Smith Normal Form and Combinatorics

Richard P. Stanley

January 19, 2020

Smith normal form

A: $n \times n$ matrix over commutative ring **R** (with 1)

Suppose there exist $P, Q \in GL(n, R)$ such that

$$PAQ := B = \operatorname{diag}(d_1, d_1d_2, \ldots, d_1d_2 \cdots d_n),$$

where $d_i \in R$. We then call B a **Smith normal form (SNF)** of A.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Smith normal form

A: $n \times n$ matrix over commutative ring **R** (with 1)

Suppose there exist $P, Q \in GL(n, R)$ such that

$$PAQ := B = \operatorname{diag}(d_1, d_1d_2, \ldots, d_1d_2 \cdots d_n),$$

where $d_i \in R$. We then call B a **Smith normal form (SNF)** of A.

Note. (1) Can extend to $m \times n$.

(2) unit
$$\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n$$
.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus SNF is a refinement of det.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Multiply a row or column by a **unit** in *R*.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in *R*.

Over a field, SNF is **row reduced echelon form** (with all unit entries equal to 1).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence of SNF

PIR: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.

Theorem (Smith, for $R = \mathbb{Z}$). If R is a PIR then A has a unique SNF up to units.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Existence of SNF

PIR: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.

Theorem (Smith, for $R = \mathbb{Z}$). If R is a PIR then A has a unique SNF up to units.

Otherwise A "typically" does not have a SNF but may have one in special cases.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London
- 1868: Steiner Prize of Royal Academy of Sciences of Berlin

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

More

- died 9 February 1883
- April 1883: shared *Grand prix des sciences mathématiques* with Minkowski

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Not known in general for which rings R does every matrix over R have an SNF.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open: every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

 $R^n/(v_1,\ldots,v_n)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

- **R**: a PID (so gcd's exist)
- **A**: an $n \times n$ matrix over R with det $(A) \neq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

An explicit formula for SNF

R: a PID (so gcd's exist)

A: an $n \times n$ matrix over R with det $(A) \neq 0$

 $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem. $e_1 e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

minor: determinant of a square submatrix.

Special case: *e*₁ is the gcd of all entries of *A*.

Laplacian matrices

L(*G*): Laplacian matrix of the (loopless) graph *G* rows and columns indexed by vertices of *G*

$$\boldsymbol{L}(G)_{uv} = \begin{cases} -\#(\text{edges } uv), & u \neq v \\ & \deg(u), & u = v. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Laplacian matrices

L(G): Laplacian matrix of the (loopless) graph G

rows and columns indexed by vertices of G

$$\boldsymbol{L}(G)_{uv} = \begin{cases} -\#(\text{edges } uv), & u \neq v \\ & \deg(u), & u = v. \end{cases}$$

reduced Laplacian matrix $L_0(G)$: for some vertex v, remove from L(G) the row and column indexed by v

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Matrix-tree theorem

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

Matrix-tree theorem

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In general, SNF of $L_0(G)$ not understood.

Matrix-tree theorem

Matrix-tree theorem. det $L_0(G) = \kappa(G)$, the number of spanning trees of G.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In general, SNF of $L_0(G)$ not understood.

Applications to sandpile models, chip firing, etc.

An example

Reduced Laplacian matrix of *K*₄:

$$A = \left[\begin{array}{rrrr} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{array} \right]$$

An example

Reduced Laplacian matrix of *K*₄:

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem \implies det(A) = 16, the number of spanning trees of K_4 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

An example

Reduced Laplacian matrix of *K*₄:

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem \implies det(A) = 16, the number of spanning trees of K_4 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about SNF?

An example (continued)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$

det $L_0(K_n) = n^{n-2}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$

det $L_0(K_n) = n^{n-2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$, a refinement of Cayley's theorem that $\kappa(K_n) = n^{n-2}$.

Proof that $L_0(K_n) \xrightarrow{\text{SNF}} \text{diag}(1, n, n, \dots, n)$

Trick: 2×2 submatrices (up to row and column permutations):

$$\left[\begin{array}{rrr} n-1 & -1 \\ -1 & n-1 \end{array}\right], \quad \left[\begin{array}{rrr} n-1 & -1 \\ -1 & -1 \end{array}\right], \quad \left[\begin{array}{rrr} -1 & -1 \\ -1 & -1 \end{array}\right],$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with determinants n(n-2), -n, and 0. Hence $e_1e_2 = n$. Since $\prod e_i = n^{n-2}$ and $e_i|e_{i+1}$, we get the SNF diag $(1, n, n, \dots, n)$.

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

 $\sigma\colon V\to\{0,1,2,\dots\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$\sigma\colon V\to\{0,1,2,\dots\}.$$

toppling of a vertex v: if $\sigma(v) \ge \deg(v)$, then send a chip to each neighboring vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sandpile group

Choose a vertex to be a **sink**, and ignore chips falling into the sink.

stable configuration: no vertex can topple

Theorem (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ideal of *M*: subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.

ideal of *M*: subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

Exercise. The (unique) minimal ideal of a finite commutative monoid is a group.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

sandpile group of G: the minimal ideal K(G) of the monoid M

Fact. K(G) is independent of the choice of sink up to isomorphism.

Theorem. Let

$$L_0(G) \xrightarrow{\mathrm{SNF}} \mathrm{diag}(e_1, \ldots, e_{n-1}).$$

Then

$$K(G) \cong \mathbb{Z}/e_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/e_{n-1}\mathbb{Z}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Relatively little work on SNF of random matrices over a PID.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Is the question interesting?

 $Mat_k(n)$: all $n \times n$ \mathbb{Z} -matrices with entries in [-k, k] (uniform distribution, independent entries)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.

Is the question interesting?

 $Mat_k(n)$: all $n \times n$ \mathbb{Z} -matrices with entries in [-k, k] (uniform distribution, independent entries)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution, independent entries)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \ldots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Theorem.
$$\lim_{k\to\infty} p_k(n,d) = rac{1}{d^{n^2}\zeta(n^2)}$$

Specifying some *e_i*

with Yinghui Wang

Specifying some *e_i*

with Yinghui Wang (王颖慧)

Specifying some *e_i*

with Yinghui Wang (王颖慧)

Two general results.

• Let
$$\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{P}$$
, $\alpha_i | \alpha_{i+1}$.

 $\mu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_i = \alpha_i$ for $1 \le \alpha_i \le n - 1$.

$$\boldsymbol{\mu}(\boldsymbol{n}) = \lim_{k \to \infty} \mu_k(\boldsymbol{n}).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Then $\mu(n)$ exists, and $0 < \mu(n) < 1$.

Second result

• Let $\alpha_n \in \mathbb{P}$.

 $\nu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_n = \alpha_n$.

Then

$$\lim_{k\to\infty}\nu_k(n)=0.$$

Sample result

 $\mu_k(n)$: probability that the SNF of a random $A \in Mat_k(n)$ satisfies $e_1 = 2$, $e_2 = 6$.

$$\mu(n) = \lim_{k \to \infty} \mu_k(n).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conclusion

$$e_1 = 2, \quad e_2 = 6 = 2 \cdot 3$$

$$\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right)$$

$$\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} (1 - 3^{(n-1)^2}) (1 - 3^{-n})^2$$

$$\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right).$$

Cyclic cokernel

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Cyclic cokernel

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$

Theorem (T. Ekedahl, 1991)

$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Cyclic cokernel

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$

Theorem (T. Ekedahl, 1991)

$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

Corollary.

$$\lim_{n\to\infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j\geq 4} \zeta(j)}$$
$$\approx 0.846936\cdots$$

-

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

g: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$

previous slide: Prob(g = 1) = 0.846936...

g: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$

previous slide: Prob(g = 1) = 0.846936...

 $Prob(g \le 2) = 0.99462688 \cdots$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

g: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$

previous slide: Prob(g = 1) = 0.846936...

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

g: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$

previous slide: Prob(g = 1) = 0.846936...

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275 · · ·)2^{-(\ell+1)²}(1 + O(2^{- ℓ}))

g: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$

previous slide: Prob(g = 1) = 0.846936...

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275 · · ·)2^{-(\ell+1)²}(1 + O(2^{- ℓ}))

3.46275...

$$3.46275\cdots = \frac{1}{\prod_{j>1} \left(1 - \frac{1}{2^j}\right)}$$

Example of SNF computation

 $\pmb{\lambda}$: a partition $(\lambda_1,\lambda_2,\dots)$, identified with its Young diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Example of SNF computation

 $\boldsymbol{\lambda}$: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 λ^* : λ extended by a border strip along its entire boundary

Example of SNF computation

 $\boldsymbol{\lambda}$: a partition $(\lambda_1, \lambda_2, \dots)$, identified with its Young diagram

 λ^* : λ extended by a border strip along its entire boundary

$$(3,1)^* = (4,4,2)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Initialization

Insert 1 into each square of λ^*/λ .

$$(3,1)^* = (4,4,2)$$

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_t be the largest square of λ^* with t as the upper left-hand corner.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Suppose all squares to the southeast of t have been filled. Insert into t the number n_t so that det $M_t = 1$.

Easy to see: the numbers n_t are well-defined and unique.

Uniqueness

Easy to see: the numbers n_t are well-defined and unique.

Why? Expand det M_t by the first row. The coefficient of n_t is 1 by induction.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$\lambda = (4, 4, 3)$$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$\lambda = (4,4,3)$$
$$\lambda(t) = (3,2)$$

$$\mathbf{u}_{\boldsymbol{\lambda}} = \#\{\mu \ : \ \mu \subseteq \lambda\}$$

Example.
$$u_{(2,1)} = 5$$
:

 $\mathbf{u}_{\lambda} = \#\{\mu \ : \ \mu \subseteq \lambda\}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

There is a determinantal formula for u_{λ} , due essentially to **MacMahon** and later **Kreweras** (not needed here).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over ℤ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Carlitz-Scoville-Roselle theorem

- **Berlekamp** (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over ℤ).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. $n_t = u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_t \pmod{2}$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_t (over ℤ).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. $n_t = u_{\lambda(t)}$

Proofs. 1. Induction (row and column operations).

2. Nonintersecting lattice paths.

An example

An example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda/\mu|}$.

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda/\mu|}$.

 $\lambda=\mathbf{64431},\quad \mu=\mathbf{42211},\quad q^{\lambda/\mu}=q^{\mathbf{8}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

$u_{\lambda}(q)$

$$m{u}_{\lambda}(m{q}) = \sum_{\mu\subseteq\lambda} q^{|\lambda/\mu|}$$
 $m{u}_{(2,1)}(m{q}) = 1 + 2m{q} + m{q}^2 + m{q}^3:$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

$M_{\lambda}(q)$

 $M_{\lambda}(q)$: the largest square submatrix of λ with upper-left corner (1,1) and entry in square t equal to $u_{\lambda(t)}(q)$.

$$\lambda = (3,2)$$

$$N = 1 + 2q + 2q^{2} + 2q^{3} + q^{4} + q^{5}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$M_{\lambda}(q)$

 $M_t(q)$: the largest square submatrix of λ with upper-left corner (1,1) and entry in square t equal to $u_{\lambda(t)}(q)$.

$$\lambda = (3,2)$$

$$N = 1 + 2q + 2q^{2} + 2q^{3} + q^{4} + q^{5}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$\det M_t(q)$

$$M_t(q) = M_{(3,2)}(q) = \left[egin{array}{ccc} N & 1+2q+q^2+q^3 & 1+q \ 1+q+q^2 & 1+q & 1 \ 1 & 1 & 1 \end{array}
ight]$$

$\det M_t(q)$

$$M_t(q) = M_{(3,2)}(q) = \left[egin{array}{ccc} N & 1+2q+q^2+q^3 & 1+q \ 1+q+q^2 & 1+q & 1 \ 1 & 1 & 1 \end{array}
ight]$$

Known: det $M_{\lambda}(q) = q^*$ (exponent * to be explained). E.g.,

$$\det M_{3,2}(q) = q^{6}.$$

What is the SNF?

Diagonal hooks

$$\mathbf{d}_{i}(\lambda) = \lambda_{i} + \lambda_{i}' - 2i + 1$$

$$d_1 = 9, \quad d_2 = 4, \ d_3 = 1$$

Main result (with C. Bessenrodt)

Theorem. $M_t(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If $M_t(q)$ is a $(k + 1) \times (k + 1)$ matrix then $M_t(q)$ has SNF

$$diag(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Main result (with C. Bessenrodt)

Theorem. $M_t(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If $M_t(q)$ is a $(k + 1) \times (k + 1)$ matrix then $M_t(q)$ has SNF

$$diag(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k}).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Corollary. det $M_t(q) = q^{\sum id_i}$.

Main result (with C. Bessenrodt)

Theorem. $M_t(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_i = d_i(\lambda_t)$. If $M_t(q)$ is a $(k + 1) \times (k + 1)$ matrix then $M_t(q)$ has SNF

$$diag(1, q^{d_k}, q^{d_{k-1}+d_k}, \dots, q^{d_1+d_2+\dots+d_k}).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Corollary. det $M_t(q) = q^{\sum id_i}$.

Note. There is a multivariate generalization.

An example

$$\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1$$

An example

$$\lambda = 6431, \quad d_1 = 9, \quad d_2 = 4, \quad d_3 = 1$$

SNF of $M_t(q)$: $(1, q, q^5, q^{14})$

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \dots, 1)$.

A special case

Let λ be the staircase $\delta_n = (n - 1, n - 2, \dots, 1)$.

 $u_{\delta_{n-1}}(q)$ counts Dyck paths of length 2*n* by (scaled) area, and is thus the well-known *q*-analogue $C_n(q)$ of the Catalan number C_n .

A q-Catalan example

A q-Catalan example

$$\begin{vmatrix} C_4(q) & C_3(q) & 1+q \\ C_3(q) & 1+q & 1 \\ 1+q & 1 & 1 \end{vmatrix} \overset{\text{SNF}}{\sim} \operatorname{diag}(1,q,q^6)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

since $d_1(3,2,1) = 1$, $d_2(3,2,1) = 5$.

A q-Catalan example

$$egin{array}{cccc} C_4(q) & C_3(q) & 1+q \ C_3(q) & 1+q & 1 \ 1+q & 1 & 1 \end{array} igg| \stackrel{ ext{SNF}}{\sim} ext{diag}(1,q,q^6)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

since $d_1(3,2,1) = 1$, $d_2(3,2,1) = 5$.

- q-Catalan determinant previously known
- SNF is new

Ramanujan

$$\sum_{n\geq 0} C_n(q) x^n = \frac{1}{1 - \frac{x}{1 - \frac{qx}{1 - \frac{q^2x}{1 - \cdots}}}}$$

Open problem #1: a *q***-Varchenko matrix**

 $\ell(w)$: length (number of inversions) of $w = a_1 \cdots a_n \in \mathfrak{S}_n$, i.e.,

$$\ell(w) = \#\{(i,j) : i < j, w_i > w_j\}.$$

V(n): the $n! \times n!$ matrix with rows and columns indexed by $w \in \mathfrak{S}_n$, and

$$V(n)_{uv}=q^{\ell(uv^{-1})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

n = 3

$$\det \begin{bmatrix} 1 & q & q & q^2 & q^2 & q^3 \\ q & 1 & q^2 & q & q^3 & q^2 \\ q & q^2 & 1 & q^3 & q & q^2 \\ q^2 & q & q^3 & 1 & q^2 & q \\ q^2 & q^3 & q & q^2 & 1 & q \\ q^3 & q^2 & q^2 & q & q & 1 \end{bmatrix} = (1 - q^2)^6 (1 - q^6)$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ● 臣 ● の Q @

n = 3

$$\det \begin{bmatrix} 1 & q & q & q^2 & q^2 & q^3 \\ q & 1 & q^2 & q & q^3 & q^2 \\ q & q^2 & 1 & q^3 & q & q^2 \\ q^2 & q & q^3 & 1 & q^2 & q \\ q^2 & q^3 & q & q^2 & 1 & q \\ q^3 & q^2 & q^2 & q & q & 1 \end{bmatrix} = (1 - q^2)^6 (1 - q^6)$$

 $V(3) \stackrel{\text{snf}}{\to} \text{diag}(1, 1 - q^2, 1 - q^2, 1 - q^2, (1 - q^2)^2, (1 - q^2)(1 - q^6))$

$$\det \begin{bmatrix} 1 & q & q & q^2 & q^2 & q^3 \\ q & 1 & q^2 & q & q^3 & q^2 \\ q & q^2 & 1 & q^3 & q & q^2 \\ q^2 & q & q^3 & 1 & q^2 & q \\ q^2 & q^3 & q & q^2 & 1 & q \\ q^3 & q^2 & q^2 & q & q & 1 \end{bmatrix} = (1 - q^2)^6 (1 - q^6)$$

 $V(3) \stackrel{\text{snf}}{\rightarrow} \text{diag}(1, 1 - q^2, 1 - q^2, 1 - q^2, (1 - q^2)^2, (1 - q^2)(1 - q^6))$ special case of *q*-Varchenko matrix

Zagier's theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

det
$$V(n) = \prod_{j=2}^{n} \left(1 - q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!} {(n-j+1)!}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Zagier's theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

$$\det V(n) = \prod_{j=2}^{n} \left(1 - q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!} \frac{(n-j+1)!}{(n-j+1)!}$$

SNF is open. Partial result:

Theorem (Denham-Hanlon, 1997) Let

$$V(n) \stackrel{\mathrm{suff}}{\to} \mathrm{diag}(e_1, e_2, \ldots, e_{n!}).$$

The number of e_i 's exactly divisible by $(q-1)^j$ (or by $(q^2-1)^j$) is the number c(n, n-j) of $w \in \mathfrak{S}_n$ with n-j cycles (signless Stirling number of the first kind).

Open problem #2: \mathfrak{S}_n conjugacy class actions

 $\mathbb{Q}\mathfrak{S}_n$: group algebra of \mathfrak{S}_n over \mathbb{Q}

 K_{λ} : sum of all $w \in \mathfrak{S}_n$ of cycle type λ (basis for center Z_n of $\mathbb{Q}\mathfrak{S}_n$)

 K_{λ} acts on Z_n by left multiplication. What is the SNF with respect to the basis $\{K_{\mu}\}$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Open problem #2: \mathfrak{S}_n conjugacy class actions

 $\mathbb{Q}\mathfrak{S}_n$: group algebra of \mathfrak{S}_n over \mathbb{Q}

 K_{λ} : sum of all $w \in \mathfrak{S}_n$ of cycle type λ (basis for center Z_n of $\mathbb{Q}\mathfrak{S}_n$)

 K_{λ} acts on Z_n by left multiplication. What is the SNF with respect to the basis $\{K_{\mu}\}$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Looks difficult.

The case $\lambda = (n)$

Note $K_{(n)}$ is the sum of all (n-1)! *n*-cycles.

Easy. The SNF of $K_{(n)}$ has *n* nonzero diagonal elements.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The case $\lambda = (n)$

Note $K_{(n)}$ is the sum of all (n-1)! *n*-cycles.

Easy. The SNF of $K_{(n)}$ has *n* nonzero diagonal elements.

Empirical observation: the *k*th diagonal element of the SNF $(0 \le k \le n-1)$ is k! times a rational number with small numerator and denominator.

Two examples

We divide the *k*th entry by k!, $0 \le k \le n-1$.

$$n = 9: 1, 2, 1, \frac{2}{3}, 1, 2, \frac{1}{3}, 2, 1$$
$$n = 12: 1, 1, 1, \frac{1}{3}, \frac{1}{2}, 1, 2, 1, \frac{1}{2}, \frac{1}{3}, 1, 1$$

Two conjectures

Conjecture. If *n* is an odd prime then the nonzero SNF terms are k! for *k* even and $2 \cdot k!$ for *k* odd $(0 \le k \le n-1)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Two conjectures

Conjecture. If *n* is an odd prime then the nonzero SNF terms are k! for *k* even and $2 \cdot k!$ for *k* odd $(0 \le k \le n-1)$.

Conjecture. If *n* is twice an odd prime, then the nonzero SNF terms are *k*! for all $0 \le k \le n - 1$, except that (n/2)! is omitted, and $(\frac{n}{2} - 1)!$ appears twice.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The last slide

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$s_{\lambda} = \det[h_{\lambda_i - i + j}],$$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$s_{\lambda} = \det[h_{\lambda_i - i + j}],$$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

We consider the specialization $x_1 = x_2 = \cdots = x_n = 1$, other $x_i = 0$. Then

$$h_i
ightarrow inom{n+i-1}{i}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Specialized Schur function

$$s_{\lambda}
ightarrow \prod_{u \in \lambda} rac{n+c(u)}{h(u)}$$

c(u): **content** of the square *u*

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

 $\lambda = (5, 4, 4, 2)$

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			
	•			

 D_1

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

 D_2

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

 D_3

SNF result

$$\mathbf{R} = \mathbb{Q}[n]$$

Let
$$\operatorname{SNF}\left[\binom{n+\lambda_i - i + j - 1}{\lambda_i - i + j}\right] = \operatorname{diag}(e_1, \dots, e_m).$$

Then

$$e_i = \prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}.$$

Idea of proof

We will use the fact that if

$$SNF(A) = diag(e_1, e_2, \ldots, e_n),$$

then $e_1e_2\cdots e_i$ is the gcd of the $i \times i$ minors of A.

Idea of proof (cont.)

$$f_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Then $f_1 f_2 \cdots f_i$ is the value of the "lower-leftmost" nonzero $i \times i$ minor.

Idea of proof (cont.)

$$\mathbf{f_i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Then $f_1 f_2 \cdots f_i$ is the value of the "lower-leftmost" nonzero $i \times i$ minor.

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu/\nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

An example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

An example

$$\begin{vmatrix} 0 & 1 & h_1 & h_2 \end{vmatrix}$$
$$s_{331} = \begin{vmatrix} h_3 & h_4 & h_5 \\ h_2 & h_3 & h_4 \\ 0 & 1 & h_1 \end{vmatrix}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Conclusion of proof

Let

$$m{s}_{\mu/
u} = \sum_{
ho} m{c}^{\mu}_{
u
ho} m{s}_{
ho}.$$

By Littlewood-Richardson rule,

$$c^{\mu}_{
u
ho}
eq 0 \; \Rightarrow \; lpha \subseteq
ho.$$

Conclusion of proof

Let

$$extsf{s}_{\mu /
u} = \sum_{
ho} extsf{c}^{\mu}_{
u
ho} extsf{s}_{
ho}.$$

By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \Rightarrow \alpha \subseteq \rho.$$

Hence

$$f_1 \cdots f_i = \gcd(i \times i \text{ minors}) = e_1 \cdots e_i.$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙