Smith Normal Form and Combinatorics

Richard P. Stanley

January 19, 2020

Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)
Suppose there exist $P, Q \in \operatorname{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

A: $n \times n$ matrix over commutative ring R (with 1)
Suppose there exist $P, Q \in \operatorname{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots, d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.
Note. (1) Can extend to $m \times n$.
(2) unit $\cdot \operatorname{det}(A)=\operatorname{det}(B)=d_{1}^{n} d_{2}^{n-1} \cdots d_{n}$.

Thus SNF is a refinement of det.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
Theorem (Smith, for $R=\mathbb{Z}$). If R is a PIR then A has a unique SNF up to units.

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
Theorem (Smith, for $R=\mathbb{Z}$). If R is a PIR then A has a unique SNF up to units.

Otherwise A "typically" does not have a SNF but may have one in special cases.

Who is Smith?

Henry John Stephen Smith

- born 2 November 1826 in Dublin, Ireland
- educated at Oxford University (England)
- remained at Oxford throughout his career
- twice president of London Mathematical Society
- 1861: SNF paper in Phil. Trans. R. Soc. London
- 1868: Steiner Prize of Royal Academy of Sciences of Berlin

More

- died 9 February 1883
- April 1883: shared Grand prix des sciences mathématiques with Minkowski

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Open: every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

R : a PID
A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: SNF of A

Algebraic interpretation of SNF

R : a PID
A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

Algebraic interpretation of SNF

R : a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$: SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

$R^{n} /\left(v_{1}, \ldots, v_{n}\right)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

R : a PID (so gcd's exist)
A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

An explicit formula for SNF

R : a PID (so gcd's exist)
A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A. minor: determinant of a square submatrix.

Special case: e_{1} is the gcd of all entries of A.

Laplacian matrices

$L(G)$: Laplacian matrix of the (loopless) graph G rows and columns indexed by vertices of G

$$
L(G)_{u v}=\left\{\begin{aligned}
-\#(\text { edges } u v), & u \neq v \\
\operatorname{deg}(u), & u=v
\end{aligned}\right.
$$

Laplacian matrices

$L(G)$: Laplacian matrix of the (loopless) graph G
rows and columns indexed by vertices of G

$$
L(G)_{u v}=\left\{\begin{aligned}
-\#(\text { edges } u v), & u \neq v \\
\operatorname{deg}(u), & u=v
\end{aligned}\right.
$$

reduced Laplacian matrix $L_{0}(G)$: for some vertex v, remove from $L(G)$ the row and column indexed by v

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\kappa(G)$, the number of spanning trees of G.

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\kappa(G)$, the number of spanning trees of G.

In general, SNF of $L_{0}(G)$ not understood.

Matrix-tree theorem

Matrix-tree theorem. $\operatorname{det} L_{0}(G)=\kappa(G)$, the number of spanning trees of G.

In general, SNF of $L_{0}(G)$ not understood.
Applications to sandpile models, chip firing, etc.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

What about SNF?

An example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
L_{0}\left(K_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
L_{0}\left(K_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Theorem. $\mathbf{L}_{\mathbf{0}}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$, a refinement of Cayley's theorem that $\kappa\left(K_{n}\right)=n^{n-2}$.

Proof that $L_{0}\left(K_{n}\right) \xrightarrow{\text { SNF }} \operatorname{diag}(1, n, n, \ldots, n)$

Trick: 2×2 submatrices (up to row and column permutations):

$$
\left[\begin{array}{cc}
n-1 & -1 \\
-1 & n-1
\end{array}\right], \quad\left[\begin{array}{cc}
n-1 & -1 \\
-1 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right]
$$

with determinants $n(n-2),-n$, and 0 . Hence $e_{1} e_{2}=n$. Since $\prod e_{i}=n^{n-2}$ and $e_{i} \mid e_{i+1}$, we get the $\operatorname{SNF} \operatorname{diag}(1, n, n, \ldots, n)$.

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips distributed among the vertices V of a (finite) connected graph. Equivalently,

$$
\sigma: V \rightarrow\{0,1,2, \ldots\}
$$

toppling of a vertex v : if $\sigma(v) \geq \operatorname{deg}(v)$, then send a chip to each neighboring vertex.

The sandpile group

Choose a vertex to be a sink, and ignore chips falling into the sink.
stable configuration: no vertex can topple
Theorem (easy). After finitely many topples a stable configuration will be reached, which is independent of the order of topples.

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$

The monoid of stable configurations

Define a commutative monoid M on the stable configurations by vertex-wise addition followed by stabilization.
ideal of M : subset $J \subseteq M$ satisfying $\sigma J \subseteq J$ for all $\sigma \in M$
Exercise. The (unique) minimal ideal of a finite commutative monoid is a group.

Sandpile group

sandpile group of G : the minimal ideal $K(G)$ of the monoid M
Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Sandpile group

sandpile group of G : the minimal ideal $K(G)$ of the monoid M
Fact. $K(G)$ is independent of the choice of sink up to isomorphism.

Theorem. Let

$$
L_{0}(G) \xrightarrow{\mathrm{SNF}} \operatorname{diag}\left(e_{1}, \ldots, e_{n-1}\right)
$$

Then

$$
K(G) \cong \mathbb{Z} / e_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / e_{n-1} \mathbb{Z}
$$

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Relatively little work on SNF of random matrices over a PID.

Is the question interesting?

$\operatorname{Mat}_{k}(n)$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution, independent entries)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Is the question interesting?

$\operatorname{Mat}_{k}(n)$: all $n \times n \mathbb{Z}$-matrices with entries in [-k, k] (uniform distribution, independent entries)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M

Is the question interesting?

$\operatorname{Mat}_{\boldsymbol{k}}(\boldsymbol{n})$: all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution, independent entries)
$\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M
Theorem. $\lim _{k \rightarrow \infty} p_{k}(n, d)=\frac{1}{d^{n^{2}} \zeta\left(n^{2}\right)}$

Specifying some e_{i}

with Yinghui Wang

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Two general results．

－Let $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{P}, \alpha_{i} \mid \alpha_{i+1}$ ．
$\mu_{k}(n)$ ：probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{i}=\alpha_{i}$ for $1 \leq \alpha_{i} \leq n-1$ ．

$$
\mu(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n) .
$$

Then $\mu(n)$ exists，and $0<\mu(n)<1$ ．

Second result

- Let $\alpha_{n} \in \mathbb{P}$.
$\nu_{k}(n):$ probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{n}=\alpha_{n}$.

Then

$$
\lim _{k \rightarrow \infty} \nu_{k}(n)=0
$$

Sample result

$\mu_{k}(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{1}=2, e_{2}=6$.

$$
\mu(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n)
$$

Conclusion

$$
\begin{gathered}
e_{1}=2, \quad e_{2}=6=2 \cdot 3 \\
\mu(n)=2^{-n^{2}}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} 2^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} 2^{-i}\right) \\
\\
\cdot \frac{3}{2} \cdot 3^{-(n-1)^{2}}\left(1-3^{(n-1)^{2}}\right)\left(1-3^{-n}\right)^{2} \\
\\
\cdot \prod_{p>3}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} p^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} p^{-i}\right) .
\end{gathered}
$$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

Theorem (T. Ekedahl, 1991)

$$
\kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Cyclic cokernel

$\kappa(n)$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$

Theorem (T. Ekedahl, 1991)

$$
\kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Corollary.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \kappa(n) & =\frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)} \\
& \approx 0.846936 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\operatorname{Prob}(g \leq 2)=0.99462688 \cdots
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF \neq

1) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

$3.46275 \ldots$

$$
3.46275 \cdots=\frac{1}{\prod_{j \geq 1}\left(1-\frac{1}{2^{j}}\right)}
$$

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

Example of SNF computation

λ : a partition $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$, identified with its Young diagram

$(3,1)$
$\lambda^{*}: \lambda$ extended by a border strip along its entire boundary

$$
(3,1)^{*}=(4,4,2)
$$

Initialization

Insert 1 into each square of λ^{*} / λ.

$$
(3,1)^{*}=(4,4,2)
$$

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Let $t \in \lambda$. Let M_{t} be the largest square of λ^{*} with t as the upper left-hand corner.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert into t the number n_{t} so that $\operatorname{det} M_{t}=1$.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.

Uniqueness

Easy to see: the numbers n_{t} are well-defined and unique.
Why? Expand det M_{t} by the first row. The coefficient of n_{t} is 1 by induction.
$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$
\lambda=(4,4,3)
$$

$\lambda(t)$

If $t \in \lambda$, let $\lambda(t)$ consist of all squares of λ to the southeast of t.

$$
\begin{aligned}
\lambda & =(4,4,3) \\
\lambda(t) & =(3,2)
\end{aligned}
$$

$\boldsymbol{u}_{\boldsymbol{\lambda}}$

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

$\boldsymbol{u}_{\boldsymbol{\lambda}}$

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

$$
\boldsymbol{u}_{\lambda}=\#\{\mu: \mu \subseteq \lambda\}
$$

Example. $u_{(2,1)}=5$:

There is a determinantal formula for u_{λ}, due essentially to MacMahon and later Kreweras (not needed here).

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of n_{t} (over \mathbb{Z}).

Theorem. $n_{t}=u_{\lambda(t)}$

Carlitz-Scoville-Roselle theorem

- Berlekamp (1963) first asked for $n_{t}(\bmod 2)$ in connection with a coding theory problem.
- Carlitz-Roselle-Scoville (1971): combinatorial interpretation of $n_{t}($ over $\mathbb{Z})$.

Theorem. $n_{t}=u_{\lambda(t)}$
Proofs. 1. Induction (row and column operations).
2. Nonintersecting lattice paths.

An example

An example

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

A q-analogue

Weight each $\mu \subseteq \lambda$ by $q^{|\lambda / \mu|}$.

$$
\lambda=64431, \quad \mu=42211, \quad q^{\lambda / \mu}=q^{8}
$$

$u_{\lambda}(q)$

$$
\boldsymbol{u}_{\lambda}(\boldsymbol{q})=\sum_{\mu \subseteq \lambda} q^{|\lambda / \mu|}
$$

$$
u_{(2,1)}(q)=1+2 q+q^{2}+q^{3}:
$$

$M_{\lambda}(q)$

$M_{\lambda}(q)$: the largest square submatrix of λ with upper-left corner $(1,1)$ and entry in square t equal to $u_{\lambda(t)}(q)$.

t	$l+2 q+$ $q^{2}+q^{3}$	$1+q$	1
$l+q$ $+q^{2}$	$1+q$	1	1
1	1	1	

$$
\begin{gathered}
\lambda=(3,2) \\
N=1+2 q+2 q^{2}+2 q^{3}+q^{4}+q^{5}
\end{gathered}
$$

$M_{\lambda}(q)$

$M_{t}(q)$: the largest square submatrix of λ with upper-left corner $(1,1)$ and entry in square t equal to $u_{\lambda(t)}(q)$.

t	$1+2 q+$ $q^{2}+q^{3}$	$1+q$	1
$1+q$ $+q^{2}$	$1+q$	1	1
1	1	1	

$$
\begin{gathered}
\lambda=(3,2) \\
N=1+2 q+2 q^{2}+2 q^{3}+q^{4}+q^{5}
\end{gathered}
$$

$\operatorname{det} M_{t}(q)$

$$
M_{t}(q)=M_{(3,2)}(q)=\left[\begin{array}{ccc}
N & 1+2 q+q^{2}+q^{3} & 1+q \\
1+q+q^{2} & 1+q & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$\operatorname{det} M_{t}(q)$

$$
M_{t}(q)=M_{(3,2)}(q)=\left[\begin{array}{ccc}
N & 1+2 q+q^{2}+q^{3} & 1+q \\
1+q+q^{2} & 1+q & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Known: $\operatorname{det} M_{\lambda}(q)=q^{*}$ (exponent $*$ to be explained). E.g.,

$$
\operatorname{det} M_{3,2}(q)=q^{6} .
$$

What is the SNF?

Diagonal hooks

$$
\boldsymbol{d}_{i}(\lambda)=\lambda_{i}+\lambda_{i}^{\prime}-2 i+1
$$

$$
d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

Main result (with C. Bessenrodt)

Theorem. $M_{t}(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If $M_{t}(q)$ is a $(k+1) \times(k+1)$ matrix then $M_{t}(q)$ has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Main result (with C. Bessenrodt)

Theorem. $M_{t}(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If $M_{t}(q)$ is a $(k+1) \times(k+1)$ matrix then $M_{t}(q)$ has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Corollary. $\operatorname{det} M_{t}(q)=q^{\sum i d_{i}}$.

Main result (with C. Bessenrodt)

Theorem. $M_{t}(q)$ has an SNF over $\mathbb{Z}[q]$. Write $d_{i}=d_{i}\left(\lambda_{t}\right)$. If $M_{t}(q)$ is a $(k+1) \times(k+1)$ matrix then $M_{t}(q)$ has SNF

$$
\operatorname{diag}\left(1, q^{d_{k}}, q^{d_{k-1}+d_{k}}, \ldots, q^{d_{1}+d_{2}+\cdots+d_{k}}\right)
$$

Corollary. $\operatorname{det} M_{t}(q)=q^{\sum i d_{i}}$.
Note. There is a multivariate generalization.

An example

$$
\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

An example

$$
\lambda=6431, \quad d_{1}=9, \quad d_{2}=4, \quad d_{3}=1
$$

SNF of $M_{t}(q):\left(1, q, q^{5}, q^{14}\right)$

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$.

A special case

Let λ be the staircase $\delta_{n}=(n-1, n-2, \ldots, 1)$.

$u_{\delta_{n-1}}(q)$ counts Dyck paths of length $2 n$ by (scaled) area, and is thus the well-known q-analogue $C_{n}(q)$ of the Catalan number C_{n}.

A q-Catalan example

$$
C_{3}(q)=q^{3}+q^{2}+2 q+1
$$

A q-Catalan example

$$
\begin{aligned}
& \square \square \square \square \square_{3}(q)=q^{3}+q^{2}+2 q+1 \\
& \qquad\left|\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array}\right| \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(1, q, q^{6}\right) \\
& \text { since } d_{1}(3,2,1)=1, d_{2}(3,2,1)=5 .
\end{aligned}
$$

A q-Catalan example

$$
\left|\begin{array}{ccc}
C_{4}(q) & C_{3}(q) & 1+q \\
C_{3}(q) & 1+q & 1 \\
1+q & 1 & 1
\end{array}\right| \stackrel{\text { SNF }}{\sim} \operatorname{diag}\left(1, q, q^{6}\right)
$$

since $d_{1}(3,2,1)=1, d_{2}(3,2,1)=5$.

- q-Catalan determinant previously known
- SNF is new

Ramanujan

$\sum_{n \geq 0} C_{n}(q) x^{n}=$

Open problem \#1: a q-Varchenko matrix

$\ell(w)$: length (number of inversions) of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$, i.e.,

$$
\ell(w)=\#\left\{(i, j): i<j, w_{i}>w_{j}\right\} .
$$

$V(n)$: the $n!\times n!$ matrix with rows and columns indexed by $w \in \mathfrak{S}_{n}$, and

$$
V(n)_{u v}=q^{\ell\left(u v^{-1}\right)} .
$$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$V(3) \xrightarrow{\text { snf }} \operatorname{diag}\left(1,1-q^{2}, 1-q^{2}, 1-q^{2},\left(1-q^{2}\right)^{2},\left(1-q^{2}\right)\left(1-q^{6}\right)\right)$

$n=3$

$$
\operatorname{det}\left[\begin{array}{cccccc}
1 & q & q & q^{2} & q^{2} & q^{3} \\
q & 1 & q^{2} & q & q^{3} & q^{2} \\
q & q^{2} & 1 & q^{3} & q & q^{2} \\
q^{2} & q & q^{3} & 1 & q^{2} & q \\
q^{2} & q^{3} & q & q^{2} & 1 & q \\
q^{3} & q^{2} & q^{2} & q & q & 1
\end{array}\right]=\left(1-q^{2}\right)^{6}\left(1-q^{6}\right)
$$

$V(3) \xrightarrow{\text { snf }} \operatorname{diag}\left(1,1-q^{2}, 1-q^{2}, 1-q^{2},\left(1-q^{2}\right)^{2},\left(1-q^{2}\right)\left(1-q^{6}\right)\right)$
special case of \boldsymbol{q}-Varchenko matrix

Zagier's theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

$$
\operatorname{det} V(n)=\prod_{j=2}^{n}\left(1-q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!(n-j+1)!}
$$

Zagier's theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

$$
\operatorname{det} V(n)=\prod_{j=2}^{n}\left(1-q^{j(j-1)}\right)^{\binom{n}{j}(j-2)!(n-j+1)!}
$$

SNF is open. Partial result:
Theorem (Denham-Hanlon, 1997) Let

$$
V(n) \xrightarrow{\text { snf }} \operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n!}\right) .
$$

The number of e_{i} 's exactly divisible by $(q-1)^{j}\left(\right.$ or by $\left.\left(q^{2}-1\right)^{j}\right)$ is the number $c(n, n-j)$ of $w \in \mathfrak{S}_{n}$ with $n-j$ cycles (signless Stirling number of the first kind).

Open problem \#2: \mathfrak{S}_{n} conjugacy class actions

$\mathbb{Q} \mathfrak{S}_{n}$: group algebra of \mathfrak{S}_{n} over \mathbb{Q}
K_{λ} : sum of all $w \in \mathfrak{S}_{n}$ of cycle type λ (basis for center Z_{n} of $\left.\mathbb{Q} \mathfrak{S}_{n}\right)$
K_{λ} acts on Z_{n} by left multiplication. What is the SNF with respect to the basis $\left\{K_{\mu}\right\}$?

Open problem \#2: \mathfrak{S}_{n} conjugacy class actions

$\mathbb{Q} \mathfrak{S}_{n}$: group algebra of \mathfrak{S}_{n} over \mathbb{Q}
K_{λ} : sum of all $w \in \mathfrak{S}_{n}$ of cycle type λ (basis for center Z_{n} of $\left.\mathbb{Q} \mathfrak{S}_{n}\right)$
K_{λ} acts on Z_{n} by left multiplication. What is the SNF with respect to the basis $\left\{K_{\mu}\right\}$?

Looks difficult.

The case $\lambda=(n)$

Note $K_{(n)}$ is the sum of all $(n-1)$! n-cycles.
Easy. The SNF of $K_{(n)}$ has n nonzero diagonal elements.

The case $\lambda=(n)$

Note $K_{(n)}$ is the sum of all $(n-1)$! n-cycles.
Easy. The SNF of $K_{(n)}$ has n nonzero diagonal elements.
Empirical observation: the k th diagonal element of the SNF $(0 \leq k \leq n-1)$ is k ! times a rational number with small numerator and denominator.

Two examples

We divide the k th entry by $k!, 0 \leq k \leq n-1$.

$$
\begin{aligned}
& n=9: 1,2,1, \frac{2}{3}, 1,2, \frac{1}{3}, 2,1 \\
& n=12: 1,1,1, \frac{1}{3}, \frac{1}{2}, 1,2,1, \frac{1}{2}, \frac{1}{3}, 1,1
\end{aligned}
$$

Two conjectures

Conjecture. If n is an odd prime then the nonzero SNF terms are k ! for k even and $2 \cdot k$! for k odd $(0 \leq k \leq n-1)$.

Two conjectures

Conjecture. If n is an odd prime then the nonzero SNF terms are k ! for k even and $2 \cdot k$! for k odd $(0 \leq k \leq n-1)$.

Conjecture. If n is twice an odd prime, then the nonzero SNF terms are k ! for all $0 \leq k \leq n-1$, except that ($n / 2$)! is omitted, and $\left(\frac{n}{2}-1\right)$! appears twice.

The last slide

The last slide

The last slide

Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]
$$

where s_{λ} is a Schur function and $\boldsymbol{h}_{\boldsymbol{i}}$ is a complete symmetric function.

Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right],
$$

where s_{λ} is a Schur function and $\boldsymbol{h}_{\boldsymbol{i}}$ is a complete symmetric function.

We consider the specialization $x_{1}=x_{2}=\cdots=x_{n}=1$, other $x_{i}=0$. Then

$$
h_{i} \rightarrow\binom{n+i-1}{i}
$$

Specialized Schur function

$$
s_{\lambda} \rightarrow \prod_{u \in \lambda} \frac{n+c(u)}{h(u)}
$$

$c(u)$: content of the square u

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

$$
\lambda=(5,4,4,2)
$$

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{1}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{2}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{3}

SNF result

$$
R=\mathbb{Q}[n]
$$

Let

$$
\operatorname{SNF}\left[\binom{n+\lambda_{i}-i+j-1}{\lambda_{i}-i+j}\right]=\operatorname{diag}\left(e_{1}, \ldots, e_{m}\right)
$$

Then

$$
e_{i}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)} .
$$

Idea of proof

We will use the fact that if

$$
\operatorname{SNF}(A)=\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

then $e_{1} e_{2} \cdots e_{i}$ is the gcd of the $i \times i$ minors of A.

Idea of proof (cont.)

$$
f_{i}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Then $f_{1} f_{2} \cdots f_{i}$ is the value of the "lower-leftmost" nonzero $i \times i$ minor.

Idea of proof (cont.)

$$
f_{i}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Then $f_{1} f_{2} \cdots f_{i}$ is the value of the "lower-leftmost" nonzero $i \times i$ minor.

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu / \nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

An example

$S_{5442}=\left[\begin{array}{cccc}h_{5} & h_{6} & h_{7} & h_{9} \\ h_{3} & h_{4} & h_{5} & h_{6} \\ h_{2} & h_{3} & h_{4} & h_{5} \\ 0 & 1 & h_{1} & h_{2}\end{array}\right]$

An example

$$
S_{5442}=\left|\begin{array}{cccc}
h_{5} & h_{6} & h_{7} & h_{9} \\
h_{3} & h_{4} & h_{5} & h_{6} \\
h_{2} & h_{3} & h_{4} & h_{5} \\
0 & 1 & h_{1} & h_{2}
\end{array}\right|
$$

$$
s_{331}=\left|\begin{array}{ccc}
h_{3} & h_{4} & h_{5} \\
h_{2} & h_{3} & h_{4} \\
0 & 1 & h_{1}
\end{array}\right|
$$

Conclusion of proof

Let

$$
s_{\mu / \nu}=\sum_{\rho} c_{\nu \rho}^{\mu} s_{\rho}
$$

By Littlewood-Richardson rule,

$$
c_{\nu \rho}^{\mu} \neq 0 \Rightarrow \alpha \subseteq \rho .
$$

Conclusion of proof

Let

$$
s_{\mu / \nu}=\sum_{\rho} c_{\nu \rho}^{\mu} s_{\rho}
$$

By Littlewood-Richardson rule,

$$
c_{\nu \rho}^{\mu} \neq 0 \Rightarrow \alpha \subseteq \rho .
$$

Hence

$$
f_{1} \cdots f_{i}=\operatorname{gcd}(i \times i \text { minors })=e_{1} \cdots e_{i}
$$

