$$(2n-1)!!$$

April 14, 2020

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Semifactorials

$$(2n-1)!! = 1 \cdot 3 \cdot 5 \cdots (2n-1) = \frac{(2n)!}{2^n n!},$$

called 2n - 1 double factorial (bad?) or semifactorial

Matchings

(complete) matching on 2*n*-element set:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Matchings

(complete) matching on 2*n*-element set:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem. The number of matchings on [2n] is (2n - 1)!!.

Matchings

(complete) matching on 2*n*-element set:

Theorem. The number of matchings on [2n] is (2n - 1)!!.

Proof. Pick $i \in [2n]$ and match it in 2n - 1 ways. Then pick some unmatched element j and match it in (2n - 3) ways, etc. \Box

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870

Problem 3 (complete binary partitions). How many ways to partition an *n*-set (n > 1) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870

Problem 3 (complete binary partitions). How many ways to partition an *n*-set (n > 1) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

Schröder's third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870

Problem 3 (complete binary partitions). How many ways to partition an *n*-set (n > 1) into two nonempty blocks, then partition each nonsingleton block into two nonempty blocks, etc., until only singletons remain?

leaf labelled (unordered) binary tree

Label by n+1 the unlabelled vertex with two labelled children, with the least possible label of a child.

イロト イポト イヨト

3

Label by n + 2 the unlabelled vertex with two labelled children, with the least possible label of a child.

イロト イポト イヨト

3

Continue until all nonroot vertices are labelled $1, 2, \ldots, 2n - 2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Continue until all nonroot vertices are labelled $1, 2, \ldots, 2n-2$.

Now match the two children of any nonleaf vertex: 5,7 - 2,9 - 3,10 - 1,4 - 6,8 - 11,12.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Continue until all nonroot vertices are labelled $1, 2, \ldots, 2n - 2$.

Now match the two children of any nonleaf vertex: 5,7 - 2,9 - 3,10 - 1,4 - 6,8 - 11,12.

Theorem. The number of leaf-labelled binary trees with n leaves is (2n - 3)!!.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inkling of probability theory

Theorem.

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}x^{2n}e^{-\frac{1}{2}x^2}dx = (2n-1)!!$$

・ロト・日本・日本・日本・日本・ション

the (2n)th moment of the standard normal distribution.

An \mathfrak{S}_{2n} action

 \mathcal{M}_n : set of all matchings on [2n], so $\#\mathcal{M}_n = (2n-1)!!$

 \mathfrak{S}_{2n} acts of \mathcal{M}_n by permuting vertices. What is this action? I.e., what is the multiplicity of each irreducible character χ^{λ} , $\lambda \vdash 2n$?

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The subgroup \mathfrak{S}_2^n

 \mathfrak{S}_2^n : subgroup of \mathfrak{S}_{2n} generated by $(1, 2), (3, 4), \dots, (2n - 1, 2n)$, so $\mathfrak{S}_2^n \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#\mathfrak{S}_2^n = 2^n$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

The subgroup \mathfrak{S}_2^n

 \mathfrak{S}_2^n : subgroup of \mathfrak{S}_{2n} generated by $(1, 2), (3, 4), \dots, (2n - 1, 2n)$, so $\mathfrak{S}_2^n \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#\mathfrak{S}_2^n = 2^n$.

 $N(\mathfrak{S}_2^n)$: the normalizer of \mathfrak{S}_2^n , i.e., all $w \in \mathfrak{S}_{2n}$ such that

$$v \in \mathfrak{S}_2^n \Rightarrow wvw^{-1} \in \mathfrak{S}_2^n$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The subgroup \mathfrak{S}_2^n

 \mathfrak{S}_2^n : subgroup of \mathfrak{S}_{2n} generated by $(1, 2), (3, 4), \dots, (2n - 1, 2n)$, so $\mathfrak{S}_2^n \equiv (\mathbb{Z}/2\mathbb{Z})^n$ and $\#\mathfrak{S}_2^n = 2^n$.

 $N(\mathfrak{S}_2^n)$: the normalizer of \mathfrak{S}_2^n , i.e., all $w \in \mathfrak{S}_{2n}$ such that

$$v \in \mathfrak{S}_2^n \Rightarrow wvw^{-1} \in \mathfrak{S}_2^n$$

 $N(\mathfrak{S}_2^n)$ consists of all $w \in \mathfrak{S}_{2n}$ that permute the elements in each row and permute the rows among themselves of the array (n = 5)

1	2
3	4
5	6
7	8
9	10

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Aside. $N(\mathfrak{S}_2^n)$ is the wreath product $\mathfrak{S}_n \wr \mathfrak{S}_2$.

Action on cosets

Aside. $N(\mathfrak{S}_2^n)$ is the wreath product $\mathfrak{S}_n \wr \mathfrak{S}_2$. # $N(\mathfrak{S}_2^n) = 2^n n!$, so $[\mathfrak{S}_{2n}: N(\mathfrak{S}_2^n)] = (2n-1)!!$.

Action on cosets

Aside. $N(\mathfrak{S}_2^n)$ is the wreath product $\mathfrak{S}_n \wr \mathfrak{S}_2$.

$$\#N(\mathfrak{S}_2^n) = 2^n n!$$
, so $[\mathfrak{S}_{2n}: N(\mathfrak{S}_2^n)] = (2n-1)!!$.

The action on \mathfrak{S}_{2n} on the left cosets of $N(\mathfrak{S}_2^n)$ is isomorphic to the action of \mathfrak{S}_{2n} on \mathcal{M}_n . Thus, as \mathfrak{S}_{2n} -modules,

$$\mathcal{M}_n \cong \uparrow^{\mathfrak{S}_{2n}}_{\mathcal{N}(\mathfrak{S}_2^n)} 1.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q ()

Let **ch** denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\operatorname{ch} \mathcal{M}_n = (\operatorname{ch} 1_{\mathfrak{S}_n})[\operatorname{ch} 1_{\mathfrak{S}_2}] = h_n[h_2].$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let **ch** denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\operatorname{ch} \mathcal{M}_n = (\operatorname{ch} 1_{\mathfrak{S}_n})[\operatorname{ch} 1_{\mathfrak{S}_2}] = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n\geq 0} h_n[h_2] = \prod_{i\leq j} (1-x_i x_j)^{-1}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let **ch** denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\operatorname{ch} \mathcal{M}_n = (\operatorname{ch} 1_{\mathfrak{S}_n})[\operatorname{ch} 1_{\mathfrak{S}_2}] = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n\geq 0} h_n[h_2] = \prod_{i\leq j} (1-x_i x_j)^{-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

By e.g. a variant of RSK, $\prod_{i\leq j}(1-x_ix_j)^{-1}=\sum_{\mu}s_{2\mu}.$

Let **ch** denote the Frobenius characteristic symmetric function of an \mathfrak{S}_m action. By the theory of plethysm,

$$\operatorname{ch} \mathcal{M}_n = (\operatorname{ch} 1_{\mathfrak{S}_n})[\operatorname{ch} 1_{\mathfrak{S}_2}] = h_n[h_2].$$

By definition of plethysm,

$$\sum_{n\geq 0} h_n[h_2] = \prod_{i\leq j} (1-x_i x_j)^{-1}.$$

By e.g. a variant of RSK, $\prod_{i\leq j}(1-x_ix_j)^{-1}=\sum_\mu s_{2\mu}.$

Theorem. Let $\lambda \vdash 2n$. The multiplicity of χ^{λ} in the action of \mathfrak{S}_{2n} on \mathcal{M}_n is 1 if $\lambda = 2\mu$, and 0 otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Zonal polynomials

 $H_n = N(\mathfrak{S}_2^n)$ (hyperoctahedral group)

Because \mathcal{M}_n is **multiplicity-free** as an \mathfrak{S}_{2n} -module, the pair (\mathfrak{S}_{2n}, H_n) is a **Gelfand pair**.

Zonal polynomials

 $H_n = N(\mathfrak{S}_2^n)$ (hyperoctahedral group)

Because \mathcal{M}_n is **multiplicity-free** as an \mathfrak{S}_{2n} -module, the pair (\mathfrak{S}_{2n}, H_n) is a **Gelfand pair**.

Let $\lambda \vdash n$ and $\chi^{2\lambda}$ be the irreducible character of \mathfrak{S}_{2n} indexed by 2λ . Let $\mathbf{s} \in \mathfrak{S}_{2n}$ of cycle type $\rho \vdash 2n$.

$$\boldsymbol{\omega_{\rho}^{\lambda}} = \frac{1}{2^{n} n!} \sum_{w \in H} \chi^{2\lambda}(sw)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Zonal polynomials

 $H_n = N(\mathfrak{S}_2^n)$ (hyperoctahedral group)

Because \mathcal{M}_n is **multiplicity-free** as an \mathfrak{S}_{2n} -module, the pair $(\mathfrak{S}_{2n}, \mathcal{H}_n)$ is a **Gelfand pair**.

Let $\lambda \vdash n$ and $\chi^{2\lambda}$ be the irreducible character of \mathfrak{S}_{2n} indexed by 2λ . Let $\mathbf{s} \in \mathfrak{S}_{2n}$ of cycle type $\rho \vdash 2n$.

$$\omega_{\rho}^{\lambda} = \frac{1}{2^n n!} \sum_{w \in H} \chi^{2\lambda}(sw)$$

Define the zonal polynomial

$$\mathbf{Z}_{\boldsymbol{\lambda}} = 2^{n} n! \sum_{\rho \vdash n} z_{2\rho}^{-1} \omega_{\rho}^{\lambda} p_{\rho},$$

(日) (日) (日) (日) (日) (日) (日) (日)

a homogeneous symmetric function of degree n.

• $\{Z_{\lambda}\}_{\lambda \vdash n}$ is a \mathbb{Q} -basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).

{Z_λ}_{λ⊢n} is a Q-basis for Λ_Q (symmetric functions over Q).
⟨Z_λ, Z_λ⟩ = ∏_{u∈2λ} h(u)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\{Z_{\lambda}\}_{\lambda \vdash n}$ is a \mathbb{Q} -basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- $\langle Z_{\lambda}, Z_{\lambda} \rangle = \prod_{u \in 2\lambda} h(u)$
- $\sum_{\lambda} \langle Z_{\lambda}, Z_{\lambda} \rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y) = \prod_{i,j} (1 x_i y_j)^{-1/2}$

- $\{Z_{\lambda}\}_{\lambda \vdash n}$ is a \mathbb{Q} -basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).
- $\langle Z_{\lambda}, Z_{\lambda} \rangle = \prod_{u \in 2\lambda} h(u)$
- $\sum_{\lambda} \langle Z_{\lambda}, Z_{\lambda} \rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y) = \prod_{i,j} (1 x_i y_j)^{-1/2}$
- The coefficient of x^{λ} in Z_{λ} is

$$\prod_{u\in\lambda}(2a(u)+l(u)+1).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- $\{Z_{\lambda}\}_{\lambda \vdash n}$ is a \mathbb{Q} -basis for $\Lambda_{\mathbb{Q}}$ (symmetric functions over \mathbb{Q}).
- $\langle Z_{\lambda}, Z_{\lambda} \rangle = \prod_{u \in 2\lambda} h(u)$
- $\sum_{\lambda} \langle Z_{\lambda}, Z_{\lambda} \rangle^{-1} Z_{\lambda}(x) Z_{\lambda}(y) = \prod_{i,j} (1 x_i y_j)^{-1/2}$

• The coefficient of x^{λ} in Z_{λ} is

$$\prod_{u\in\lambda}(2a(u)+l(u)+1).$$

• $Z_{\lambda} = J_{\lambda}^{(2)}$, where J_{λ}^{α} ($\alpha \in \mathbb{R}$) is a Jack symmetric function (a limiting case of Macdonald polynomials)

The Brauer algebra

(2n-1)!! is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_n .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Brauer algebra

(2n-1)!! is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_n .

Let dim_C V = k. The general linear group $\operatorname{GL}(V)$ acts diagonally on $V^{\otimes n}$. The linear transformations $V^{\otimes n} \to V^{\otimes n}$ commuting with this action are generated by the n! permutations of tensor coordinates. For $k \ge n$ these linear transformations form the algebra $\mathbb{C}[\mathfrak{S}_n]$ (the group algebra of \mathfrak{S}_n).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Brauer algebra

(2n-1)!! is not the order of an "interesting" finite group. However, it is the dimension of a natural "orthogonal analogue" of the group algebra of \mathfrak{S}_n .

Let dim_C V = k. The general linear group $\operatorname{GL}(V)$ acts diagonally on $V^{\otimes n}$. The linear transformations $V^{\otimes n} \to V^{\otimes n}$ commuting with this action are generated by the n! permutations of tensor coordinates. For $k \ge n$ these linear transformations form the algebra $\mathbb{C}[\mathfrak{S}_n]$ (the group algebra of \mathfrak{S}_n).

Let dim_C V = k. The orthogonal group O(V) (i.e., $A(A^*)^t = I$) acts diagonally on $V^{\otimes n}$. For $k \ge n$, the linear transformations $V^{\otimes n} \to V^{\otimes n}$ commuting with this action form an algebra \mathfrak{B}_n of dimension (2n-1)!! (the **Brauer algebra**).

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathfrak{B}_n(z)$, where $\mathfrak{B}_n(1) = \mathfrak{B}_n$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}$), $\mathfrak{B}_n(z)$ is semisimple.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathfrak{B}_n(z)$, where $\mathfrak{B}_n(1) = \mathfrak{B}_n$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}$), $\mathfrak{B}_n(z)$ is semisimple.

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathfrak{B}_n(z)$, where $\mathfrak{B}_n(1) = \mathfrak{B}_n$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}$), $\mathfrak{B}_n(z)$ is semisimple.

・ロト ・ 雪 ト ・ ヨ ト ・

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathfrak{B}_n(z)$, where $\mathfrak{B}_n(1) = \mathfrak{B}_n$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}$), $\mathfrak{B}_n(z)$ is semisimple.

Let z be a parameter. Take \mathcal{M}_n as a basis for an algebra $\mathfrak{B}_n(z)$, where $\mathfrak{B}_n(1) = \mathfrak{B}_n$ (not semisimple). For "generic" z (e.g., $z \notin \mathbb{Z}$), $\mathfrak{B}_n(z)$ is semisimple.

An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \dots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \dots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Note. If we only add boxes, then we get a **standard Young tableau**.

An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \dots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a **standard Young tableau**.

Example. Shape $\lambda = (2, 1)$, length n = 7:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An oscillating tableau T of shape λ and length n is a sequence

$$\emptyset = \lambda^0, \lambda^1, \dots, \lambda^m = \lambda$$

of partitions (identified with their Young diagrams) such that λ^i is obtained from λ^{i-1} by adding a box or removing a box.

Note. If we only add boxes, then we get a **standard Young tableau**.

Example. Shape $\lambda = (2, 1)$, length n = 7:

 $o^{\lambda,n}$: number of oscillating tableau of shape λ and length n

Dimension of \mathfrak{B}_n irreps

Theorem. Fix $n \ge 1$. Irreps of $\mathfrak{B}_n(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \le n$, $n \equiv m \pmod{2}$. The dimension of the irrep indexed by such λ is $o^{\lambda,n}$.

Corollary. $\sum_{\lambda} (o^{\lambda,n})^2 = (2n-1)!!$

Equivalently, number of oscillating tableaux of shape \emptyset and length 2n is (2n - 1)!!.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dimension of \mathfrak{B}_n irreps

Theorem. Fix $n \ge 1$. Irreps of $\mathfrak{B}_n(z)$ (z generic) are indexed by partitions $\lambda \vdash m$, where $m \le n$, $n \equiv m \pmod{2}$. The dimension of the irrep indexed by such λ is $o^{\lambda,n}$.

Corollary.
$$\sum_{\lambda} (o^{\lambda,n})^2 = (2n-1)!!$$

Equivalently, number of oscillating tableaux of shape \emptyset and length 2n is (2n - 1)!!.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

First combinatorial proof (bijection with \mathcal{M}_n) by **RS** and **S**. Sundaram.

Sundaram's bijection

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Sundaram's bijection

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Crossings and nestings

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

k-crossings and k-nestings

M = matching $\mathbf{cr}(M) = \max\{k : \exists k \text{-crossing}\}$ $\mathbf{ne}(M) = \max\{k : \exists k \text{-nesting}\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Some consequences

Theorem (Bill Yongchuan Chen (陈永川), **Eva Yuping Deng** (邓玉平), **Rosena Ruoxia Du** (杜君霞), **Catherine Huafei Yan** (颜华菲), **RS**) Let $M \mapsto (\emptyset = T_0, T_1, ..., T_{2n} = \emptyset)$ in the bijection from matchings to oscillating tableau of shape \emptyset . Then cr(M) is equal to the most number of rows of any T_i , and ne(M) is equal to the most number of columns of any T_i .

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Some consequences

Theorem (Bill Yongchuan Chen (陈永川), **Eva Yuping Deng** (邓玉平), **Rosena Ruoxia Du** (杜若霞), **Catherine Huafei Yan** (颜华菲), **RS**) Let $M \mapsto (\emptyset = T_0, T_1, ..., T_{2n} = \emptyset)$ in the bijection from matchings to oscillating tableau of shape \emptyset . Then cr(M) is equal to the most number of rows of any T_i , and ne(M) is equal to the most number of columns of any T_i .

Corollary. Let $f_n(i,j) = \#$ matchings M on [2n] with cr(M) = iand ne(M) = j. Then $f_n(i,j) = f_n(j,i)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary. # matchings M on [2n] with cr(M) = k equals # matchings M on [2n] with ne(M) = k.

An enumerative consequence

Theorem (Grabiner-Magyar, essentially) Let $f_k(n)$ be the number of matchings $M \in M_n$ satisfying $cr(M) \le k$. Define

$$F_k(x) = \sum_n f_k(n) \frac{x^{2n}}{(2n)!}$$

Then

$$F_k(x) = \det \left[I_{|i-j|}(2x) - I_{i+j}(2x) \right]_{i,j=1}^k$$

where

$$I_m(2x) = \sum_{j\geq 0} \frac{x^{m+2j}}{j!(m+j)!}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(hyperbolic Bessel function of the first kind of order m).

A probabilistic consequence

Note. cr(M) is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_n$, and ne(M) is the analogue of the length of the longest decreasing subsequence.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

A probabilistic consequence

Note. $\operatorname{cr}(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_n$, and $\operatorname{ne}(M)$ is the analogue of the length of the longest decreasing subsequence.

Painléve II equation:

$$u^{\prime\prime}(x)=2u(x)^3+xu(x).$$

Tracy-Widom distribution:

$$F(t) = \exp\left(-\int_t^\infty (x-t)u(x)^2\,dx\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A probabilistic consequence

Note. $\operatorname{cr}(M)$ is the matching analogue of the length of the longest increasing subsequence of $w \in \mathfrak{S}_n$, and $\operatorname{ne}(M)$ is the analogue of the length of the longest decreasing subsequence.

Painléve II equation:

$$u''(x) = 2u(x)^3 + xu(x).$$

Tracy-Widom distribution:

$$F(t) = \exp\left(-\int_t^\infty (x-t)u(x)^2\,dx\right)$$

Theorem.

$$\lim_{n \to \infty} \operatorname{Prob}\left(\frac{\operatorname{cr}_n(M) - \sqrt{2n}}{(2n)^{1/6}} \le \frac{t}{2}\right) = F(t)^{1/2} \exp\left(\frac{1}{2} \int_t^\infty u(s) ds\right)$$

The final slide

Hope you enjoyed the lectures!

Thanks for listening!