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Semifactorials

(2n − 1)!! = 1 · 3 · 5 · · · (2n − 1) =
(2n)!

2nn!
,

called 2n − 1 double factorial (bad?) or semifactorial
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Matchings

(complete) matching on 2n-element set:

Theorem. The number of matchings on [2n] is (2n − 1)!!.

Proof. Pick i ∈ [2n] and match it in 2n− 1 ways. Then pick some
unmatched element j and match it in (2n − 3) ways, etc. �



Schröder’s third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870

Problem 3 (complete binary partitions). How many ways to
partition an n-set (n > 1) into two nonempty blocks, then partition
each nonsingleton block into two nonempty blocks, etc., until only
singletons remain?
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Schröder’s third problem

Ernst Schröder, Vier kombinatorische Probleme, 1870

Problem 3 (complete binary partitions). How many ways to
partition an n-set (n > 1) into two nonempty blocks, then partition
each nonsingleton block into two nonempty blocks, etc., until only
singletons remain?
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leaf labelled (unordered) binary tree



Bijection with matchings

Label by n+1 the unlabelled vertex with two labelled children, with
the least possible label of a child.
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Bijection with matchings

Label by n+2 the unlabelled vertex with two labelled children, with
the least possible label of a child.
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Bijection with matchings

Continue until all nonroot vertices are labelled 1, 2, . . . , 2n − 2.
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– 1,4 – 6,8 – 11,12.



Bijection with matchings

Continue until all nonroot vertices are labelled 1, 2, . . . , 2n − 2.

5 7

1 4 2

6 38

9

12 11

��

Now match the two children of any nonleaf vertex: 5,7 – 2,9 – 3,10
– 1,4 – 6,8 – 11,12.

Theorem. The number of leaf-labelled binary trees with n leaves is
(2n − 3)!!.



Inkling of probability theory

Theorem.
1√
2π

∫ ∞

−∞
x2ne−

1
2
x2dx = (2n − 1)!!

the (2n)th moment of the standard normal distribution.



An S2n action

Mn: set of all matchings on [2n], so #Mn = (2n − 1)!!

S2n acts of Mn by permuting vertices. What is this action? I.e.,
what is the multiplicity of each irreducible character χλ, λ ⊢ 2n?
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The subgroup S
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S
n

2 : subgroup of S2n generated by (1, 2), (3, 4), . . . , (2n − 1, 2n),
so S

n
2 ≡ (Z/2Z)n and #S

n
2 = 2n.

N(Sn

2): the normalizer of Sn
2, i.e., all w ∈ S2n such that

v ∈ S
n
2 ⇒ wvw−1 ∈ S

n
2

N(Sn
2) consists of all w ∈ S2n that permute the elements in each

row and permute the rows among themselves of the array (n = 5)

1 2

3 4

5 6

7 8

9 ��
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Action on cosets

Aside. N(Sn
2) is the wreath product Sn ≀ S2.

#N(Sn
2) = 2nn!, so [S2n : N(Sn

2)] = (2n − 1)!!.

The action on S2n on the left cosets of N(Sn
2) is isomorphic to

the action of S2n on Mn. Thus, as S2n-modules,

Mn
∼=
x



S2n

N(Sn
2)
1.
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Plethysm

Let ch denote the Frobenius characteristic symmetric function of
an Sm action. By the theory of plethysm,

chMn = (ch 1Sn
)[ch 1S2

] = hn[h2].

By definition of plethysm,

∑

n≥0

hn[h2] =
∏

i≤j

(1− xixj)
−1.

By e.g. a variant of RSK,
∏

i≤j

(1− xixj)
−1 =

∑

µ

s2µ.

Theorem. Let λ ⊢ 2n. The multiplicity of χλ in the action of S2n

on Mn is 1 if λ = 2µ, and 0 otherwise.
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Zonal polynomials

Hn = N(Sn
2) (hyperoctahedral group)

Because Mn is multiplicity-free as an S2n-module, the pair
(S2n,Hn) is a Gelfand pair.

Let λ ⊢ n and χ2λ be the irreducible character of S2n indexed by
2λ. Let s ∈ S2n of cycle type ρ ⊢ 2n.

ω
λ
ρ =

1

2nn!

∑

w∈H

χ2λ(sw)

Define the zonal polynomial

Zλ = 2nn!
∑

ρ⊢n

z−1
2ρ ωλ

ρpρ,

a homogeneous symmetric function of degree n.
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Some properties of zonal polynomials

{Zλ}λ⊢n is a Q-basis for ΛQ (symmetric functions over Q).

〈Zλ,Zλ〉 =
∏

u∈2λ h(u)
∑

λ

〈Zλ,Zλ〉−1 Zλ(x)Zλ(y) =
∏

i ,j

(1− xiyj)
−1/2

The coefficient of xλ in Zλ is

∏

u∈λ

(2a(u) + l(u) + 1).

Zλ = J
(2)
λ , where Jαλ (α ∈ R) is a Jack symmetric function

(a limiting case of Macdonald polynomials)
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The Brauer algebra

(2n − 1)!! is not the order of an “interesting” finite group.
However, it is the dimension of a natural “orthogonal analogue” of
the group algebra of Sn.

Let dimC V = k . The general linear group GL(V ) acts diagonally
on V⊗n. The linear transformations V⊗n → V⊗n commuting with
this action are generated by the n! permutations of tensor
coordinates. For k ≥ n these linear transformations form the
algebra C[Sn] (the group algebra of Sn).

Let dimC V = k . The orthogonal group O(V ) (i.e., A(A∗)t = I )
acts diagonally on V⊗n. For k ≥ n, the linear transformations
V⊗n → V⊗n commuting with this action form an algebra Bn of
dimension (2n − 1)!! (the Brauer algebra).
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Let z be a parameter. Take Mn as a basis for an algebra Bn(z),
where Bn(1) = Bn (not semisimple). For “generic” z (e.g.,
z 6∈ Z), Bn(z) is semisimple.
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Brauer algebra multiplication

Let z be a parameter. Take Mn as a basis for an algebra Bn(z),
where Bn(1) = Bn (not semisimple). For “generic” z (e.g.,
z 6∈ Z), Bn(z) is semisimple.

z

A

B

z
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Oscillating tableaux

An oscillating tableau T of shape λ and length n is a sequence

∅ = λ0, λ1, . . . , λm = λ

of partitions (identified with their Young diagrams) such that λi is
obtained from λi−1 by adding a box or removing a box.

Note. If we only add boxes, then we get a standard Young
tableau.

Example. Shape λ = (2, 1), length n = 7:

∅

oλ,n: number of oscillating tableau of shape λ and length n



Dimension of Bn irreps

Theorem. Fix n ≥ 1. Irreps of Bn(z) (z generic) are indexed by
partitions λ ⊢ m, where m ≤ n, n ≡ m (mod 2). The dimension of
the irrep indexed by such λ is oλ,n.

Corollary.
∑

λ(o
λ,n)2 = (2n − 1)!!

Equivalently, number of oscillating tableaux of shape ∅ and length
2n is (2n − 1)!!.



Dimension of Bn irreps

Theorem. Fix n ≥ 1. Irreps of Bn(z) (z generic) are indexed by
partitions λ ⊢ m, where m ≤ n, n ≡ m (mod 2). The dimension of
the irrep indexed by such λ is oλ,n.

Corollary.
∑

λ(o
λ,n)2 = (2n − 1)!!

Equivalently, number of oscillating tableaux of shape ∅ and length
2n is (2n − 1)!!.

First combinatorial proof (bijection with Mn) by RS and S.
Sundaram.



Sundaram’s bijection

3 34 24

3

2

3

2 1

2

1∅ ∅

3 4 2 4 3 1 2 1



Sundaram’s bijection

∅ ∅

3 4 2 4 3 1 2 1



Crossings and nestings

crossing:   

nesting:  



k-crossings and k-nestings

3−nesting

3−crossing

M = matching

cr(M) = max{k : ∃ k-crossing}
ne(M) = max{k : ∃ k-nesting}.



Some consequences

Theorem (Bill Yongchuan Chen ( ), Eva Yuping Deng
( ), Rosena Ruoxia Du ( ), Catherine Huafei Yan
( ), RS) Let M 7→ (∅ = T0,T1, . . . ,T2n = ∅) in the bijection
from matchings to oscillating tableau of shape ∅. Then cr(M) is
equal to the most number of rows of any Ti , and ne(M) is equal
to the most number of columns of any Ti .



Some consequences

Theorem (Bill Yongchuan Chen ( ), Eva Yuping Deng
( ), Rosena Ruoxia Du ( ), Catherine Huafei Yan
( ), RS) Let M 7→ (∅ = T0,T1, . . . ,T2n = ∅) in the bijection
from matchings to oscillating tableau of shape ∅. Then cr(M) is
equal to the most number of rows of any Ti , and ne(M) is equal
to the most number of columns of any Ti .

Corollary. Let fn(i , j) = # matchings M on [2n] with cr(M) = i
and ne(M) = j . Then fn(i , j) = fn(j , i ).

Corollary. # matchings M on [2n] with cr(M) = k equals #
matchings M on [2n] with ne(M) = k.



An enumerative consequence

Theorem (Grabiner-Magyar, essentially) Let fk(n) be the
number of matchings M ∈ Mn satisfying cr(M) ≤ k. Define

Fk(x) =
∑

n

fk(n)
x2n

(2n)!
.

Then
Fk(x) = det

[

I|i−j |(2x) − Ii+j(2x)
]k

i ,j=1

where

Im(2x) =
∑

j≥0

xm+2j

j!(m + j)!

(hyperbolic Bessel function of the first kind of order m).
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Note. cr(M) is the matching analogue of the length of the longest
increasing subsequence of w ∈ Sn, and ne(M) is the analogue of
the length of the longest decreasing subsequence.
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A probabilistic consequence

Note. cr(M) is the matching analogue of the length of the longest
increasing subsequence of w ∈ Sn, and ne(M) is the analogue of
the length of the longest decreasing subsequence.

Painléve II equation:

u′′(x) = 2u(x)3 + xu(x).

Tracy-Widom distribution:

F (t) = exp

(

−
∫ ∞

t

(x − t)u(x)2 dx

)

Theorem.

lim
n→∞

Prob

(

crn(M)−
√
2n

(2n)1/6
≤ t

2

)

= F (t)1/2 exp

(

1

2

∫ ∞

t

u(s)ds

)
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The final slide

Hope you enjoyed the lectures!

Thanks for listening!


