank of $\{a_1, \ldots, a_r\}$ in M(n) is $\sum a_i$

$$\Rightarrow F(M(n),q) \coloneqq \sum_{i=0}^{\binom{n}{2}} |M(n)_i| \cdot q^i = (1+q)(1+q^2) \cdots (1+q^n)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary. The polynomial $(1 + q)(1 + q^2) \cdots (1 + q^n)$ has unimodal coefficients.

Rank-generating function of M(n)

rank of $\{a_1, \ldots, a_r\}$ in M(n) is $\sum a_i$

$$\Rightarrow F(M(n),q) \coloneqq \sum_{i=0}^{\binom{n}{2}} |M(n)_i| \cdot q^i = (1+q)(1+q^2) \cdots (1+q^n)$$

Corollary. The polynomial $(1 + q)(1 + q^2) \cdots (1 + q^n)$ has unimodal coefficients.

No combinatorial proof known, though can be done with just elementary linear algebra (**Proctor**).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}$, $\#S < \infty$, $\alpha \in \mathbb{R}$.

$$f(S,\alpha) = \#\{T \subseteq S : \sum_{i \in T} i = \alpha\}$$

Note. $\sum_{i \in \emptyset} i = 0$

The function $f(S, \alpha)$

Let $S \subset \mathbb{R}$, $\#S < \infty$, $\alpha \in \mathbb{R}$.

$$f(S,\alpha) = \#\{T \subseteq S : \sum_{i \in T} i = \alpha\}$$

Note. $\sum_{i \in \emptyset} i = 0$

Example. $f(\{1, 2, 4, 5, 7, 10\}, 7) = 3$:

$$7 = 2 + 5 = 1 + 2 + 4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The Erdős-Moser conjecture for \mathbb{R}^+

Let
$$\mathbb{R}^+ = \{i \in \mathbb{R} : i > 0\}.$$

Erdős-Moser Conjecture for \mathbb{R}^+

$$S \subset \mathbb{R}^+, \ \#S = n$$

 $\Rightarrow f(S, \alpha) \leq f\left(\{1, 2, \dots, n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right)$

The Erdős-Moser conjecture for \mathbb{R}^+

Let
$$\mathbb{R}^+ = \{i \in \mathbb{R} : i > 0\}.$$

Erdős-Moser Conjecture for \mathbb{R}^+

$$S \subset \mathbb{R}^+, \ \#S = n$$

$$\Rightarrow f(S, \alpha) \le f\left(\{1, 2, \dots, n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor\right)$$
Note. $\frac{1}{2} \binom{n+1}{2} = \frac{1}{2}(1+2+\dots+n)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

The proof

Proof. Suppose $S = \{a_1, \ldots, a_k\}$, $a_1 > \cdots > a_k$. Let $a_{i_1} + \cdots + a_{i_r} = a_{j_1} + \cdots + a_{j_s}$, where $i_1 > \cdots > i_r$, $j_1 > \cdots > j_s$.
The proof

Proof. Suppose $S = \{a_1, ..., a_k\}, a_1 > \cdots > a_k$. Let $a_{i_1}+\cdots+a_{i_r}=a_{i_1}+\cdots+a_{i_s},$ where $i_1 > \cdots > i_r$, $j_1 > \cdots > j_s$. Now $\{i_1, \ldots, i_r\} \ge \{j_1, \ldots, j_s\}$ in M(n) \Rightarrow $r > s, i_1 > j_1, \ldots, i_s > j_s$ $\Rightarrow a_{i_1} \geq b_{i_1}, \ldots, a_{i_s} \geq b_{i_s}$ \Rightarrow $r = s, a_{i_k} = b_{i_k} \forall k.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion of proof

Thus
$$a_{i_1} + \dots + a_{i_r} = b_{j_1} + \dots + b_{j_s}$$

 $\Rightarrow \{i_1, \dots, i_r\} \text{ and } \{j_1, \dots, j_s\} \text{ are incomparable}$
or equal in $M(n)$
 $\Rightarrow \#S \le \max_A \#A = f\left(\{1, \dots, n\}, \left\lfloor \frac{1}{2} \binom{n+1}{2} \right\rfloor \right)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $s_i :== (i, i+1) \in \mathfrak{S}_n, \ 1 \le i \le n-1 \ (adjacent \ transposition)$

For $w \in \mathfrak{S}_n$,

$$\begin{array}{rcl} \ell(w) & \coloneqq & \#\{(i,j) \, : \, i < j, w(i) > w(j)\} \\ & = & \min\{p \, : \, w = s_{i_1} \cdots s_{i_p}\}. \end{array}$$

(日)

 $s_i :== (i, i+1) \in \mathfrak{S}_n, 1 \le i \le n-1$ (adjacent transposition)

For $w \in \mathfrak{S}_n$,

$$\begin{array}{rcl} \ell(w) & \coloneqq & \#\{(i,j) \, : \, i < j, w(i) > w(j)\} \\ & = & \min\{p \, : \, w = s_{i_1} \cdots s_{i_p}\}. \end{array}$$

weak (Bruhat) order W_n on \mathfrak{S}_n : u < v if

$$v = us_{i_1} \cdots s_{i_p}, \ p = \ell(v) - \ell(u).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $s_i :== (i, i+1) \in \mathfrak{S}_n, 1 \le i \le n-1 \text{ (adjacent transposition)}$

For $w \in \mathfrak{S}_n$,

$$\begin{array}{rcl} \ell(w) & \coloneqq & \#\{(i,j) \, : \, i < j, w(i) > w(j)\} \\ & = & \min\{p \, : \, w = s_{i_1} \cdots s_{i_p}\}. \end{array}$$

weak (Bruhat) order W_n on \mathfrak{S}_n : u < v if

$$v = us_{i_1} \cdots s_{i_p}, \ p = \ell(v) - \ell(u).$$

 ℓ is the rank function of W_n , so

$$F(W_n,q) = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $s_i :== (i, i+1) \in \mathfrak{S}_n, 1 \le i \le n-1$ (adjacent transposition)

For $w \in \mathfrak{S}_n$,

$$\begin{aligned} \ell(w) &:= \#\{(i,j) : i < j, w(i) > w(j)\} \\ &= \min\{p : w = s_{i_1} \cdots s_{i_p}\}. \end{aligned}$$

weak (Bruhat) order W_n on \mathfrak{S}_n : u < v if

$$v = us_{i_1} \cdots s_{i_p}, \ p = \ell(v) - \ell(u).$$

 ℓ is the rank function of W_n , so

$$F(W_n,q) = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

A. Björner (1984): does W_n have the Sperner property?

Examples of weak order

 W_4

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

An order-raising operator

theory of Schubert polynomials suggests:

$$\boldsymbol{U}(w) \coloneqq \sum_{\substack{1 \le i \le n-1 \\ ws_i > s_i}} i \cdot ws_i$$

An order-raising operator

theory of Schubert polynomials suggests:

$$\boldsymbol{U}(w) \coloneqq \sum_{\substack{1 \leq i \leq n-1 \\ ws_i > s_i}} i \cdot ws_i$$

Fact (Macdonald, Fomin-S). Let u < v in W_n , $\ell(v) - \ell(u) = p$. The coefficient of v in $U^p(u)$ is

$$p! \mathfrak{S}_{vu^{-1}}(1, 1, \ldots, 1),$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

where $\mathfrak{S}_{w}(x_1, \ldots, x_{n-1})$ is a Schubert polynomial.

A down operator

C. Gaetz and **Y. Gao** (2018): constructed $D: \mathbb{Q}(W_n)_i \to \mathbb{Q}(W_n)_{i-1}$ such that

$$DU - UD = \left(\binom{n}{2} - 2i \right) I.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Suffices for Spernicity.

A down operator

C. Gaetz and **Y. Gao** (2018): constructed $D: \mathbb{Q}(W_n)_i \to \mathbb{Q}(W_n)_{i-1}$ such that

$$DU - UD = \left(\binom{n}{2} - 2i \right) I.$$

Suffices for Spernicity.

Note. *D* is order-lowering on the **strong** Bruhat order. Leads to duality between weak and strong order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Another method

Z. Hamaker, **O.** Pechenik, **D.** Speyer, and **A.** Weigandt (2018): for $k < \frac{1}{2} \binom{n}{2}$, let

$$D(n, k) = \text{matrix of } U^{\binom{n}{2}-2k} : \mathbb{Q}(W_n)_k \to \mathbb{Q}(W_n)_{\binom{n}{2}-k}$$

with respect to the bases $(W_n)_k$ and $(W_n)_{\binom{n}{2}-k}$ (in some order). Then (conjectured by RS):

$$\det D(n,k) = \pm \left(\binom{n}{2} - 2k \right)!^{\#(W_n)_k} \prod_{i=0}^{k-1} \left(\frac{\binom{n}{2} - (k+i)}{k-i} \right)^{\#(W_n)_i}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Another method

Z. Hamaker, **O.** Pechenik, **D.** Speyer, and **A.** Weigandt (2018): for $k < \frac{1}{2} \binom{n}{2}$, let

$$D(n, k) = \text{matrix of } U^{\binom{n}{2}-2k} : \mathbb{Q}(W_n)_k \to \mathbb{Q}(W_n)_{\binom{n}{2}-k}$$

with respect to the bases $(W_n)_k$ and $(W_n)_{\binom{n}{2}-k}$ (in some order). Then (conjectured by RS):

$$\det D(n,k) = \pm \left(\binom{n}{2} - 2k \right)!^{\#(W_n)_k} \prod_{i=0}^{k-1} \left(\frac{\binom{n}{2} - (k+i)}{k-i} \right)^{\#(W_n)_i}$$

Also suffices to prove Sperner property (just need det $D(n, k) \neq 0$).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An open problem

The weak order W(G) can be defined for any (finite) Coxeter group G. Is W(G) Sperner?

The final slide

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The final slide

