Smith Normal Form and Combinatorics

Richard P. Stanley

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Note. (1) Can extend to $m \times n$.

$$
\text { (2) unit } \cdot \operatorname{det}(A)=\operatorname{det}(B)=d_{1}^{n} d_{2}^{n-1} \cdots d_{n} \text {. }
$$

Thus SNF is a refinement of det.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).

Existence of SNF

If R is a PID, such as \mathbb{Z} or $K[x]$ ($K=$ field), then A has a unique SNF up to units.

Existence of SNF

If R is a PID, such as \mathbb{Z} or $K[x](K=$ field $)$, then A has a unique SNF up to units.

Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic interpretation of SNF

\boldsymbol{R} : a PID

\boldsymbol{A} : an $n \times n$ matrix over R with rows $v_{1}, \ldots, v_{n} \in R^{n}$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

Algebraic interpretation of SNF

R : a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

$R^{n} /\left(v_{1}, \ldots, v_{n}\right)$: (Kastelyn) cokernel of A

An explicit formula for SNF

\boldsymbol{R} : a PID

A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

An explicit formula for SNF

\boldsymbol{R} : a PID
\boldsymbol{A} : an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A.
minor: determinant of a square submatrix.
Special case: e_{1} is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

What about SNF?

An example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Laplacian matrices

$L_{0}(G)$: reduced Laplacian matrix of the graph G
Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\boldsymbol{\kappa}(\boldsymbol{G})$, the number of spanning trees of G.

Laplacian matrices

$L_{0}(G)$: reduced Laplacian matrix of the graph G
Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\boldsymbol{\kappa}(\boldsymbol{G})$, the number of spanning trees of G.

Theorem. $L_{0}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$, a refinement of Cayley's theorem that $\kappa\left(K_{n}\right)=n^{n-2}$

Laplacian matrices

$L_{0}(G)$: reduced Laplacian matrix of the graph G
Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\boldsymbol{\kappa}(\boldsymbol{G})$, the number of spanning trees of G.

Theorem. $L_{0}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$, a refinement of Cayley's theorem that $\kappa\left(K_{n}\right)=n^{n-2}$.

In general, SNF of $L_{0}(G)$ not understood.

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

toppling of a vertex v : if $\sigma(v) \geq \operatorname{deg}(v)$, then send a chip to each neighboring vertex.

The sandpile group

Choose a vertex to be a sink, and ignore chips falling into the sink.
stable configuration: no vertex can topple
Theorem (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

Exercise. The (unique) minimal ideal of a finite commutative monoid is a group.

Sandpile group

sandpile group of G : the minimal ideal $\boldsymbol{K}(\boldsymbol{G})$ of the monoid M

Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Sandpile group

sandpile group of G : the minimal ideal $\boldsymbol{K}(\boldsymbol{G})$ of the monoid M

Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Theorem. Let

$$
L_{0}(G) \xrightarrow{\text { SNF }} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}\right)
$$

Then

$$
K(G) \cong \mathbb{Z} / e_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / e_{n-1} \mathbb{Z}
$$

Second example

Some matrices connected with Young diagrams

Extended Young diagrams

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$

Extended Young diagrams

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

Extended Young diagrams

$\boldsymbol{\lambda}$: a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

$(3,1)^{*}=(4,4,2)$

Initialization

Insert 1 into each square of λ^{*} / λ.

$(3,1)^{*}=(4,4,2)$

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

M_{t}

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

M_{t}

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number $\boldsymbol{n}_{\boldsymbol{t}}$ so that $\operatorname{det} M_{t}=1$.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Why? Expand det M_{t} by the first row. The coefficient of n_{t} is 1 by induction.

$\lambda(t)$

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

$$
\lambda=(4,4,3)
$$

If $t \in \lambda$, let $\boldsymbol{\lambda}(t)$ consist of all squares of λ to the southeast of t.

$$
\begin{aligned}
\lambda & =(4,4,3) \\
\lambda(t) & =(3,2)
\end{aligned}
$$

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

There is a determinantal formula for u_{λ}, due essentially to MacMahon and later Kreweras (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=f(\lambda(t))$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=f(\lambda(t))$.
Proofs. 1. Induction (row and column operations).
2. Nonintersecting lattice paths.

An example

An example

ϕ

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate $\boldsymbol{x}_{\boldsymbol{i j}}$ (matrix coordinates).

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate $\boldsymbol{x}_{\boldsymbol{i j}}$ (matrix coordinates).

A refinement of u_{λ}

$$
\boldsymbol{u}_{\boldsymbol{\lambda}}(\boldsymbol{x})=\sum_{\mu \subseteq \lambda} \prod_{(i, j) \in \lambda / \mu} x_{i j}
$$

A refinement of u_{λ}

$$
\boldsymbol{u}_{\lambda}(\boldsymbol{x})=\sum_{\mu \subseteq \lambda} \prod_{(i, j) \in \lambda / \mu} x_{i j}
$$

λ

λ / μ
$\prod x_{i j}=c d e$
$(i, j) \in \lambda / \mu$

An example

a	b	c
d	e	

$a b c d e+b c d e+b c e+c d e$ $+c e+d e+c+e+1$	$b c e+c e+c$ $+e+1$	$c+1$	1
$d e+e+1$	$e+1$	1	1
1	1	1	

$$
\boldsymbol{A}_{\boldsymbol{t}}=\prod_{(i, j) \in \lambda(t)} x_{i j}
$$

$$
\boldsymbol{A}_{\boldsymbol{t}}=\prod_{(i, j) \in \lambda(t)} x_{i j}
$$

$$
\boldsymbol{A}_{\boldsymbol{t}}=\prod_{(i, j) \in \lambda(t)} x_{i j}
$$

$$
A_{t}=b c d e g h i k l m o
$$

The main theorem

Theorem. Let $t=(i, j)$. Then M_{t} has SNF

$$
\operatorname{diag}\left(A_{i j}, A_{i-1, j-1}, \ldots, 1\right)
$$

The main theorem

Theorem. Let $t=(i, j)$. Then M_{t} has SNF

$$
\operatorname{diag}\left(A_{i j}, A_{i-1, j-1}, \ldots, 1\right)
$$

Proof. 1. Explicit row and column operations putting M_{t} into SNF.
2. (C. Bessenrodt) Induction.

An example

a	b	c
d	e	

$a b c d e+b c d e+b c e+c d e$ $+c e+d e+c+e+1$	$b c e+c e+c$ $+e+1$	$c+1$	1
$d e+e+1$	$e+1$	1	1
1	1	1	

An example

a	b	c
d	e	

$a b c d e+b c d e+b c e+c d e$ $+c e+d e+c+e+1$	$b c e+c e+c$ $+e+1$	$c+1$	1
$d e+e+1$	$e+1$	1	1
1	1	1	

$$
\mathbf{S N F}=\operatorname{diag}(a b c d e, e, 1)
$$

A special case

Let λ be the staircase $\boldsymbol{\delta}_{n}=(n-1, n-2, \ldots, 1)$. Set each $x_{i j}=q$.

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$. Set each $x_{i j}=q$.

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$. Set each $x_{i j}=q$.

$\left.u_{\delta_{n-1}}(x)\right|_{x_{i j}=q}$ counts Dyck paths of length $2 n$ by (scaled) area, and is thus the well-known q-analogue $\boldsymbol{C}_{n}(q)$ of the Catalan number C_{n}.

A q-Catalan example

$\square \square \square \square \square$

$$
C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

A q-Catalan example

$$
\square \square \square \quad C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

$$
\left.\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array} \right\rvert\, \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(q^{6}, q, 1\right)
$$

A q-Catalan example

$\square \boxtimes \boxtimes \square \quad C_{3}(q)=q^{3}+q^{2}+2 q+1$

$$
\left.\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array} \right\rvert\, \stackrel{S N F}{\sim} \operatorname{diag}\left(q^{6}, q, 1\right)
$$

- q-Catalan determinant previously known
- SNF is new

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n})$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M
Theorem. $\lim _{k \rightarrow \infty} p_{k}(n, d)=1 / d^{n^{2}} \zeta\left(n^{2}\right)$

Work of Yinghui Wang

Work of Yinghui Wang（王颖慧）

Work of Yinghui Wang（王颖慧）

Sample result．$\mu_{k}(n)$ ：probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{1}=2, e_{2}=6$ ．

$$
\boldsymbol{\mu}(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n) .
$$

Conclusion

$$
\mu(n)=2^{-n^{2}}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} 2^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} 2^{-i}\right)
$$

$$
\cdot \frac{3}{2} \cdot 3^{-(n-1)^{2}}\left(1-3^{(n-1)^{2}}\right)\left(1-3^{-n}\right)^{2}
$$

$$
\prod_{p>3}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} p^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} p^{-i}\right)
$$

A note on the proof

uses a 2014 result of C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z} / p^{s} \mathbb{Z}$ with specified SNF

A note on the proof

uses a 2014 result of C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z} / p^{s} \mathbb{Z}$ with specified SNF

Note. $\mathbb{Z} / p^{s} \mathbb{Z}$ is not a PID, but SNF still exists because its ideals form a finite chain.

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

$$
\text { Theorem. } \kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Theorem. $\kappa(n)=$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

$$
\text { Theorem. } \kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Theorem. $\kappa(n)=\underline{\square}$
Corollary. $\lim _{n \rightarrow \infty} \kappa(n)=\frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)}$
$\approx 0.846936 \cdots$.

Third example

In collaboration with Tommy Wuxing Cai.

Third example

In collaboration with 蔡吴兴．

Third example

In collaboration with 蔡吴兴．

$\operatorname{Par}(\boldsymbol{n}):$ set of all partitions of n

$$
\text { E.g., } \operatorname{Par}(4)=\{4,31,22,211,1111\} .
$$

Third example

In collaboration with 蔡吴兴．

$\operatorname{Par}(\boldsymbol{n}):$ set of all partitions of n

$$
\text { E.g., } \operatorname{Par}(4)=\{4,31,22,211,1111\} .
$$

$\boldsymbol{V}_{n}:$ real vector space with basis $\operatorname{Par}(n)$

Define $\boldsymbol{U}=\boldsymbol{U}_{n}: V_{n} \rightarrow V_{n+1}$ by

$$
U(\lambda)=\sum_{\mu} \mu,
$$

where $\mu \in \operatorname{Par}(n+1)$ and $\mu_{i} \geq \lambda_{i} \forall i$.

Example.

$U(42211)=52211+43211+42221+422111$

Dually, define $\boldsymbol{D}=\boldsymbol{D}_{n}: V_{n} \rightarrow V_{n-1}$ by

$$
D(\lambda)=\sum_{\nu} \nu,
$$

where $\nu \in \operatorname{Par}(n-1)$ and $\nu_{i} \leq \lambda_{i} \forall i$.
Example. $D(42211)=32211+42111+4221$

Symmetric functions

Note. Identify V_{n} with the space $\Lambda_{\mathbb{Q}}^{n}$ of all homogeneous symmetric functions of degree n over \mathbb{Q}, and identify $\lambda \in V_{n}$ with the Schur function s_{λ}. Then

$$
U(f)=p_{1} f, \quad D(f)=\frac{\partial}{\partial p_{1}} f
$$

Commutation relation

Basic commutation relation: $D U-U D=I$

Allows computation of eigenvalues of
$D U: V_{n} \rightarrow V_{n}$.
Or note that the eigenvectors of $\frac{\partial}{\partial p_{1}} p_{1}$ are the p_{λ} 's, $\lambda \vdash n$.

Eigenvalues of $D U$

Let $\boldsymbol{p}(\boldsymbol{n})=\# \operatorname{Par}(n)=\operatorname{dim} V_{n}$.
Theorem. Let $1 \leq i \leq n+1, i \neq n$. Then i is an eigenvalue of $D_{n+1} U_{n}$ with multiplicity $p(n+1-i)-p(n-i)$. Hence

$$
\operatorname{det} D_{n+1} U_{n}=\prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}
$$

Eigenvalues of $D U$

$$
\text { Let } \boldsymbol{p}(\boldsymbol{n})=\# \operatorname{Par}(n)=\operatorname{dim} V_{n} \text {. }
$$

Theorem. Let $1 \leq i \leq n+1, i \neq n$. Then i is an eigenvalue of $D_{n+1} U_{n}$ with multiplicity $p(n+1-i)-p(n-i)$. Hence

$$
\operatorname{det} D_{n+1} U_{n}=\prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}
$$

What about SNF of the matrix $\left[D_{n+1} U_{n}\right]$ (with respect to the basis $\operatorname{Par}(n))$?

Conjecture of A. R. Miller, 2005

Conjecture (first form). Let $e_{1}, \ldots, e_{p(n)}$ be the eigenvalues of $D_{n+1} U_{n}$. Then $\left[D_{n+1} U_{n}\right]$ has the same SNF as $\operatorname{diag}\left(e_{1}, \ldots, e_{p(n)}\right)$.

Conjecture of A. R. Miller, 2005

Conjecture (first form). Let $e_{1}, \ldots, e_{p(n)}$ be the eigenvalues of $D_{n+1} U_{n}$. Then $\left[D_{n+1} U_{n}\right]$ has the same SNF as diag $\left(e_{1}, \ldots, e_{p(n)}\right)$.

Conjecture (second form). The diagonal entries of the SNF of $\left[D_{n+1} U_{n}\right]$ are:

- $(n+1)(n-1)$!, with multiplicity 1
- $(n-k)$! with multiplicity

$$
p(k+1)-2 p(k)+p(k-1), 3 \leq k \leq n-2
$$

- 1 , with multiplicity $p(n)-p(n-1)+p(n-2)$.

Not a trivial result

Note. $\left\{p_{\lambda}\right\}_{\lambda \vdash n}$ is not an integral basis.

Another form

$\boldsymbol{m}_{1}(\boldsymbol{\lambda})$: number of 1 's in λ
$\mathcal{M}_{1}(\boldsymbol{n})$: multiset of all numbers $m_{1}(\lambda)+1$,
$\lambda \in \operatorname{Par}(n)$
Let SNF of $\left[D_{n+1} U_{n}\right]$ be $\operatorname{diag}\left(f_{1}, f_{2}, \ldots, f_{p(n)}\right)$.
Conjecture (third form). f_{1} is the product of the distinct entries of $\mathcal{M}_{1}(n) ; f_{2}$ is the product of the remaining distinct entries of $\mathcal{M}_{1}(n)$, etc.

An example: $n=6$

$$
\begin{gathered}
\operatorname{Par}(6)=\{6,51,42,33,411,321,222,3111, \\
2211,21111,111111\} \\
\mathcal{M}_{1}(6)=\{1,2,1,1,3,2,1,4,3,5,7\}
\end{gathered}
$$

$$
\begin{aligned}
\left(f_{1}, \ldots, f_{11}\right) & =(7 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1,3 \cdot 2 \cdot 1, \\
& 1,1,1,1,1,1,1,1,1) \\
& =(840,6,1,1,1,1,1,1,1,1,1)
\end{aligned}
$$

Yet another form

Conjecture (fourth form). The matrix $\left[D_{n+1} U_{n}+x I\right]$ has an SNF over $\mathbb{Z}[x]$.

Note that $\mathbb{Z}[x]$ is not a PID.

Resolution of conjecture

Theorem. The conjecture of Miller is true.

Resolution of conjecture

Theorem. The conjecture of Miller is true.
Proof (first step). Rather than use the basis $\left\{s_{\lambda}\right\}_{\lambda \in \operatorname{Par}(n)}$ (Schur functions) for $\Lambda_{\mathbb{Q}}^{n}$, use the basis $\left\{h_{\lambda}\right\}_{\lambda \in \operatorname{Par}(n)}$ (complete symmetric functions). Since the two bases differ by a matrix in $S L(p(n), \mathbb{Z})$, the SNF's stay the same.

Conclusion of proof

(second step) Row and column operations.

Conclusion of proof

(second step) Row and column operations.
Not very insightful.

Conclusion of proof

(second step) Row and column operations.
Not very insightful. \square

An unsolved conjecture

$m_{j}(\boldsymbol{\lambda})$: number of j 's in λ
$\mathcal{M}_{j}(\boldsymbol{n})$: multiset of all numbers $j\left(m_{j}(\lambda)+1\right)$,
$\lambda \in \operatorname{Par}(n)$
\boldsymbol{p}_{j} : power sum symmetric function $\sum x_{i}^{j}$
Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_{j}} p_{j} f$ with respect to the basis $\left\{s_{\lambda}\right\}$ be $\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{p(n)}\right)$.

An unsolved conjecture

$m_{j}(\lambda)$: number of j 's in λ
$\mathcal{M}_{j}(\boldsymbol{n})$: multiset of all numbers $j\left(m_{j}(\lambda)+1\right)$,
$\lambda \in \operatorname{Par}(n)$
\boldsymbol{p}_{j} : power sum symmetric function $\sum x_{i}^{j}$
Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_{j}} p_{j} f$ with respect to the basis $\left\{s_{\lambda}\right\}$ be $\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{p(n)}\right)$.

Conjecture. g_{1} is the product of the distinct entries of $\mathcal{M}_{j}(n) ; g_{2}$ is the product of the remaining distinct entries of $\mathcal{M}_{j}(n)$, etc.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]
$$

where s_{λ} is a Schur function and h_{i} is a complete symmetric function.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]
$$

where s_{λ} is a Schur function and h_{i} is a complete symmetric function.

We consider the specialization
$x_{1}=x_{2}=\cdots=x_{n}=1$, other $x_{i}=0$. Then

$$
h_{i} \rightarrow\binom{n+i-1}{i}
$$

Specialized Schur function

$$
s_{\lambda} \rightarrow \prod_{u \in \lambda} \frac{n+c(u)}{h(u)}
$$

$c(u)$: content of the square u

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

$$
\lambda=(5,4,4,2)
$$

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{1}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{2}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{3}

SNF result

$$
R=\mathbb{Q}[n]
$$

Let

$$
\mathrm{SNF}\left[\binom{n+\lambda_{i}-i+j-1}{\lambda_{i}-i+j}\right]=\operatorname{diag}\left(e_{1}, \ldots, e_{m}\right) .
$$

Then

$$
e_{i}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)} .
$$

Idea of proof

$$
\boldsymbol{f}_{\boldsymbol{i}}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Then $\left.f_{1} f_{2}\right] \cdots f_{i}$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Idea of proof

$$
\boldsymbol{f}_{\boldsymbol{i}}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Then $\left.f_{1} f_{2}\right] \cdots f_{i}$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu / \nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

Conclusion of proof

Let

$$
s_{\mu / \nu}=\sum_{\rho} c_{\nu \rho}^{\mu} s_{\rho}
$$

By Littlewood-Richardson rule,

$$
c_{\nu \rho}^{\mu} \neq 0 \Leftarrow \alpha \subseteq \rho
$$

Conclusion of proof

Let

$$
s_{\mu / \nu}=\sum_{\rho} c_{\nu \rho}^{\mu} s_{\rho}
$$

By Littlewood-Richardson rule,

$$
c_{\nu \rho}^{\mu} \neq 0 \Leftarrow \alpha \subseteq \rho
$$

Hence

$$
f_{i}=\operatorname{gcd}(i \times i \text { minors })=\frac{e_{i}}{e_{i-1}}
$$

The last slide

The last slide

