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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.

Smith Normal Form and Combinatorics – p. 2



Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m× n.

(2) unit · det(A) = det(B) = dn1d
n−1
2 · · · dn.

Thus SNF is a refinement of det.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form
(with all unit entries equal to 1).

Smith Normal Form and Combinatorics – p. 3



Existence of SNF

If R is a PID, such as Z or K[x] (K = field), then
A has a unique SNF up to units.
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Existence of SNF

If R is a PID, such as Z or K[x] (K = field), then
A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).

Rn/(v1, . . . , vn): (Kastelyn) cokernel of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A

Theorem. e1e2 · · · ei is the gcd of all i× i minors
of A.

minor: determinant of a square submatrix.

Special case: e1 is the gcd of all entries of A.
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.

What about SNF?
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An example (continued)













3 −1 −1

−1 3 −1

−1 −1 3













→













0 0 −1

−4 4 −1

8 −4 3













→













0 0 −1

−4 4 0

8 −4 0













→







0 0 −1

0 4 0

4 −4 0






→







0 0 −1

0 4 0

4 0 0






→







4 0 0

0 4 0

0 0 1
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Laplacian matrices

L0(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. detL0(G) = κ(G), the
number of spanning trees of G.
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Laplacian matrices

L0(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. detL0(G) = κ(G), the
number of spanning trees of G.

Theorem. L0(Kn)
SNF
−→ diag(1, n, n, . . . , n), a

refinement of Cayley’s theorem that
κ(Kn) = nn−2.
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Laplacian matrices

L0(G): reduced Laplacian matrix of the graph G

Matrix-tree theorem. detL0(G) = κ(G), the
number of spanning trees of G.

Theorem. L0(Kn)
SNF
−→ diag(1, n, n, . . . , n), a

refinement of Cayley’s theorem that
κ(Kn) = nn−2.

In general, SNF of L0(G) not understood.
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Chip firing

Abelian sandpile: a finite collection σ of
indistinguishable chips distributed among the
vertices V of a (finite) connected graph.
Equivalently,

σ : V → {0, 1, 2, . . . }.

2
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Chip firing

Abelian sandpile: a finite collection σ of
indistinguishable chips distributed among the
vertices V of a (finite) connected graph.
Equivalently,

σ : V → {0, 1, 2, . . . }.

toppling of a vertex v: if σ(v) ≥ deg(v), then
send a chip to each neighboring vertex.

7

1 2

1 2

31 2 2

0 65
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The sandpile group

Choose a vertex to be a sink, and ignore chips
falling into the sink.

stable configuration: no vertex can topple

Theorem (easy). After finitely many topples a
stable configuration will be reached, which is
independent of the order of topples.
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The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed
by stabilization.

ideal of M : subset J ⊆ M satisfying σJ ⊆ J for
all σ ∈ M
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The monoid of stable configurations

Define a commutative monoid M on the stable
configurations by vertex-wise addition followed
by stabilization.

ideal of M : subset J ⊆ M satisfying σJ ⊆ J for
all σ ∈ M

Exercise. The (unique) minimal ideal of a finite
commutative monoid is a group.
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Sandpile group

sandpile group of G: the minimal ideal K(G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.

Smith Normal Form and Combinatorics – p. 13



Sandpile group

sandpile group of G: the minimal ideal K(G) of
the monoid M

Fact. K(G) is independent of the choice of sink
up to isomorphism.

Theorem. Let

L0(G)
SNF
−→ diag(e1, . . . , en−1).

Then

K(G) ∼= Z/e1Z⊕ · · · ⊕ Z/en−1Z.
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Second example

Some matrices connected with Young
diagrams
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)

λ∗: λ extended by a border strip along its entire
boundary
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Extended Young diagrams

λ: a partition (λ1, λ2, . . . ), identified with its Young
diagram

(3,1)

λ∗: λ extended by a border strip along its entire
boundary

(3,1)* = (4,4,2)
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Initialization

Insert 1 into each square of λ∗/λ.

1

1 1

1 1

1

(3,1)* = (4,4,2)
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

Smith Normal Form and Combinatorics – p. 17



Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t
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Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with
t as the upper left-hand corner.

t
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

Smith Normal Form and Combinatorics – p. 18



Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

2

2

3

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3 2

25

1 1 1

1 1

1
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Determinantal algorithm

Suppose all squares to the southeast of t have
been filled. Insert into t the number nt so that
detMt = 1.

3

5 29

2

1 1 1

1 1

1
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Uniqueness

Easy to see: the numbers nt are well-defined and
unique.
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Uniqueness

Easy to see: the numbers nt are well-defined and
unique.

Why? Expand detMt by the first row. The
coefficient of nt is 1 by induction.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

t
λ = (4,4,3)
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λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the
southeast of t.

=

(  ) = (3,2)tλ

(4,4,3)λ  
t
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uλ

uλ = #{µ : µ ⊆ λ}
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uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ
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uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ

There is a determinantal formula for uλ, due
essentially to MacMahon and later Kreweras
(not needed here).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = f(λ(t)).
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2)
in connection with a coding theory problem.

Carlitz-Roselle-Scoville (1971):
combinatorial interpretation of nt (over Z).

Theorem. nt = f(λ(t)).

Proofs. 1. Induction (row and column
operations).

2. Nonintersecting lattice paths.

Smith Normal Form and Combinatorics – p. 22



An example

37 2 1

1 1 12

1 1
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An example

37 2 1

1 1 12

1 1

φ
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Many indeterminates

For each square (i, j) ∈ λ, associate an
indeterminate xij (matrix coordinates).
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Many indeterminates

For each square (i, j) ∈ λ, associate an
indeterminate xij (matrix coordinates).

x

x x x

x

11 12 13

21 22
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A refinement of uλ

uλ(x) =
∑

µ⊆λ

∏

(i,j)∈λ/µ

xij
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A refinement of uλ

uλ(x) =
∑

µ⊆λ

∏

(i,j)∈λ/µ

xij

d e

c

λ/µ

cba

d e

λ µ

∏

(i,j)∈λ/µ

xij = cde
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An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111
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At

At =
∏

(i,j)∈λ(t)

xij
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At

At =
∏

(i,j)∈λ(t)

xij

t

o

a cb d e

f g h i

j k ml

n
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At

At =
∏

(i,j)∈λ(t)

xij

t

o

a c d e

f g h i

j k ml

b

n

At = bcdeghiklmo
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The main theorem

Theorem. Let t = (i, j). Then Mt has SNF

diag(Aij, Ai−1,j−1, . . . , 1).

Smith Normal Form and Combinatorics – p. 28



The main theorem

Theorem. Let t = (i, j). Then Mt has SNF

diag(Aij, Ai−1,j−1, . . . , 1).

Proof. 1. Explicit row and column operations
putting Mt into SNF.

2. (C. Bessenrodt) Induction.
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An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111
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An example

ed

a cb

abcde+bcde+bce+cde
     +ce+de+c+e+1

bce+ce+c
   +e+1 c+1

de+e+1 e+1 1 1

1

111

SNF = diag(abcde, e, 1)

Smith Normal Form and Combinatorics – p. 29



A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).
Set each xij = q.
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A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).
Set each xij = q.
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A special case

Let λ be the staircase δn = (n− 1, n− 2, . . . , 1).
Set each xij = q.

uδn−1
(x)

∣

∣

xij=q
counts Dyck paths of length 2n by

(scaled) area, and is thus the well-known
q-analogue Cn(q) of the Catalan number Cn.

Smith Normal Form and Combinatorics – p. 30



A q-Catalan example

C3(q) = q3 + q2 + 2q + 1
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣

∣

∣

∣

∣

∣

∣

SNF
∼ diag(q6, q, 1)
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A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q

C3(q) 1 + q 1

1 + q 1 1

∣

∣

∣

∣

∣

∣

∣

SNF
∼ diag(q6, q, 1)

q-Catalan determinant previously known

SNF is new
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SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M

Smith Normal Form and Combinatorics – p. 33



Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M

Theorem. limk→∞ pk(n, d) = 1/dn
2

ζ(n2)
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Work of Yinghui Wang
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Work of Yinghui Wang ( )
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Work of Yinghui Wang ( )

Sample result. µk(n): probability that the SNF
of a random A ∈ Matk(n) satisfies e1 = 2, e2 = 6.

µ(n) = lim
k→∞

µk(n).
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Conclusion

µ(n) = 2−n2



1−

n(n−1)
∑

i=(n−1)2

2−i +
n2−1
∑

i=n(n−1)+1

2−i





·
3

2
· 3−(n−1)2(1− 3(n−1)2)(1− 3−n)2

·
∏

p>3



1−

n(n−1)
∑

i=(n−1)2

p−i +
n2−1
∑

i=n(n−1)+1

p−i



 .
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A note on the proof

uses a 2014 result of C. Feng, R. W. Nóbrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m× n matrices over Z/psZ with specified SNF

Smith Normal Form and Combinatorics – p. 38



A note on the proof

uses a 2014 result of C. Feng, R. W. Nóbrega, F.
R. Kschischang, and D. Silva, Communication
over finite-chain-ring matrix channels: number of
m× n matrices over Z/psZ with specified SNF

Note. Z/psZ is not a PID, but SNF still exists
because its ideals form a finite chain.
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·

Corollary. lim
n→∞

κ(n) =
1

ζ(6)
∏

j≥4 ζ(j)

≈ 0.846936 · · · .
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Third example

In collaboration with Tommy Wuxing Cai.
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Third example

In collaboration with .
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Third example

In collaboration with .

Par(n): set of all partitions of n

E.g., Par(4) = {4, 31, 22, 211, 1111}.
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Third example

In collaboration with .

Par(n): set of all partitions of n

E.g., Par(4) = {4, 31, 22, 211, 1111}.

Vn: real vector space with basis Par(n)
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U

Define U = Un : Vn → Vn+1 by

U(λ) =
∑

µ

µ,

where µ ∈ Par(n+ 1) and µi ≥ λi ∀i.

Example.

U(42211) = 52211 + 43211 + 42221 + 422111
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D

Dually, define D = Dn : Vn → Vn−1 by

D(λ) =
∑

ν

ν,

where ν ∈ Par(n− 1) and νi ≤ λi ∀i.

Example. D(42211) = 32211 + 42111 + 4221
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Symmetric functions

NOTE. Identify Vn with the space Λn
Q

of all

homogeneous symmetric functions of degree n
over Q, and identify λ ∈ Vn with the Schur
function sλ. Then

U(f) = p1f, D(f) =
∂

∂p1
f.
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Commutation relation

Basic commutation relation: DU − UD = I

Allows computation of eigenvalues of
DU : Vn → Vn.

Or note that the eigenvectors of ∂
∂p1

p1 are the

pλ’s, λ ⊢ n.
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Eigenvalues of DU

Let p(n) = #Par(n) = dimVn.

Theorem. Let 1 ≤ i ≤ n+ 1, i 6= n. Then i is an
eigenvalue of Dn+1Un with multiplicity
p(n+ 1− i)− p(n− i). Hence

detDn+1Un =
n+1
∏

i=1

ip(n+1−i)−p(n−i).
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Eigenvalues of DU

Let p(n) = #Par(n) = dimVn.

Theorem. Let 1 ≤ i ≤ n+ 1, i 6= n. Then i is an
eigenvalue of Dn+1Un with multiplicity
p(n+ 1− i)− p(n− i). Hence

detDn+1Un =
n+1
∏

i=1

ip(n+1−i)−p(n−i).

What about SNF of the matrix [Dn+1Un] (with
respect to the basis Par(n))?
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Conjecture of A. R. Miller, 2005

Conjecture (first form). Let e1, . . . , ep(n) be the

eigenvalues of Dn+1Un. Then [Dn+1Un] has the
same SNF as diag(e1, . . . , ep(n)).
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Conjecture of A. R. Miller, 2005

Conjecture (first form). Let e1, . . . , ep(n) be the

eigenvalues of Dn+1Un. Then [Dn+1Un] has the
same SNF as diag(e1, . . . , ep(n)).

Conjecture (second form). The diagonal entries
of the SNF of [Dn+1Un] are:

(n+ 1)(n− 1)!, with multiplicity 1

(n− k)! with multiplicity
p(k + 1)− 2p(k) + p(k − 1), 3 ≤ k ≤ n− 2

1, with multiplicity p(n)− p(n− 1) + p(n− 2).
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Not a trivial result

NOTE. {pλ}λ⊢n is not an integral basis.
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Another form

m1(λ): number of 1’s in λ

M1(n): multiset of all numbers m1(λ) + 1,
λ ∈ Par(n)

Let SNF of [Dn+1Un] be diag(f1, f2, . . . , fp(n)).

Conjecture (third form). f1 is the product of the
distinct entries of M1(n); f2 is the product of the
remaining distinct entries of M1(n), etc.
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An example: n = 6

Par(6) = {6, 51, 42, 33, 411, 321, 222, 3111,

2211, 21111, 111111}

M1(6) = {1, 2, 1, 1, 3, 2, 1, 4, 3, 5, 7}

(f1, . . . , f11) = (7 · 5 · 4 · 3 · 2 · 1, 3 · 2 · 1,

1, 1, 1, 1, 1, 1, 1, 1, 1)

= (840, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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Yet another form

Conjecture (fourth form). The matrix
[Dn+1Un + xI] has an SNF over Z[x].

Note that Z[x] is not a PID.
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Resolution of conjecture

Theorem. The conjecture of Miller is true.
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Resolution of conjecture

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis
{sλ}λ∈Par(n) (Schur functions) for Λn

Q, use the

basis {hλ}λ∈Par(n) (complete symmetric

functions). Since the two bases differ by a matrix
in SL(p(n),Z), the SNF’s stay the same.
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Conclusion of proof

(second step) Row and column operations.
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Conclusion of proof

(second step) Row and column operations.

Not very insightful.
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Conclusion of proof

(second step) Row and column operations.

Not very insightful.
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An unsolved conjecture

mj(λ): number of j’s in λ

Mj(n): multiset of all numbers j(mj(λ) + 1),
λ ∈ Par(n)

pj: power sum symmetric function
∑

xji

Let SNF of the operator f 7→ j ∂
∂pj

pjf with respect

to the basis {sλ} be diag(g1, g2, . . . , gp(n)).
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An unsolved conjecture

mj(λ): number of j’s in λ

Mj(n): multiset of all numbers j(mj(λ) + 1),
λ ∈ Par(n)

pj: power sum symmetric function
∑

xji

Let SNF of the operator f 7→ j ∂
∂pj

pjf with respect

to the basis {sλ} be diag(g1, g2, . . . , gp(n)).

Conjecture.g1 is the product of the distinct
entries of Mj(n); g2 is the product of the

remaining distinct entries of Mj(n), etc.
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Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j],

where sλ is a Schur function and hi is a
complete symmetric function.
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Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j],

where sλ is a Schur function and hi is a
complete symmetric function.

We consider the specialization
x1 = x2 = · · · = xn = 1, other xi = 0. Then

hi →

(

n+ i− 1

i

)

.
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Specialized Schur function

sλ →
∏

u∈λ

n+ c(u)

h(u)
.

c(u): content of the square u

−1

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2

Smith Normal Form and Combinatorics – p. 55



Diagonal hooks D1, . . . , Dm

λ = (5,4,4,2)

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2

−1

Smith Normal Form and Combinatorics – p. 56



Diagonal hooks D1, . . . , Dm

D1

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0
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Diagonal hooks D1, . . . , Dm

D2

0 1 2 3 4

1 2

0 1−2

−3 −2

−1

−1 0

Smith Normal Form and Combinatorics – p. 56



Diagonal hooks D1, . . . , Dm

D3

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0
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SNF result

R = Q[n]

Let

SNF

[(

n+ λi − i+ j − 1

λi − i+ j

)]

= diag(e1, . . . , em).

Then

ei =
∏

u∈Dm−i+1

n+ c(u)

h(u)
.
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Idea of proof

fi =
∏

u∈Dm−i+1

n+ c(u)

h(u)

Then f1f2] · · · fi is the value of the lower-left i× i
minor. (Special argument for 0 minors.)
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Idea of proof

fi =
∏

u∈Dm−i+1

n+ c(u)

h(u)

Then f1f2] · · · fi is the value of the lower-left i× i
minor. (Special argument for 0 minors.)

Every i× i minor is a specialized skew Schur
function sµ/ν. Let sα correspond to the lower left

i× i minor.
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Conclusion of proof

Let

sµ/ν =
∑

ρ

cµνρsρ.

By Littlewood-Richardson rule,

cµνρ 6= 0 ⇐ α ⊆ ρ.
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Conclusion of proof

Let

sµ/ν =
∑

ρ

cµνρsρ.

By Littlewood-Richardson rule,

cµνρ 6= 0 ⇐ α ⊆ ρ.

Hence

fi = gcd(i× i minors) =
ei
ei−1

.
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The last slide
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The last slide
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The last slide
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