$$
(2 n-1)!!
$$

April 14, 2020

Semifactorials

$$
(2 n-1)!!=1 \cdot 3 \cdot 5 \cdots(2 n-1)=\frac{(2 n)!}{2^{n} n!}
$$

called $2 n-1$ double factorial (bad?) or semifactorial

Matchings

(complete) matching on $2 n$-element set:

Matchings

(complete) matching on $2 n$-element set:

Theorem. The number of matchings on $[2 n]$ is $(2 n-1)!!$.

Matchings

(complete) matching on $2 n$-element set:

Theorem. The number of matchings on $[2 n]$ is $(2 n-1)!!$.
Proof. Pick $i \in[2 n]$ and match it in $2 n-1$ ways. Then pick some unmatched element j and match it in $(2 n-3)$ ways, etc.

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870
Problem 3 (complete binary partitions). How many ways to partition an n-set $(n>1)$ into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870
Problem 3 (complete binary partitions). How many ways to partition an n-set $(n>1)$ into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870
Problem 3 (complete binary partitions). How many ways to partition an n-set $(n>1)$ into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

leaf labelled (unordered) binary tree

Bijection with matchings

Label by $n+1$ the unlabelled vertex with two labelled children, with the least possible label of a child.

Bijection with matchings

Label by $n+2$ the unlabelled vertex with two labelled children, with the least possible label of a child.

Bijection with matchings

Continue until all nonroot vertices are labelled $1,2, \ldots, 2 n-2$.

Bijection with matchings

Continue until all nonroot vertices are labelled $1,2, \ldots, 2 n-2$.

Now match the two children of any nonleaf vertex: 5,7-2,9-3,10
$-1,4-6,8-11,12$.

Bijection with matchings

Continue until all nonroot vertices are labelled $1,2, \ldots, 2 n-2$.

Now match the two children of any nonleaf vertex: 5,7-2,9-3,10
$-1,4-6,8-11,12$.
Theorem. The number of leaf-labelled binary trees with n leaves is $(2 n-3)!!$.

Inkling of probability theory

Theorem.

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2 n} e^{-\frac{1}{2} x^{2}} d x=(2 n-1)!!
$$

the $(2 n)$ th moment of the standard normal distribution.

An $\mathfrak{S}_{2 n}$ action

\mathcal{M}_{n} : set of all matchings on [2n], so $\# \mathcal{M}_{n}=(2 n-1)!$!
$\mathfrak{S}_{2 n}$ acts of \mathcal{M}_{n} by permuting vertices. What is this action? I.e., what is the multiplicity of each irreducible character $\chi^{\lambda}, \lambda \vdash 2 n$?

The subgroup \mathfrak{S}_{2}^{n}

$\mathfrak{S}_{2}^{n}:$ subgroup of $\mathfrak{S}_{2 n}$ generated by $(1,2),(3,4), \ldots,(2 n-1,2 n)$, so $\mathfrak{S}_{2}^{n} \equiv(\mathbb{Z} / 2 \mathbb{Z})^{n}$ and $\# \mathfrak{S}_{2}^{n}=2^{n}$.

The subgroup \mathfrak{S}_{2}^{n}

\mathfrak{S}_{2}^{n} : subgroup of $\mathfrak{S}_{2 n}$ generated by $(1,2),(3,4), \ldots,(2 n-1,2 n)$, so $\mathfrak{S}_{2}^{n} \equiv(\mathbb{Z} / 2 \mathbb{Z})^{n}$ and $\# \mathfrak{S}_{2}^{n}=2^{n}$.
$N\left(\mathfrak{S}_{2}^{n}\right)$: the normalizer of \mathfrak{S}_{2}^{n}, i.e., all $w \in \mathfrak{S}_{2 n}$ such that

$$
v \in \mathfrak{S}_{2}^{n} \Rightarrow w v w^{-1} \in \mathfrak{S}_{2}^{n}
$$

The subgroup \mathfrak{S}_{2}^{n}

$\mathfrak{S}_{2}^{n}:$ subgroup of $\mathfrak{S}_{2 n}$ generated by $(1,2),(3,4), \ldots,(2 n-1,2 n)$, so $\mathfrak{S}_{2}^{n} \equiv(\mathbb{Z} / 2 \mathbb{Z})^{n}$ and $\# \mathfrak{S}_{2}^{n}=2^{n}$.
$N\left(\mathfrak{S}_{2}^{n}\right)$: the normalizer of \mathfrak{S}_{2}^{n}, i.e., all $w \in \mathfrak{S}_{2 n}$ such that

$$
v \in \mathfrak{S}_{2}^{n} \Rightarrow w v w^{-1} \in \mathfrak{S}_{2}^{n}
$$

$N\left(\mathfrak{S}_{2}^{n}\right)$ consists of all $w \in \mathfrak{S}_{2 n}$ that permute the elements in each row and permute the rows among themselves of the array ($n=5$)

1	2
3	4
5	6
7	8
9	10

Action on cosets

Aside. $N\left(\mathfrak{S}_{2}^{n}\right)$ is the wreath product $\mathfrak{S}_{n} \backslash \mathfrak{S}_{2}$.

Action on cosets

Aside. $N\left(\mathfrak{S}_{2}^{n}\right)$ is the wreath product $\mathfrak{S}_{n} 乙 \mathfrak{S}_{2}$.
$\# N\left(\mathfrak{S}_{2}^{n}\right)=2^{n} n!$, so $\left[\mathfrak{S}_{2 n}: N\left(\mathfrak{S}_{2}^{n}\right)\right]=(2 n-1)!!$.

Action on cosets

Aside. $N\left(\mathfrak{S}_{2}^{n}\right)$ is the wreath product $\mathfrak{S}_{n} \backslash \mathfrak{S}_{2}$.
$\# N\left(\mathfrak{S}_{2}^{n}\right)=2^{n} n!$, so $\left[\mathfrak{S}_{2 n}: N\left(\mathfrak{S}_{2}^{n}\right)\right]=(2 n-1)!!$.
The action on $\mathfrak{S}_{2 n}$ on the left cosets of $N\left(\mathfrak{S}_{2}^{n}\right)$ is isomorphic to the action of $\mathfrak{S}_{2 n}$ on \mathcal{M}_{n}. Thus, as $\mathfrak{S}_{2 n}$-modules,

$$
\mathcal{M}_{n} \cong \uparrow_{N\left(\mathfrak{S}_{2}^{n}\right)}^{\mathfrak{S}_{2 n}} 1
$$

Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_{m} action. By the theory of plethysm,

$$
\operatorname{ch} \mathcal{M}_{n}=\left(\operatorname{ch} 1_{\mathfrak{S}_{n}}\right)\left[\operatorname{ch} 1_{\mathfrak{S}_{2}}\right]=h_{n}\left[h_{2}\right] .
$$

Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_{m} action. By the theory of plethysm,

$$
\operatorname{ch} \mathcal{M}_{n}=\left(\operatorname{ch} 1_{\mathfrak{S}_{n}}\right)\left[\operatorname{ch} 1_{\mathfrak{S}_{2}}\right]=h_{n}\left[h_{2}\right] .
$$

By definition of plethysm,

$$
\sum_{n \geq 0} h_{n}\left[h_{2}\right]=\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}
$$

Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_{m} action. By the theory of plethysm,

$$
\operatorname{ch} \mathcal{M}_{n}=\left(\operatorname{ch} 1_{\mathfrak{S}_{n}}\right)\left[\operatorname{ch} 1_{\mathfrak{S}_{2}}\right]=h_{n}\left[h_{2}\right]
$$

By definition of plethysm,

$$
\sum_{n \geq 0} h_{n}\left[h_{2}\right]=\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}
$$

By e.g. a variant of RSK, $\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}=\sum_{\mu} s_{2 \mu}$.

Plethysm

Let ch denote the Frobenius characteristic symmetric function of an \mathfrak{S}_{m} action. By the theory of plethysm,

$$
\operatorname{ch} \mathcal{M}_{n}=\left(\operatorname{ch} 1_{\mathfrak{S}_{n}}\right)\left[\operatorname{ch} 1_{\mathfrak{S}_{2}}\right]=h_{n}\left[h_{2}\right]
$$

By definition of plethysm,

$$
\sum_{n \geq 0} h_{n}\left[h_{2}\right]=\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}
$$

By e.g. a variant of RSK, $\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}=\sum_{\mu} s_{2 \mu}$.
Theorem. Let $\lambda \vdash 2 n$. The multiplicity of χ^{λ} in the action of $\mathfrak{S}_{2 n}$ on \mathcal{M}_{n} is 1 if $\lambda=2 \mu$, and 0 otherwise.

Zonal polynomials

$$
\boldsymbol{H}_{\boldsymbol{n}}=N\left(\mathfrak{S}_{2}^{n}\right) \text { (hyperoctahedral group) }
$$

Because \mathcal{M}_{n} is multiplicity-free as an $\mathfrak{S}_{2 n}$-module, the pair $\left(\mathfrak{S}_{2 n}, H_{n}\right)$ is a Gelfand pair.

Zonal polynomials

$\boldsymbol{H}_{\boldsymbol{n}}=N\left(\mathfrak{S}_{2}^{n}\right)$ (hyperoctahedral group)

Because \mathcal{M}_{n} is multiplicity-free as an $\mathfrak{S}_{2 n}$-module, the pair $\left(\mathfrak{S}_{2 n}, H_{n}\right)$ is a Gelfand pair.

Let $\lambda \vdash n$ and $\chi^{2 \lambda}$ be the irreducible character of $\mathfrak{S}_{2 n}$ indexed by 2λ. Let $s \in \mathfrak{S}_{2 n}$ of cycle type $\rho \vdash 2 n$.

$$
\omega_{\rho}^{\lambda}=\frac{1}{2^{n} n!} \sum_{w \in H} \chi^{2 \lambda}(s w)
$$

Zonal polynomials

$\boldsymbol{H}_{\boldsymbol{n}}=N\left(\mathfrak{S}_{2}^{n}\right)$ (hyperoctahedral group)

Because \mathcal{M}_{n} is multiplicity-free as an $\mathfrak{S}_{2 n}$-module, the pair $\left(\mathfrak{S}_{2 n}, H_{n}\right)$ is a Gelfand pair.

Let $\lambda \vdash n$ and $\chi^{2 \lambda}$ be the irreducible character of $\mathfrak{S}_{2 n}$ indexed by 2λ. Let $s \in \mathfrak{S}_{2 n}$ of cycle type $\rho \vdash 2 n$.

$$
\omega_{\rho}^{\lambda}=\frac{1}{2^{n} n!} \sum_{w \in H} \chi^{2 \lambda}(s w)
$$

Define the zonal polynomial

$$
Z_{\lambda}=2^{n} n!\sum_{\rho \vdash n} z_{2 \rho}^{-1} \omega_{\rho}^{\lambda} p_{\rho}
$$

a homogeneous symmetric function of degree n.

Some properties of zonal polynomials

- $\left\{Z_{\lambda}\right\}_{\lambda \vdash n}$ is a \mathbb{Q}-basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).

Some properties of zonal polynomials

- $\left\{Z_{\lambda}\right\}_{\lambda \vdash n}$ is a \mathbb{Q}-basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).
- $\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle=\prod_{u \in 2 \lambda} h(u)$

Some properties of zonal polynomials

- $\left\{Z_{\lambda}\right\}_{\lambda \vdash n}$ is a \mathbb{Q}-basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).
- $\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle=\prod_{u \in 2 \lambda} h(u)$
- $\sum_{\lambda}\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y)=\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1 / 2}$

Some properties of zonal polynomials

- $\left\{Z_{\lambda}\right\}_{\lambda \vdash n}$ is a \mathbb{Q}-basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).
- $\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle=\prod_{u \in 2 \lambda} h(u)$
- $\sum_{\lambda}\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y)=\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1 / 2}$
- The coefficient of x^{λ} in Z_{λ} is

$$
\prod_{u \in \lambda}(2 a(u)+I(u)+1) .
$$

Some properties of zonal polynomials

- $\left\{Z_{\lambda}\right\}_{\lambda \vdash n}$ is a \mathbb{Q}-basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over $\left.\mathbb{Q}\right)$.
- $\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle=\prod_{u \in 2 \lambda} h(u)$
- $\sum_{\lambda}\left\langle Z_{\lambda}, Z_{\lambda}\right\rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y)=\prod_{i, j}\left(1-x_{i} y_{j}\right)^{-1 / 2}$
- The coefficient of x^{λ} in Z_{λ} is

$$
\prod_{u \in \lambda}(2 a(u)+I(u)+1) .
$$

- $Z_{\lambda}=J_{\lambda}^{(2)}$, where $J_{\lambda}^{\alpha}(\alpha \in \mathbb{R})$ is a Jack symmetric function (a limiting case of Macdonald polynomials)

The Brauer algebra

$(2 n-1)!!$ is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_{n}.

The Brauer algebra

$(2 n-1)!!$ is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_{n}.

Let $\operatorname{dim}_{\mathbb{C}} V=k$. The general linear group GL(V) acts diagonally on $V^{\otimes n}$. The linear transformations $V^{\otimes n} \rightarrow V^{\otimes n}$ commuting with this action are generated by the n ! permutations of tensor coordinates. For $k \geq n$ these linear transformations form the algebra $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ (the group algebra of \mathfrak{S}_{n}).

The Brauer algebra

$(2 n-1)!!$ is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_{n}.

Let $\operatorname{dim}_{\mathbb{C}} V=k$. The general linear group GL(V) acts diagonally on $V^{\otimes n}$. The linear transformations $V^{\otimes n} \rightarrow V^{\otimes n}$ commuting with this action are generated by the n ! permutations of tensor coordinates. For $k \geq n$ these linear transformations form the algebra $\mathbb{C}\left[\mathfrak{S}_{n}\right]$ (the group algebra of \mathfrak{S}_{n}).

Let $\operatorname{dim}_{\mathbb{C}} V=k$. The orthogonal group $O(V)$ (i.e., $A\left(A^{*}\right)^{t}=I$) acts diagonally on $V^{\otimes n}$. For $k \geq n$, the linear transformations $V^{\otimes n} \rightarrow V^{\otimes n}$ commuting with this action form an algebra \mathfrak{B}_{n} of dimension $(2 n-1)!$! (the Brauer algebra).

Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_{n} as a basis for an algebra $\mathfrak{B}_{n}(z)$, where $\mathfrak{B}_{n}(1)=\mathfrak{B}_{n}$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}), \mathfrak{B}_{n}(z)$ is semisimple.

Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_{n} as a basis for an algebra $\mathfrak{B}_{n}(z)$, where $\mathfrak{B}_{n}(1)=\mathfrak{B}_{n}$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}), \mathfrak{B}_{n}(z)$ is semisimple.

Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_{n} as a basis for an algebra $\mathfrak{B}_{n}(z)$, where $\mathfrak{B}_{n}(1)=\mathfrak{B}_{n}$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}), \mathfrak{B}_{n}(z)$ is semisimple.

Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_{n} as a basis for an algebra $\mathfrak{B}_{n}(z)$, where $\mathfrak{B}_{n}(1)=\mathfrak{B}_{n}$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}), \mathfrak{B}_{n}(z)$ is semisimple.

Brauer algebra multiplication

Let z be a parameter. Take \mathcal{M}_{n} as a basis for an algebra $\mathfrak{B}_{n}(z)$, where $\mathfrak{B}_{n}(1)=\mathfrak{B}_{n}$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}), \mathfrak{B}_{n}(z)$ is semisimple.

Oscillating tableaux

An oscillating tableau T of shape λ and length n is a sequence

$$
\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{m}=\lambda
$$

of partitions (identified with their Young diagrams) such that λ^{i} is obtained from λ^{i-1} by adding a box or removing a box.

Oscillating tableaux

An oscillating tableau T of shape λ and length n is a sequence

$$
\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{m}=\lambda
$$

of partitions (identified with their Young diagrams) such that λ^{i} is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.

Oscillating tableaux

An oscillating tableau T of shape λ and length n is a sequence

$$
\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{m}=\lambda
$$

of partitions (identified with their Young diagrams) such that λ^{i} is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.

Example. Shape $\lambda=(2,1)$, length $n=7$:

Oscillating tableaux

An oscillating tableau T of shape λ and length n is a sequence

$$
\emptyset=\lambda^{0}, \lambda^{1}, \ldots, \lambda^{m}=\lambda
$$

of partitions (identified with their Young diagrams) such that λ^{i} is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young tableau.

Example. Shape $\lambda=(2,1)$, length $n=7$:

$\boldsymbol{o}^{\lambda, n}$: number of oscillating tableau of shape λ and length n

Dimension of $\mathfrak{B}_{\boldsymbol{n}}$ irreps

Theorem. Fix $n \geq 1$. Irreps of $\mathfrak{B}_{n}(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \leq n, n \equiv m(\bmod 2)$. The dimension of the irrep indexed by such λ is $o^{\lambda, n}$.

Corollary. $\sum_{\lambda}\left(o^{\lambda, n}\right)^{2}=(2 n-1)!$!
Equivalently, number of oscillating tableaux of shape \emptyset and length $2 n$ is $(2 n-1)!$!.

Dimension of $\mathfrak{B}_{\boldsymbol{n}}$ irreps

Theorem. Fix $n \geq 1$. Irreps of $\mathfrak{B}_{n}(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \leq n, n \equiv m(\bmod 2)$. The dimension of the irrep indexed by such λ is $o^{\lambda, n}$.

Corollary. $\sum_{\lambda}\left(o^{\lambda, n}\right)^{2}=(2 n-1)!$!
Equivalently, number of oscillating tableaux of shape \emptyset and length $2 n$ is $(2 n-1)!$!.

First combinatorial proof (bijection with \mathcal{M}_{n}) by RS and S . Sundaram.

Sundaram's bijection

Sundaram's bijection

Crossings and nestings

crossing:

nesting:

k-crossings and k-nestings

$$
\begin{aligned}
M & =\operatorname{matching} \\
\operatorname{cr}(M) & =\max \{k: \exists k \text {-crossing }\} \\
\operatorname{ne}(M) & =\max \{k: \exists k \text {-nesting }\} .
\end{aligned}
$$

Some consequences

Theorem（Bill Yongchuan Chen（陈永川），Eva Yuping Deng （邓玉平），Rosena Ruoxia Du（杜若霞），Catherine Huafei Yan （颜华菲），RS）Let $M \mapsto\left(\emptyset=T_{0}, T_{1}, \ldots, T_{2 n}=\emptyset\right)$ in the bijection from matchings to oscillating tableau of shape \emptyset ．Then $\operatorname{cr}(M)$ is equal to the most number of rows of any T_{i} ，and ne (M) is equal to the most number of columns of any T_{i} ．

Some consequences

Theorem（Bill Yongchuan Chen（陈永川），Eva Yuping Deng （邓玉平），Rosena Ruoxia Du（杜若霞），Catherine Huafei Yan （颜华菲），RS）Let $M \mapsto\left(\emptyset=T_{0}, T_{1}, \ldots, T_{2 n}=\emptyset\right)$ in the bijection from matchings to oscillating tableau of shape \emptyset ．Then $\operatorname{cr}(M)$ is equal to the most number of rows of any T_{i} ，and ne (M) is equal to the most number of columns of any T_{i} ．

Corollary．Let $f_{n}(i, j)=\#$ matchings M on $[2 n]$ with $\operatorname{cr}(M)=i$ and $\operatorname{ne}(M)=j$ ．Then $f_{n}(i, j)=f_{n}(j, i)$ ．

Corollary．\＃matchings M on［2n］with $\operatorname{cr}(M)=k$ equals \＃ matchings M on $[2 n]$ with $\operatorname{ne}(M)=k$ ．

An enumerative consequence

Theorem (Grabiner-Magyar, essentially) Let $\boldsymbol{f}_{\boldsymbol{k}}(\boldsymbol{n})$ be the number of matchings $M \in \mathcal{M}_{n}$ satisfying $\operatorname{cr}(M) \leq k$. Define

$$
F_{k}(x)=\sum_{n} f_{k}(n) \frac{x^{2 n}}{(2 n)!}
$$

Then

$$
F_{k}(x)=\operatorname{det}\left[I_{|i-j|}(2 x)-I_{i+j}(2 x)\right]_{i, j=1}^{k}
$$

where

$$
I_{m}(2 x)=\sum_{j \geq 0} \frac{x^{m+2 j}}{j!(m+j)!}
$$

(hyperbolic Bessel function of the first kind of order m).

A probabilistic consequence

Note. $\operatorname{cr}(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_{n}$, and $\operatorname{ne}(M)$ is the analogue of the length of the longest decreasing subsequence.

A probabilistic consequence

Note. $\operatorname{cr}(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_{n}$, and $\operatorname{ne}(M)$ is the analogue of the length of the longest decreasing subsequence.

Painléve II equation:

$$
u^{\prime \prime}(x)=2 u(x)^{3}+x u(x)
$$

Tracy-Widom distribution:

$$
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
$$

A probabilistic consequence

Note. $\operatorname{cr}(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_{n}$, and ne (M) is the analogue of the length of the longest decreasing subsequence.

Painléve II equation:

$$
u^{\prime \prime}(x)=2 u(x)^{3}+x u(x)
$$

Tracy-Widom distribution:

$$
F(t)=\exp \left(-\int_{t}^{\infty}(x-t) u(x)^{2} d x\right)
$$

Theorem.

$\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\frac{\operatorname{cr}_{n}(M)-\sqrt{2 n}}{(2 n)^{1 / 6}} \leq \frac{t}{2}\right)=F(t)^{1 / 2} \exp \left(\frac{1}{2} \int_{t}^{\infty} u(s) d s\right)$

The final slide

The final slide

Hope you enjoyed the lectures!

Thanks for listening!

