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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . , d1d2 · · · dn),

where di ∈ R . We then call B a Smith normal form (SNF) of A.



Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . , d1d2 · · · dn),

where di ∈ R . We then call B a Smith normal form (SNF) of A.

Note. (1) Can extend to m × n.

(2) unit · det(A) = det(B) = dn
1 d

n−1
2 · · · dn.

Thus SNF is a refinement of det.



Row and column operations

Can put a matrix into SNF by the following operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R .



Row and column operations

Can put a matrix into SNF by the following operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R .

Over a field, SNF is row reduced echelon form (with all unit
entries equal to 1).



Existence of SNF

PIR: principal ideal ring, e.g., Z, K [x ], Z/mZ.

Theorem (Smith, for R = Z). If R is a PIR then A has a unique
SNF up to units.



Existence of SNF

PIR: principal ideal ring, e.g., Z, K [x ], Z/mZ.

Theorem (Smith, for R = Z). If R is a PIR then A has a unique
SNF up to units.

Otherwise A “typically” does not have a SNF but may have one in
special cases.



Who is Smith?

Henry John Stephen Smith

born 2 November 1826 in Dublin, Ireland

educated at Oxford University (England)

remained at Oxford throughout his career

twice president of London Mathematical Society

1861: SNF paper in Phil. Trans. R. Soc. London

1868: Steiner Prize of Royal Academy of Sciences of Berlin



More

died 9 February 1883

April 1883: shared Grand prix des sciences mathématiques
with Minkowski
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have an SNF.
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generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers
(not PIR’s)



Algebraic note

Not known in general for which rings R does every matrix over R
have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely
generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers
(not PIR’s)

Open: every matrix over a Bézout domain has an SNF.
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R: a PID

A: an n × n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A
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Algebraic interpretation of SNF

R: a PID

A: an n × n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).

Rn/(v1, . . . , vn): (Kasteleyn) cokernel of A



An explicit formula for SNF

R: a PID (so gcd’s exist)

A: an n × n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A



An explicit formula for SNF

R: a PID (so gcd’s exist)

A: an n × n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A

Theorem. e1e2 · · · ei is the gcd of all i × i minors of A.

minor: determinant of a square submatrix.

Special case: e1 is the gcd of all entries of A.



Laplacian matrices

L(G): Laplacian matrix of the (loopless) graph G

rows and columns indexed by vertices of G

L(G )uv =

{

−#(edges uv), u 6= v

deg(u), u = v .



Laplacian matrices

L(G): Laplacian matrix of the (loopless) graph G

rows and columns indexed by vertices of G

L(G )uv =

{

−#(edges uv), u 6= v

deg(u), u = v .

reduced Laplacian matrix L0(G): for some vertex v , remove
from L(G ) the row and column indexed by v



Matrix-tree theorem

Matrix-tree theorem. detL0(G ) = κ(G), the number of
spanning trees of G .
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Matrix-tree theorem

Matrix-tree theorem. detL0(G ) = κ(G), the number of
spanning trees of G .

In general, SNF of L0(G ) not understood.

Applications to sandpile models, chip firing, etc.



An example

Reduced Laplacian matrix of K4:

A =





3 −1 −1
−1 3 −1
−1 −1 3
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Matrix-tree theorem =⇒ det(A) = 16, the number of spanning
trees of K4.



An example

Reduced Laplacian matrix of K4:

A =





3 −1 −1
−1 3 −1
−1 −1 3





Matrix-tree theorem =⇒ det(A) = 16, the number of spanning
trees of K4.

What about SNF?



An example (continued)









3 −1 −1
−1 3 −1
−1 −1 3









→









0 0 −1
−4 4 −1
8 −4 3









→









0 0 −1
−4 4 0
8 −4 0









→





0 0 −1
0 4 0
4 −4 0



 →





0 0 −1
0 4 0
4 0 0



 →





1 0 0
0 4 0
0 0 4







Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

det L0(Kn) = nn−2



Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

det L0(Kn) = nn−2

Theorem. L0(Kn)
SNF
−→ diag(1, n, n, . . . , n), a refinement of

Cayley’s theorem that κ(Kn) = nn−2.



Proof that L0(Kn)
SNF
−→ diag(1, n, n, . . . , n)

Trick: 2× 2 submatrices (up to row and column permutations):

[

n− 1 −1
−1 n − 1

]

,

[

n − 1 −1
−1 −1

]

,

[

−1 −1
−1 −1

]

,

with determinants n(n − 2), −n, and 0. Hence e1e2 = n. Since
∏

ei = nn−2 and ei |ei+1, we get the SNF diag(1, n, n, . . . , n).



Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips
distributed among the vertices V of a (finite) connected graph.
Equivalently,

σ : V → {0, 1, 2, . . . }.



Chip firing

Abelian sandpile: a finite collection σ of indistinguishable chips
distributed among the vertices V of a (finite) connected graph.
Equivalently,

σ : V → {0, 1, 2, . . . }.

toppling of a vertex v : if σ(v) ≥ deg(v), then send a chip to each
neighboring vertex.

7

1 2

1 2

31 2 2

0 65



The sandpile group

Choose a vertex to be a sink, and ignore chips falling into the sink.

stable configuration: no vertex can topple

Theorem (easy). After finitely many topples a stable configuration
will be reached, which is independent of the order of topples.



The monoid of stable configurations

Define a commutative monoid M on the stable configurations by
vertex-wise addition followed by stabilization.

ideal of M: subset J ⊆ M satisfying σJ ⊆ J for all σ ∈ M



The monoid of stable configurations

Define a commutative monoid M on the stable configurations by
vertex-wise addition followed by stabilization.

ideal of M: subset J ⊆ M satisfying σJ ⊆ J for all σ ∈ M

Exercise. The (unique) minimal ideal of a finite commutative
monoid is a group.



Sandpile group

sandpile group of G : the minimal ideal K(G) of the monoid M

Fact. K (G ) is independent of the choice of sink up to
isomorphism.



Sandpile group

sandpile group of G : the minimal ideal K(G) of the monoid M

Fact. K (G ) is independent of the choice of sink up to
isomorphism.

Theorem. Let

L0(G )
SNF
−→ diag(e1, . . . , en−1).

Then
K (G ) ∼= Z/e1Z⊕ · · · ⊕ Z/en−1Z.



SNF of random matrices

Huge literature on random matrices, mostly connected with
eigenvalues.



SNF of random matrices

Huge literature on random matrices, mostly connected with
eigenvalues.

Relatively little work on SNF of random matrices over a PID.



Is the question interesting?

Matk(n): all n × n Z-matrices with entries in [−k , k] (uniform
distribution, independent entries)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d .



Is the question interesting?
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Recall: e1 = gcd of 1× 1 minors (entries) of M



Is the question interesting?

Matk(n): all n × n Z-matrices with entries in [−k , k] (uniform
distribution, independent entries)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d .

Recall: e1 = gcd of 1× 1 minors (entries) of M

Theorem. limk→∞ pk(n, d) =
1

dn2ζ(n2)



Specifying some ei

with Yinghui Wang



Specifying some ei

with Yinghui Wang ( )



Specifying some ei

with Yinghui Wang ( )

Two general results.

Let α1, . . . , αn−1 ∈ P, αi |αi+1.

µk(n): probability that the SNF of a random A ∈ Matk(n)
satisfies ei = αi for 1 ≤ αi ≤ n − 1.

µ(n) = lim
k→∞

µk(n).

Then µ(n) exists, and 0 < µ(n) < 1.



Second result

Let αn ∈ P.

νk(n): probability that the SNF of a random A ∈ Matk(n)
satisfies en = αn.

Then
lim
k→∞

νk(n) = 0.



Sample result

µk(n): probability that the SNF of a random A ∈ Matk(n)
satisfies e1 = 2, e2 = 6.

µ(n) = lim
k→∞

µk(n).



Conclusion

e1 = 2, e2 = 6 = 2 · 3

µ(n) = 2−n2



1−

n(n−1)
∑

i=(n−1)2

2−i +

n2−1
∑

i=n(n−1)+1

2−i





·
3

2
· 3−(n−1)2(1− 3(n−1)2)(1− 3−n)2

·
∏

p>3



1−

n(n−1)
∑

i=(n−1)2

p−i +
n2−1
∑

i=n(n−1)+1

p−i



 .



Cyclic cokernel

κ(n): probability that an n × n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1



Cyclic cokernel

κ(n): probability that an n × n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1

Theorem (T. Ekedahl, 1991)

κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·



Cyclic cokernel

κ(n): probability that an n × n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1

Theorem (T. Ekedahl, 1991)

κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·

Corollary.
lim
n→∞

κ(n) =
1

ζ(6)
∏

j≥4 ζ(j)

≈ 0.846936 · · · .



Small number of generators

g : number of generators of cokernel (number of entries of SNF 6=
1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·
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Small number of generators

g : number of generators of cokernel (number of entries of SNF 6=
1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·

Theorem. Prob(g ≤ ℓ) =

1− (3.46275 · · ·)2−(ℓ+1)2(1 + O(2−ℓ))



3.46275 · · ·

3.46275 · · · =
1

∏

j≥1

(

1−
1

2j

)
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λ: a partition (λ1, λ2, . . . ), identified with its Young diagram

(3,1)
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Example of SNF computation

λ: a partition (λ1, λ2, . . . ), identified with its Young diagram

(3,1)

λ∗: λ extended by a border strip along its entire boundary

(3,1)* = (4,4,2)



Initialization

Insert 1 into each square of λ∗/λ.

1

1 1

1 1

1

(3,1)* = (4,4,2)



Mt

Let t ∈ λ. Let Mt be the largest square of λ∗ with t as the upper
left-hand corner.
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Let t ∈ λ. Let Mt be the largest square of λ∗ with t as the upper
left-hand corner.

t



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number nt so that detMt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number nt so that detMt = 1.
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Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number nt so that detMt = 1.

2

2

3

1 1 1

1 1

1



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number nt so that detMt = 1.

3 2

25

1 1 1

1 1

1



Determinantal algorithm

Suppose all squares to the southeast of t have been filled. Insert
into t the number nt so that detMt = 1.

3

5 29

2

1 1 1

1 1

1



Uniqueness

Easy to see: the numbers nt are well-defined and unique.



Uniqueness

Easy to see: the numbers nt are well-defined and unique.

Why? Expand detMt by the first row. The coefficient of nt is 1 by
induction.



λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the southeast of t.



λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the southeast of t.

t
λ = (4,4,3)



λ(t)

If t ∈ λ, let λ(t) consist of all squares of λ to the southeast of t.

=

(  ) = (3,2)tλ

(4,4,3)λ  
t



uλ

uλ = #{µ : µ ⊆ λ}
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uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ



uλ

uλ = #{µ : µ ⊆ λ}

Example. u(2,1) = 5:

φ

There is a determinantal formula for uλ, due essentially to
MacMahon and later Kreweras (not needed here).



Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2) in connection
with a coding theory problem.

Carlitz-Roselle-Scoville (1971): combinatorial interpretation
of nt (over Z).
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Berlekamp (1963) first asked for nt (mod 2) in connection
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Carlitz-Scoville-Roselle theorem

Berlekamp (1963) first asked for nt (mod 2) in connection
with a coding theory problem.

Carlitz-Roselle-Scoville (1971): combinatorial interpretation
of nt (over Z).

Theorem. nt = uλ(t)

Proofs. 1. Induction (row and column operations).

2. Nonintersecting lattice paths.



An example

37 2 1

1 1 12

1 1



An example

37 2 1

1 1 12

1 1

φ



A q-analogue

Weight each µ ⊆ λ by q|λ/µ|.



A q-analogue

Weight each µ ⊆ λ by q|λ/µ|.

λ = 64431, µ = 42211, qλ/µ = q8



uλ(q)

uλ(q) =
∑

µ⊆λ

q|λ/µ|

u(2,1)(q) = 1 + 2q + q2 + q3 :



Mλ(q)

Mλ(q): the largest square submatrix of λ with upper-left corner
(1, 1) and entry in square t equal to uλ(t)(q).

λ = (3,2)
1+q

1+q

1+2q+

1+q
+q 2

q + q2 3

1 1 1

1

1

1
2 5N = 1 + 2q + 2q  + 2q  + q  + q43

N
t



Mλ(q)

Mt(q): the largest square submatrix of λ with upper-left corner
(1, 1) and entry in square t equal to uλ(t)(q).

λ = (3,2)
1+q

1+q

1+2q+

1+q
+q 2

q + q2 3

1 1 1

1

1

1
2 5N = 1 + 2q + 2q  + 2q  + q  + q43

N
t



detMt(q)

Mt(q) = M(3,2)(q) =





N 1 + 2q + q2 + q3 1 + q
1 + q + q2 1 + q 1

1 1 1







detMt(q)

Mt(q) = M(3,2)(q) =





N 1 + 2q + q2 + q3 1 + q
1 + q + q2 1 + q 1

1 1 1





Known: detMλ(q) = q∗ (exponent ∗ to be explained). E.g.,

detM3,2(q) = q6.

What is the SNF?



Diagonal hooks

di (λ) = λi + λ′
i − 2i + 1

d1 = 9, d2 = 4, d3 = 1



Main result (with C. Bessenrodt)

Theorem. Mt(q) has an SNF over Z[q]. Write di = di (λt). If
Mt(q) is a (k + 1)× (k + 1) matrix then Mt(q) has SNF

diag(1, qdk , qdk−1+dk , . . . , qd1+d2+···+dk ).
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Main result (with C. Bessenrodt)

Theorem. Mt(q) has an SNF over Z[q]. Write di = di (λt). If
Mt(q) is a (k + 1)× (k + 1) matrix then Mt(q) has SNF

diag(1, qdk , qdk−1+dk , . . . , qd1+d2+···+dk ).

Corollary. detMt(q) = q
∑

idi .

Note. There is a multivariate generalization.



An example
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λ = 6431, d1 = 9, d2 = 4, d3 = 1



An example

t

λ = 6431, d1 = 9, d2 = 4, d3 = 1

SNF of Mt(q) : (1, q, q5, q14)



A special case

Let λ be the staircase δn = (n − 1, n − 2, . . . , 1).



A special case

Let λ be the staircase δn = (n − 1, n − 2, . . . , 1).

uδn−1
(q) counts Dyck paths of length 2n by (scaled) area, and is

thus the well-known q-analogue Cn(q) of the Catalan number Cn.



A q-Catalan example

C3(q) = q3 + q2 + 2q + 1



A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q
C3(q) 1 + q 1
1 + q 1 1

∣

∣

∣

∣

∣

∣

SNF
∼ diag(1, q, q6)

since d1(3, 2, 1) = 1, d2(3, 2, 1) = 5.



A q-Catalan example

C3(q) = q3 + q2 + 2q + 1

∣

∣

∣

∣

∣

∣

C4(q) C3(q) 1 + q
C3(q) 1 + q 1
1 + q 1 1

∣

∣

∣

∣

∣

∣

SNF
∼ diag(1, q, q6)

since d1(3, 2, 1) = 1, d2(3, 2, 1) = 5.

q-Catalan determinant previously known

SNF is new



Ramanujan

∑

n≥0 Cn(q)x
n =

1

1−
x

1−
qx

1−
q2x

1− · · ·

.



Open problem #1: a q-Varchenko matrix

ℓ(w): length (number of inversions) of w = a1 · · · an ∈ Sn, i.e.,

ℓ(w) = #{(i , j) : i < j , wi > wj}.

V (n): the n!× n! matrix with rows and columns indexed by
w ∈ Sn, and

V (n)uv = qℓ(uv
−1).



n = 3

det

















1 q q q2 q2 q3

q 1 q2 q q3 q2

q q2 1 q3 q q2

q2 q q3 1 q2 q
q2 q3 q q2 1 q
q3 q2 q2 q q 1

















= (1− q2)6(1− q6)



n = 3

det

















1 q q q2 q2 q3

q 1 q2 q q3 q2

q q2 1 q3 q q2

q2 q q3 1 q2 q
q2 q3 q q2 1 q
q3 q2 q2 q q 1

















= (1− q2)6(1− q6)

V (3)
snf
→ diag(1, 1 − q2, 1− q2, 1− q2, (1− q2)2, (1− q2)(1− q6))



n = 3

det

















1 q q q2 q2 q3

q 1 q2 q q3 q2

q q2 1 q3 q q2

q2 q q3 1 q2 q
q2 q3 q q2 1 q
q3 q2 q2 q q 1

















= (1− q2)6(1− q6)

V (3)
snf
→ diag(1, 1 − q2, 1− q2, 1− q2, (1− q2)2, (1− q2)(1− q6))

special case of q-Varchenko matrix



Zagier’s theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

detV (n) =

n
∏

j=2

(

1− qj(j−1)
)(nj)(j−2)! (n−j+1)!



Zagier’s theorem

Theorem (D. Zagier, 1992; generalized by A. Varchenko, 1993)

detV (n) =

n
∏

j=2

(

1− qj(j−1)
)(nj)(j−2)! (n−j+1)!

SNF is open. Partial result:

Theorem (Denham-Hanlon, 1997) Let

V (n)
snf
→ diag(e1, e2, . . . , en!).

The number of ei ’s exactly divisible by (q − 1)j (or by (q2 − 1)j ) is
the number c(n, n − j) of w ∈ Sn with n − j cycles (signless
Stirling number of the first kind).



Open problem #2: Sn conjugacy class actions

QSn: group algebra of Sn over Q

Kλ: sum of all w ∈ Sn of cycle type λ (basis for center Zn of
QSn)

Kλ acts on Zn by left multiplication. What is the SNF with respect
to the basis {Kµ}?



Open problem #2: Sn conjugacy class actions

QSn: group algebra of Sn over Q

Kλ: sum of all w ∈ Sn of cycle type λ (basis for center Zn of
QSn)

Kλ acts on Zn by left multiplication. What is the SNF with respect
to the basis {Kµ}?

Looks difficult.



The case λ = (n)

Note K(n) is the sum of all (n − 1)! n-cycles.

Easy. The SNF of K(n) has n nonzero diagonal elements.



The case λ = (n)

Note K(n) is the sum of all (n − 1)! n-cycles.

Easy. The SNF of K(n) has n nonzero diagonal elements.

Empirical observation: the kth diagonal element of the SNF
(0 ≤ k ≤ n − 1) is k! times a rational number with small
numerator and denominator.



Two examples

We divide the kth entry by k!, 0 ≤ k ≤ n− 1.

n = 9 : 1, 2, 1, 2
3 , 1, 2, 1

3 , 2, 1

n = 12 : 1, 1, 1, 1
3 ,

1
2 , 1, 2, 1, 1

2 ,
1
3 , 1, 1



Two conjectures

Conjecture. If n is an odd prime then the nonzero SNF terms are
k! for k even and 2 · k! for k odd (0 ≤ k ≤ n − 1).



Two conjectures

Conjecture. If n is an odd prime then the nonzero SNF terms are
k! for k even and 2 · k! for k odd (0 ≤ k ≤ n − 1).

Conjecture. If n is twice an odd prime, then the nonzero SNF
terms are k! for all 0 ≤ k ≤ n− 1, except that (n/2)! is omitted,
and

(

n
2 − 1

)

! appears twice.



The last slide



The last slide
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Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j ],

where sλ is a Schur function and hi is a complete symmetric
function.



Encore: Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j ],

where sλ is a Schur function and hi is a complete symmetric
function.

We consider the specialization x1 = x2 = · · · = xn = 1, other
xi = 0. Then

hi →

(

n + i − 1

i

)

.



Specialized Schur function

sλ →
∏

u∈λ

n+ c(u)

h(u)
.

c(u): content of the square u

−1

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2



Diagonal hooks D1, . . . ,Dm

λ = (5,4,4,2)

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2

−1



Diagonal hooks D1, . . . ,Dm

D1

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0



Diagonal hooks D1, . . . ,Dm

D2

0 1 2 3 4

1 2

0 1−2

−3 −2

−1

−1 0



Diagonal hooks D1, . . . ,Dm

D3

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0



SNF result

R = Q[n]

Let

SNF

[(

n + λi − i + j − 1

λi − i + j

)]

= diag(e1, . . . , em).

Then

ei =
∏

u∈Dm−i+1

n + c(u)

h(u)
.



Idea of proof

We will use the fact that if

SNF(A) = diag(e1, e2, . . . , en),

then e1e2 · · · ei is the gcd of the i × i minors of A.



Idea of proof (cont.)

fi =
∏

u∈Dm−i+1

n + c(u)

h(u)

Then f1f2 · · · fi is the value of the “lower-leftmost” nonzero i × i
minor.



Idea of proof (cont.)

fi =
∏

u∈Dm−i+1

n + c(u)

h(u)

Then f1f2 · · · fi is the value of the “lower-leftmost” nonzero i × i
minor.

Every i × i minor is a specialized skew Schur function sµ/ν . Let sα
correspond to the lower left i × i minor.



An example

s5442 =









h5 h6 h7 h9
h3 h4 h5 h6
h2 h3 h4 h5
0 1 h1 h2











An example

s5442 =

∣

∣

∣

∣

∣

∣

∣

∣

h5 h6 h7 h9
h3 h4 h5 h6
h2 h3 h4 h5
0 1 h1 h2

∣

∣

∣

∣

∣

∣

∣

∣

s331 =

∣

∣

∣

∣

∣

∣

h3 h4 h5
h2 h3 h4
0 1 h1

∣

∣

∣

∣

∣

∣



Conclusion of proof

Let
sµ/ν =

∑

ρ

cµνρsρ.

By Littlewood-Richardson rule,

cµνρ 6= 0 ⇒ α ⊆ ρ.



Conclusion of proof

Let
sµ/ν =

∑

ρ

cµνρsρ.

By Littlewood-Richardson rule,

cµνρ 6= 0 ⇒ α ⊆ ρ.

Hence
f1 · · · fi = gcd(i × i minors) = e1 · · · ei .


