

Smith Normal Form and Combinatorics

Richard P. Stanley

Smith Normal Form and Combinatorics - p. 1

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.
- **NOTE.** (1) Can extend to $m \times n$.

(2) unit $\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n.$

Thus SNF is a refinement of $\det.$

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.
- Over a field, SNF is **row reduced echelon form** (with all unit entries equal to 1).

If *R* is a PID, such as \mathbb{Z} or K[x] (*K* = field), then *A* has a unique SNF up to units.

- If *R* is a PID, such as \mathbb{Z} or K[x] (*K* = field), then *A* has a unique SNF up to units.
- Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

 $R^n/(v_1, \dots, v_n) \cong (R/e_1R) \oplus \dots \oplus (R/e_nR).$ $R^n/(v_1, \dots, v_n)$: (Kastelyn) cokernel of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
- **Theorem.** $e_1e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.
- minor: determinant of a square submatrix.
- **Special case:** e_1 is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Smith Normal Form and Combinatorics – p. 7

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

What about SNF?

An example (continued)

Smith Normal Form and Combinatorics – p. 8

$L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

 $L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

Theorem. $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$, a refinement of Cayley's theorem that $\kappa(K_n) = n^{n-2}$.

 $L_0(G)$: reduced Laplacian matrix of the graph G

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

Theorem. $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$, a refinement of Cayley's theorem that $\kappa(K_n) = n^{n-2}$.

In general, SNF of $L_0(G)$ not understood.

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$\sigma\colon V\to\{0,1,2,\dots\}.$$

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$\sigma\colon V\to\{0,1,2,\dots\}.$$

toppling of a vertex v: if $\sigma(v) \ge \deg(v)$, then send a chip to each neighboring vertex.

Smith Normal Form and Combinatorics – p. 10

- Choose a vertex to be a **sink**, and ignore chips falling into the sink.
- stable configuration: no vertex can topple
- **Theorem** (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

The monoid of stable configurations

- Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
- ideal of M: subset $J\subseteq M$ satisfying $\sigma J\subseteq J$ for all $\sigma\in M$

The monoid of stable configurations

- Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
- ideal of M: subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$
- **Exercise.** The (unique) minimal ideal of a finite commutative monoid is a group.

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

Theorem. Let

$$L_0(G) \xrightarrow{\text{SNF}} \text{diag}(e_1, \dots, e_{n-1}).$$

Then

 $K(G) \cong \mathbb{Z}/e_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/e_{n-1}\mathbb{Z}.$

Some matrices connected with Young diagrams

Extended Young diagrams

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

Extended Young diagrams

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

 λ^* : λ extended by a border strip along its entire boundary

Extended Young diagrams

\lambda: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

 λ^* : λ extended by a border strip along its entire boundary

$$(3,1)^* = (4,4,2)$$

Initialization

Insert 1 into each square of λ^*/λ .

$$(3,1)^* = (4,4,2)$$

Smith Normal Form and Combinatorics - p. 16

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

 1_t

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

t		
		•

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

t		
		•

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$. Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that $\det M_t = 1$.

Determinantal algorithm

Determinantal algorithm

Easy to see: the numbers n_t are well-defined and unique.

Easy to see: the numbers n_t are well-defined and unique.

Why? Expand det M_t by the first row. The coefficient of n_t is 1 by induction.

t)

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$\lambda = (4, 4, 3)$$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

 $\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$

$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:

$$u_{\lambda}$$

$$\boldsymbol{u_{\lambda}} = \#\{\mu : \mu \subseteq \lambda\}$$

Example. $u_{(2,1)} = 5$:

There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem. $n_t = f(\lambda(t))$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over \mathbb{Z}).

Theorem.
$$n_t = f(\lambda(t))$$
.

Proofs. 1. Induction (row and column operations).

2. Nonintersecting lattice paths.

An example

Smith Normal Form and Combinatorics – p. 23

An example

Smith Normal Form and Combinatorics – p. 23

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate $\boldsymbol{x_{ij}}$ (matrix coordinates).

Many indeterminates

For each square $(i, j) \in \lambda$, associate an indeterminate x_{ij} (matrix coordinates).

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
<i>x</i> ₂₁	<i>x</i> ₂₂	

A refinement of u_{λ}

 $u_{\lambda}(x) = \sum \prod x_{ij}$ $\mu \subseteq \lambda \ (i,j) \in \lambda/\mu$

A refinement of u_{λ}

$$oldsymbol{u}_{oldsymbol{\lambda}}(oldsymbol{x}) = \sum_{\mu \subseteq \lambda} \prod_{(i,j) \in \lambda/\mu} x_{ij}$$

 λ μ λ/μ

$$\prod_{(i,j)\in\lambda/\mu} x_{ij} = cde$$

An example

abcde+bcde+bce+cde +ce+de+c+e+1	bce+ce+c +e+1	<i>c</i> +1	1
<i>de+e+1</i>	<i>e</i> +1	1	1
1	1	1	

Smith Normal Form and Combinatorics - p. 26

 $A_t = \prod x_{ij}$ $(i,j) \in \lambda(t)$

 $\mathbf{A_t} = \prod x_{ij}$ $(i,j) \in \lambda(t)$ t b d С a е fi h *g* j k l т n 0

$$egin{array}{l} egin{array}{l} egin{array}{l} A_t = \prod_{(i,j)\in\lambda(t)} x_{ij} \ f \ \end{array} \ egin{array}{l} b & c & d & e \ \hline f & g & h & i \ j & k & l & m \ \hline n & o \end{array}$$

$$A_t = bcdeghiklmo$$

Theorem. Let t = (i, j). Then M_t has SNF

 $diag(A_{ij}, A_{i-1,j-1}, ..., 1).$

Theorem. Let t = (i, j). Then M_t has SNF

diag
$$(A_{ij}, A_{i-1,j-1}, ..., 1)$$
.

Proof. 1. Explicit row and column operations putting M_t into SNF.

2. (C. Bessenrodt) Induction.

An example

a	b	С
d	е	

abcde+bcde+bce+cde +ce+de+c+e+l	bce+ce+c +e+1	c+1	1
de+e+1	<i>e</i> +1	1	1
1	1	1	

Smith Normal Form and Combinatorics - p. 29

a	b	С
d	е	

abcde+bcde+bce+cde +ce+de+c+e+1	<i>bce+ce+c</i> + <i>e</i> +1	c+1	1
<i>de+e+1</i>	<i>e</i> +1	1	1
1	1	1	

 $\mathbf{SNF} = \operatorname{diag}(abcde, e, 1)$

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, ..., 1)$. Set each $x_{ij} = q$.

 $u_{\delta_{n-1}}(x)|_{x_{ij}=q}$ counts Dyck paths of length 2n by (scaled) area, and is thus the well-known q-analogue $C_n(q)$ of the Catalan number C_n .

A q-Catalan example

 $C_3(q) = q^3 + q^2 + 2q + 1$

A q-Catalan example

 $C_3(q) = q^3 + q^2 + 2q + 1$

$$\begin{array}{c|cccc} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{array} \begin{array}{c|cccc} \text{SNF} & \text{diag}(q^6,q,1) \\ \sim & \text{diag}(q^6,q,1) \end{array}$$

Smith Normal Form and Combinatorics – p. 3

A q-Catalan example

$$C_3(q) = q^3 + q^2 + 2q + 1$$

$$\begin{array}{c|cccc} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{array} \begin{array}{c|cccc} \text{SNF} & \text{diag}(q^6,q,1) \\ \sim & \text{diag}(q^6,q,1) \end{array}$$

- *q*-Catalan determinant previously known
- SNF is new
SNF of random matrices

- Huge literature on random matrices, mostly connected with eigenvalues.
- Very little work on SNF of random matrices over a PID.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \gcd \text{ of } 1 \times 1 \text{ minors (entries) of } M$

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Theorem. $\lim_{k\to\infty} p_k(n,d) = 1/d^{n^2}\zeta(n^2)$

Work of Yinghui Wang

Sample result. $\mu_k(n)$: probability that the SNF of a random $A \in Mat_k(n)$ satisfies $e_1 = 2, e_2 = 6$.

 $\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$

Conclusion

$$\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right)$$
$$\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} (1 - 3^{(n-1)^2}) (1 - 3^{-n})^2$$
$$\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right)$$

Smith Normal Form and Combinatorics – p. 37

uses a 2014 result of C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z}/p^s\mathbb{Z}$ with specified SNF

uses a 2014 result of C. Feng, R. W. Nóbrega, F. R. Kschischang, and D. Silva, Communication over finite-chain-ring matrix channels: number of $m \times n$ matrices over $\mathbb{Z}/p^s\mathbb{Z}$ with specified SNF

Note. $\mathbb{Z}/p^s\mathbb{Z}$ is not a PID, but SNF still exists because its ideals form a finite chain.

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \dots, e_n) with $e_1 = e_2 = \dots = e_{n-1} = 1$.

$$\mathbf{Theorem.}\ \kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \dots, e_n) with $e_1 = e_2 = \dots = e_{n-1} = 1$.

Theorem.
$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

Corollary. $\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \ge 4} \zeta(j)}$

 $\approx 0.846936\cdots$

In collaboration with Tommy Wuxing Cai.

In collaboration with 蔡吴兴.

- In collaboration with 蔡吴兴.
- Par(n): set of all partitions of n
- E.g., $Par(4) = \{4, 31, 22, 211, 1111\}.$

- In collaboration with 蔡吴兴.
- Par(n): set of all partitions of n
- E.g., $Par(4) = \{4, 31, 22, 211, 1111\}.$
- V_n : real vector space with basis Par(n)

Define
$$oldsymbol{U} = oldsymbol{U}_n \colon V_n o V_{n+1}$$
 by $U(\lambda) = \sum_{\mu} \mu,$

where $\mu \in Par(n+1)$ and $\mu_i \geq \lambda_i \quad \forall i$.

Example.

U(42211) = 52211 + 43211 + 42221 + 422111

D

Dually, define $D = D_n : V_n \to V_{n-1}$ by

$$D(\lambda) = \sum_{\nu} \nu,$$

- where $\nu \in Par(n-1)$ and $\nu_i \leq \lambda_i \quad \forall i$.
- **Example.** D(42211) = 32211 + 42111 + 4221

NOTE. Identify V_n with the space $\Lambda_{\mathbb{Q}}^n$ of all homogeneous symmetric functions of degree n over \mathbb{Q} , and identify $\lambda \in V_n$ with the Schur function s_{λ} . Then

$$U(f) = p_1 f, \quad D(f) = \frac{\partial}{\partial p_1} f.$$

Basic commutation relation: DU - UD = I

- Allows computation of eigenvalues of $DU: V_n \rightarrow V_n$.
- Or note that the eigenvectors of $\frac{\partial}{\partial p_1}p_1$ are the p_{λ} 's, $\lambda \vdash n$.

Let
$$p(n) = \# \operatorname{Par}(n) = \dim V_n$$
.

Theorem. Let $1 \le i \le n+1$, $i \ne n$. Then *i* is an eigenvalue of $D_{n+1}U_n$ with multiplicity p(n+1-i) - p(n-i). Hence

$$\det D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}.$$

Let
$$p(n) = \# \operatorname{Par}(n) = \dim V_n$$
.

Theorem. Let $1 \le i \le n+1$, $i \ne n$. Then *i* is an eigenvalue of $D_{n+1}U_n$ with multiplicity p(n+1-i) - p(n-i). Hence

$$\det D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}.$$

What about SNF of the matrix $[D_{n+1}U_n]$ (with respect to the basis Par(n))?

Conjecture of A. R. Miller, 2005

Conjecture (first form). Let $e_1, \ldots, e_{p(n)}$ be the eigenvalues of $D_{n+1}U_n$. Then $[D_{n+1}U_n]$ has the same SNF as diag $(e_1, \ldots, e_{p(n)})$.

Conjecture (first form). Let $e_1, \ldots, e_{p(n)}$ be the eigenvalues of $D_{n+1}U_n$. Then $[D_{n+1}U_n]$ has the same SNF as diag $(e_1, \ldots, e_{p(n)})$.

Conjecture (second form). The diagonal entries of the SNF of $[D_{n+1}U_n]$ are:

- (n+1)(n-1)!, with multiplicity 1
- (n-k)! with multiplicity $p(k+1) 2p(k) + p(k-1), 3 \le k \le n-2$
- 1, with multiplicity p(n) p(n-1) + p(n-2).

Not a trivial result

NOTE. $\{p_{\lambda}\}_{\lambda \vdash n}$ is not an integral basis.

- $m_1(\lambda)$: number of 1's in λ
- $\mathcal{M}_1(n)$: multiset of all numbers $m_1(\lambda) + 1$, $\lambda \in \operatorname{Par}(n)$
- Let SNF of $[D_{n+1}U_n]$ be diag $(f_1, f_2, \ldots, f_{p(n)})$.
- Conjecture (third form). f_1 is the product of the distinct entries of $\mathcal{M}_1(n)$; f_2 is the product of the remaining distinct entries of $\mathcal{M}_1(n)$, etc.

$Par(6) = \{6, 51, 42, 33, 411, 321, 222, 3111, 2211, 2111, 11111\}$

$\mathcal{M}_1(6) = \{1, 2, 1, 1, 3, 2, 1, 4, 3, 5, 7\}$

Conjecture (fourth form). The matrix $[D_{n+1}U_n + xI]$ has an SNF over $\mathbb{Z}[x]$.

Note that $\mathbb{Z}[x]$ is not a PID.

Resolution of conjecture

Theorem. The conjecture of Miller is true.

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis $\{s_{\lambda}\}_{\lambda \in Par(n)}$ (Schur functions) for $\Lambda_{\mathbb{Q}}^{n}$, use the basis $\{h_{\lambda}\}_{\lambda \in Par(n)}$ (complete symmetric functions). Since the two bases differ by a matrix in $SL(p(n), \mathbb{Z})$, the SNF's stay the same.

Conclusion of proof

(second step) Row and column operations.

Conclusion of proof

- (second step) Row and column operations.
- Not very insightful.

Conclusion of proof

(second step) Row and column operations.

Not very insightful.

An unsolved conjecture

- $m_j(\lambda)$: number of j's in λ
- $\mathcal{M}_{j}(n)$: multiset of all numbers $j(m_{j}(\lambda) + 1)$, $\lambda \in \operatorname{Par}(n)$
- p_j : power sum symmetric function $\sum x_i^j$
- Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_j} p_j f$ with respect to the basis $\{s_{\lambda}\}$ be diag $(g_1, g_2, \dots, g_{p(n)})$.

An unsolved conjecture

- $m_j(\lambda)$: number of j's in λ
- $\mathcal{M}_{j}(n)$: multiset of all numbers $j(m_{j}(\lambda) + 1)$, $\lambda \in \operatorname{Par}(n)$
- p_j : power sum symmetric function $\sum x_i^j$
- Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_j} p_j f$ with respect to the basis $\{s_{\lambda}\}$ be diag $(g_1, g_2, \dots, g_{p(n)})$.
- **Conjecture**. g_1 is the product of the **distinct** entries of $\mathcal{M}_j(n)$; g_2 is the product of the remaining **distinct** entries of $\mathcal{M}_j(n)$, etc.
Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$s_{\lambda} = \det[h_{\lambda_i - i + j}],$$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

 $s_{\lambda} = \det[h_{\lambda_i - i + j}],$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

We consider the specialization $x_1 = x_2 = \cdots = x_n = 1$, other $x_i = 0$. Then

$$h_i \to \binom{n+i-1}{i}$$

Specialized Schur function

$$s_{\lambda} \to \prod_{u \in \lambda} \frac{n + c(u)}{h(u)}.$$

c(u): content of the square u

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			•

$$\lambda = (5, 4, 4, 2)$$

 D_1

 D_2

 D_3

SNF result

$$\mathbf{R} = \mathbb{Q}[n]$$

Let

SNF
$$\begin{bmatrix} \binom{n+\lambda_i-i+j-1}{\lambda_i-i+j} \end{bmatrix} = \operatorname{diag}(e_1,\ldots,e_m).$$

Then

$$e_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}.$$

Idea of proof

$$\mathbf{f_i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Then f_1f_2] · · · f_i is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Idea of proof

$$f_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Then f_1f_2] · · · f_i is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu/\nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

Conclusion of proof

Let

 $s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}.$

By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \iff \alpha \subseteq \rho.$$

Conclusion of proof

Let

$$s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}.$$

By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \iff \alpha \subseteq \rho.$$

Hence

$$f_i = \gcd(i \times i \text{ minors}) = \frac{e_i}{e_{i-1}}.$$

The last slide

The last slide

