Smith Normal Form and Combinatorics

Richard P. Stanley

Outline

Part I

- basics

- random matrices

Outline

Part I

- basics
- random matrices

Part II: symmetric functions

- $\frac{\partial}{\partial p_{1}} p_{1}$ (operator)
- Jacobi-Trudi specializations

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Smith normal form

$\boldsymbol{A}: n \times n$ matrix over commutative ring \boldsymbol{R} (with 1)
Suppose there exist $\boldsymbol{P}, \boldsymbol{Q} \in \mathrm{GL}(n, R)$ such that

$$
P A Q:=B=\operatorname{diag}\left(d_{1}, d_{1} d_{2}, \ldots d_{1} d_{2} \cdots d_{n}\right)
$$

where $d_{i} \in R$. We then call B a Smith normal form (SNF) of A.

Note. (1) Can extend to $m \times n$.

$$
\text { (2) unit } \cdot \operatorname{det}(A)=\operatorname{det}(B)=d_{1}^{n} d_{2}^{n-1} \cdots d_{n} \text {. }
$$

Thus SNF is a refinement of det.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Row and column operations

Can put a matrix into SNF by the following operations.

- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form (with all unit entries equal to 1).

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
If R is a PIR then A has a unique SNF up to units.

Existence of SNF

PIR: principal ideal ring, e.g., $\mathbb{Z}, K[x], \mathbb{Z} / m \mathbb{Z}$.
If R is a PIR then A has a unique SNF up to units.
Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e., every finitely generated ideal is principal.

Example. ring of entire functions and ring of all algebraic integers (not PIR's)

Open: every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

\boldsymbol{R} : a PID

\boldsymbol{A} : an $n \times n$ matrix over R with rows $v_{1}, \ldots, v_{n} \in R^{n}$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

Algebraic interpretation of SNF

R: a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

Algebraic interpretation of SNF

R : a PID

A: an $n \times n$ matrix over R with rows

$$
v_{1}, \ldots, v_{n} \in R^{n}
$$

$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem.

$$
R^{n} /\left(v_{1}, \ldots, v_{n}\right) \cong\left(R / e_{1} R\right) \oplus \cdots \oplus\left(R / e_{n} R\right)
$$

$R^{n} /\left(v_{1}, \ldots, v_{n}\right)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

\boldsymbol{R} : a PID

A: an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A

An explicit formula for SNF

\boldsymbol{R} : a PID
\boldsymbol{A} : an $n \times n$ matrix over R with $\operatorname{det}(A) \neq 0$
$\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right):$ SNF of A
Theorem. $e_{1} e_{2} \cdots e_{i}$ is the gcd of all $i \times i$ minors of A.
minor: determinant of a square submatrix.
Special case: e_{1} is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

An example

Reduced Laplacian matrix of K_{4} :

$$
A=\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Matrix-tree theorem $\Longrightarrow \operatorname{det}(A)=16$, the number of spanning trees of K_{4}.

What about SNF?

An example (continued)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & -1 \\
8 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
-4 & 4 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
0 & 0 & -1 \\
0 & 4 & 0 \\
4 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Reduced Laplacian matrix of \boldsymbol{K}_{n}

$$
\begin{aligned}
\boldsymbol{L}_{\mathbf{0}}\left(\boldsymbol{K}_{\boldsymbol{n}}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Reduced Laplacian matrix of K_{n}

$$
\begin{aligned}
\boldsymbol{L}_{0}\left(\boldsymbol{K}_{n}\right) & =n I_{n-1}-J_{n-1} \\
\operatorname{det} L_{0}\left(K_{n}\right) & =n^{n-2}
\end{aligned}
$$

Trick: 2×2 submatrices (up to row and column permutations):

$$
\left[\begin{array}{cc}
n-1 & -1 \\
-1 & n-1
\end{array}\right], \quad\left[\begin{array}{cc}
n-1 & -1 \\
-1 & -1
\end{array}\right], \quad\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right],
$$

with determinants $n(n-2),-n$, and 0 . Hence $e_{1} e_{2}=n$. Since $\prod e_{i}=n^{n-2}$ and $e_{i} \mid e_{i+1}$, we get the SNF $\operatorname{diag}(1, n, n, \ldots, n)$.

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.
no time for further details

Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very interesting
connections with sandpile models, chip firing, abelian avalanches, etc.
no time for further details

SNF of random matrices

Huge literature on random matrices, mostly connected with eigenvalues.

Very little work on SNF of random matrices over a PID.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(n, d)$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M

Is the question interesting?

$\operatorname{Mat}_{k}(\boldsymbol{n}):$ all $n \times n \mathbb{Z}$-matrices with entries in $[-k, k]$ (uniform distribution)
$p_{k}(\boldsymbol{n}, \boldsymbol{d})$: probability that if $M \in \operatorname{Mat}_{k}(n)$ and $\operatorname{SNF}(M)=\left(e_{1}, \ldots, e_{n}\right)$, then $e_{1}=d$.

Recall: $e_{1}=\operatorname{gcd}$ of 1×1 minors (entries) of M
Theorem. $\lim _{k \rightarrow \infty} p_{k}(n, d)=1 / d^{n^{2}} \zeta\left(n^{2}\right)$

Specifying some e_{i}

with Yinghui Wang

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Specifying some e_{i}

with Yinghui Wang（王颖慧）

Two general results．

－Let $\alpha_{1}, \ldots, \alpha_{n-1} \in \mathbb{P}, \alpha_{i} \mid \alpha_{i+1}$ ．
$\mu_{k}(n)$ ：probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{i}=\alpha_{i}$ for
$1 \leq \alpha_{i} \leq n-1$ ．

$$
\boldsymbol{\mu}(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n) .
$$

Then $\mu(n)$ exists，and $0<\mu(n)<1$ ．

Second result

- Let $\alpha_{n} \in \mathbb{P}$.
$\boldsymbol{\nu}_{k}(\boldsymbol{n})$: probability that the SNF of a random $A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{n}=\alpha_{n}$.

Then

$$
\lim _{k \rightarrow \infty} \nu_{k}(n)=0
$$

Sample result

$\mu_{k}(n)$: probability that the SNF of a random
$A \in \operatorname{Mat}_{k}(n)$ satisfies $e_{1}=2, e_{2}=6$.

$$
\boldsymbol{\mu}(\boldsymbol{n})=\lim _{k \rightarrow \infty} \mu_{k}(n)
$$

Conclusion

$$
\mu(n)=2^{-n^{2}}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} 2^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} 2^{-i}\right)
$$

$$
\cdot \frac{3}{2} \cdot 3^{-(n-1)^{2}}\left(1-3^{(n-1)^{2}}\right)\left(1-3^{-n}\right)^{2}
$$

$$
\prod_{p>3}\left(1-\sum_{i=(n-1)^{2}}^{n(n-1)} p^{-i}+\sum_{i=n(n-1)+1}^{n^{2}-1} p^{-i}\right)
$$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

$$
\text { Theorem. } \kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Theorem. $\kappa(n)=$

Cyclic cokernel

$\kappa(\boldsymbol{n})$: probability that an $n \times n \mathbb{Z}$-matrix has SNF $\operatorname{diag}\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ with $e_{1}=e_{2}=\cdots=e_{n-1}=1$.

$$
\text { Theorem. } \kappa(n)=\frac{\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots+\frac{1}{p^{n}}\right)}{\zeta(2) \zeta(3) \cdots}
$$

Theorem. $\kappa(n)=\underline{\square}$
Corollary. $\lim _{n \rightarrow \infty} \kappa(n)=\frac{1}{\zeta(6) \prod_{j \geq 4} \zeta(j)}$
$\approx 0.846936 \cdots$.

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\operatorname{Prob}(g \leq 2)=0.99462688 \cdots
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(3.46275 \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

Small number of generators

g : number of generators of cokernel (number of entries of SNF $\neq 1$) as $n \rightarrow \infty$
previous slide: $\operatorname{Prob}(g=1)=0.846936 \cdots$

$$
\begin{aligned}
& \operatorname{Prob}(g \leq 2)=0.99462688 \cdots \\
& \operatorname{Prob}(g \leq 3)=0.99995329 \cdots
\end{aligned}
$$

Theorem. $\operatorname{Prob}(g \leq \ell)=$

$$
1-(\mathbf{3 . 4 6 2 7 5} \cdots) 2^{-(\ell+1)^{2}}\left(1+O\left(2^{-\ell}\right)\right)
$$

3.46275 . . .

$$
3.46275 \cdots=\frac{1}{\prod_{j \geq 1}\left(1-\frac{1}{2^{j}}\right)}
$$

Universality

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

Universality

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski).

 Fix k, n. Choose a subgroup G of \mathbb{Z}^{n} of index $\leq k$ uniformly.$\rho_{k}(n)$: probability that G is cyclic

Universality

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski).

 Fix k, n. Choose a subgroup G of \mathbb{Z}^{n} of index $\leq k$ uniformly.$\rho_{k}(n)$: probability that G is cyclic
$\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty} \rho_{k}(n) \approx 0.846936 \cdots$,
same probability of cyclic cokernel as $k, n \rightarrow \infty$ using previous distribution.

Part II: symmetric functions

- $\frac{\partial}{\partial p_{1}} p_{1}$ (operator)
- Jacobi-Trudi specializations

A down-up operator

In collaboration with Tommy Wuxing Cai.

A down－up operator

In collaboration with Tommy Wuxing Cai（蔡吴兴）．

A down－up operator

In collaboration with Tommy Wuxing Cai（蔡吴兴）．
$\operatorname{Par}(\boldsymbol{n}):$ set of all partitions of n
E．g．， $\operatorname{Par}(4)=\{4,31,22,211,1111\}$.

A down－up operator

In collaboration with Tommy Wuxing Cai（蔡吴兴）．
$\operatorname{Par}(\boldsymbol{n}):$ set of all partitions of n
E．g．， $\operatorname{Par}(4)=\{4,31,22,211,1111\}$.
$\boldsymbol{V}_{n}:$ real vector space with basis $\operatorname{Par}(n)$

Define $\boldsymbol{U}=\boldsymbol{U}_{n}: V_{n} \rightarrow V_{n+1}$ by

$$
U(\lambda)=\sum_{\mu} \mu,
$$

where $\mu \in \operatorname{Par}(n+1)$ and $\mu_{i} \geq \lambda_{i} \forall i$.

Example.

$U(42211)=52211+43211+42221+422111$

Dually, define $\boldsymbol{D}=\boldsymbol{D}_{n}: V_{n} \rightarrow V_{n-1}$ by

$$
D(\lambda)=\sum_{\nu} \nu,
$$

where $\nu \in \operatorname{Par}(n-1)$ and $\nu_{i} \leq \lambda_{i} \forall i$.
Example. $D(42211)=32211+42111+4221$

Symmetric functions

NотE. Identify V_{n} with the space $\Lambda_{\mathbb{Q}}^{n}$ of all homogeneous symmetric functions of degree n over \mathbb{Q}, and identify $\lambda \in V_{n}$ with the Schur function s_{λ}. Then

$$
U(f)=p_{1} f, \quad D(f)=\frac{\partial}{\partial p_{1}} f
$$

Symmetric functions

NотE. Identify V_{n} with the space $\Lambda_{\mathbb{Q}}^{n}$ of all homogeneous symmetric functions of degree n over \mathbb{Q}, and identify $\lambda \in V_{n}$ with the Schur function s_{λ}. Then

$$
U(f)=p_{1} f, \quad D(f)=\frac{\partial}{\partial p_{1}} f
$$

Write

$$
\begin{aligned}
U & =\boldsymbol{U}_{n}: V_{n} \rightarrow V_{n+1} \\
D & =\boldsymbol{D}_{n+1}: v_{n+1} \rightarrow V_{n} .
\end{aligned}
$$

Commutation relation

Basic commutation relation: $D U-U D=I$

Allows computation of eigenvalues of
$D U: V_{n} \rightarrow V_{n}$.
Or note that the eigenvectors of $\frac{\partial}{\partial p_{1}} p_{1}$ are the p_{λ} 's $(\lambda \vdash n)$, with eigenvalue $1+m_{1}(\lambda)$, where $\boldsymbol{m}_{1}(\boldsymbol{\lambda})$ is the number of parts of λ equal to 1 .

Commutation relation

Basic commutation relation: $D U-U D=I$

Allows computation of eigenvalues of
$D U: V_{n} \rightarrow V_{n}$.
Or note that the eigenvectors of $\frac{\partial}{\partial p_{1}} p_{1}$ are the p_{λ} 's $(\lambda \vdash n)$, with eigenvalue $1+m_{1}(\lambda)$, where $\boldsymbol{m}_{1}(\boldsymbol{\lambda})$ is the number of parts of λ equal to 1 .

NOTE.

$\#\left\{\lambda \vdash n: m_{1}(\lambda)=i\right\}=p(n+1-i)-p(n-i)$,
where $\boldsymbol{p}(\boldsymbol{m})=\# \operatorname{Par}(m)=\operatorname{dim} V_{m}$.

Eigenvalues of $D U$

Theorem. Let $1 \leq i \leq n+1, i \neq n$. Then i is an eigenvalue of $D_{n+1} U_{n}$ with multiplicity $p(n+1-i)-p(n-i)$. Hence

$$
\operatorname{det} D_{n+1} U_{n}=\prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)} .
$$

Eigenvalues of $D U$

Theorem. Let $1 \leq i \leq n+1, i \neq n$. Then i is an eigenvalue of $D_{n+1} U_{n}$ with multiplicity
$p(n+1-i)-p(n-i)$. Hence

$$
\operatorname{det} D_{n+1} U_{n}=\prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}
$$

What about SNF of the matrix $\left[D_{n+1} U_{n}\right]$ (with respect to the basis $\operatorname{Par}(n))$?

Conjecture of A. R. Miller, 2005

Conjecture (first form). The diagonal entries of the SNF of $\left[D_{n+1} U_{n}\right]$ are:

- $(n+1)(n-1)$!, with multiplicity 1
- $(n-k)$! with multiplicity

$$
p(k+1)-2 p(k)+p(k-1), 3 \leq k \leq n-2
$$

- 1 , with multiplicity $p(n)-p(n-1)+p(n-2)$.

Not a trivial result

Note. $\left\{p_{\lambda}\right\}_{\lambda \vdash n}$ is not an integral basis.

Another form

$\boldsymbol{m}_{1}(\boldsymbol{\lambda})$: number of 1 's in λ
$\mathcal{M}_{1}(\boldsymbol{n})$: multiset of all numbers $m_{1}(\lambda)+1$,
$\lambda \in \operatorname{Par}(n)$
Let SNF of $\left[D_{n+1} U_{n}\right]$ be $\operatorname{diag}\left(f_{1}, f_{2}, \ldots, f_{p(n)}\right)$.
Conjecture (second form). $f_{p(n)}$ is the product of the distinct entries of $\mathcal{M}_{1}(n) ; f_{p(n)-1}$ is the product of the remaining distinct entries of $\mathcal{M}_{1}(n)$, etc.

An example: $n=6$

$$
\begin{gathered}
\operatorname{Par}(6)=\{6,51,42,33,411,321,222,3111, \\
2211,21111,111111\} \\
\mathcal{M}_{1}(6)=\{1,2,1,1,3,2,1,4,3,5,7\}
\end{gathered}
$$

$$
\begin{aligned}
\left(f_{1}, \ldots, f_{11}\right) & =(7 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1,3 \cdot 2 \cdot 1, \\
& 1,1,1,1,1,1,1,1,1) \\
& =(840,6,1,1,1,1,1,1,1,1,1)
\end{aligned}
$$

Yet another form

Conjecture (third form). The matrix $\left[D_{n+1} U_{n}+x I\right]$ has an SNF over $\mathbb{Z}[x]$.

Note that $\mathbb{Z}[x]$ is not a PID.

Resolution of conjecture

Theorem. The conjecture of Miller is true.

Resolution of conjecture

Theorem. The conjecture of Miller is true.
Proof (first step). Rather than use the basis $\left\{s_{\lambda}\right\}_{\lambda \in \operatorname{Par}(n)}$ (Schur functions) for $\Lambda_{\mathbb{Q}}^{n}$, use the basis $\left\{h_{\lambda}\right\}_{\lambda \in \operatorname{Par}(n)}$ (complete symmetric functions). Since the two bases differ by a matrix in $S L(p(n), \mathbb{Z})$, the SNF's stay the same.

Conclusion of proof

(second step) Row and column operations.

Conclusion of proof

(second step) Row and column operations.
Not very insightful.

Conclusion of proof

(second step) Row and column operations.
Not very insightful. \square

A generalization

$m_{j}(\lambda)$: number of j 's in λ
$\boldsymbol{\mathcal { M }}_{\boldsymbol{j}}(\boldsymbol{n})$: multiset of all numbers $j\left(m_{j}(\lambda)+1\right)$,
$\lambda \in \operatorname{Par}(n)$
\boldsymbol{p}_{j} : power sum symmetric function $\sum x_{i}^{j}$
Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_{j}} p_{j} f$ with respect to the basis $\left\{s_{\lambda}\right\}$ be $\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{p(n)}\right)$.

A generalization

$m_{j}(\lambda)$: number of j 's in λ
$\mathcal{M}_{j}(\boldsymbol{n})$: multiset of all numbers $j\left(m_{j}(\lambda)+1\right)$,
$\lambda \in \operatorname{Par}(n)$
\boldsymbol{p}_{j} : power sum symmetric function $\sum x_{i}^{j}$
Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_{j}} p_{j} f$ with respect to the basis $\left\{s_{\lambda}\right\}$ be $\operatorname{diag}\left(g_{1}, g_{2}, \ldots, g_{p(n)}\right)$.

Theorem (Zipei Nie). $g_{p(n)}$ is the product of the distinct entries of $\mathcal{M}_{j}(n) ; g_{p(n)-1}$ is the product of the remaining distinct entries of $\mathcal{M}_{j}(n)$, etc.

Two remarks

- The operators D, U and identity
$D U-U D=I$ extend to any differential poset P. Miller and Reiner have conjectures for the SNF of $D U$. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.

Two remarks

- The operators D, U and identity
$D U-U D=I$ extend to any differential poset P. Miller and Reiner have conjectures for the SNF of $D U$. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.
- More general operators:

$$
\frac{\partial^{2}}{\partial p_{1}^{2}} p 1^{2}, \quad 2 \frac{\partial}{\partial p_{1}} \frac{\partial}{\partial p_{2}} p_{2} p_{1}, \text { etc. }
$$

No conjecture known for SNF.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]
$$

where s_{λ} is a Schur function and h_{i} is a complete symmetric function.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$
s_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]
$$

where s_{λ} is a Schur function and h_{i} is a complete symmetric function.

We consider the specialization
$x_{1}=x_{2}=\cdots=x_{n}=1$, other $x_{i}=0$. Then

$$
h_{i} \rightarrow\binom{n+i-1}{i}
$$

Specialized Schur function

$$
s_{\lambda} \rightarrow \prod_{u \in \lambda} \frac{n+c(u)}{h(u)}
$$

$c(u)$: content of the square u

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

$$
\lambda=(5,4,4,2)
$$

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{1}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{2}

Diagonal hooks D_{1}, \ldots, D_{m}

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			

D_{3}

SNF result

$$
\boldsymbol{R}=\mathbb{Q}[n] \quad(\mathrm{a} \mathrm{PID})
$$

Let

$$
\operatorname{SNF}\left[\binom{n+\lambda_{i}-i+j-1}{\lambda_{i}-i+j}\right]=\operatorname{diag}\left(e_{1}, \ldots, e_{m}\right) .
$$

Theorem.

$$
e_{i}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Idea of proof

$$
\boldsymbol{f}_{\boldsymbol{i}}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Want to prove $e_{i}=f_{i}$. Note that $f_{1} f_{2} \cdots f_{i}$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Idea of proof

$$
\boldsymbol{f}_{\boldsymbol{i}}=\prod_{u \in D_{m-i+1}} \frac{n+c(u)}{h(u)}
$$

Want to prove $e_{i}=f_{i}$. Note that $f_{1} f_{2} \cdots f_{i}$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu / \nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

Conclusion of proof

Let $s_{\mu / \nu}=\sum c_{\nu \rho}^{\mu} s_{\rho}$. By Littlewood-Richardson

 rule,$$
\begin{aligned}
c_{\nu \rho}^{\mu} \neq 0 \Rightarrow & \alpha \subseteq \rho \\
\Rightarrow & \{\text { contents of } \alpha\} \subseteq\{\text { contents of } \rho\} \\
& \quad \text { (as multisets) } .
\end{aligned}
$$

Conclusion of proof

Let $s_{\mu / \nu}=\sum c_{\nu \rho}^{\mu} s_{\rho}$. By Littlewood-Richardson

rule,

$$
\begin{aligned}
c_{\nu \rho}^{\mu} \neq 0 \Rightarrow & \alpha \subseteq \rho \\
\Rightarrow & \{\text { contents of } \alpha\} \subseteq\{\text { contents of } \rho\} \\
& \quad \text { (as multisets) } .
\end{aligned}
$$

Hence $f_{1} \cdots f_{i}=\operatorname{gcd}(i \times i$ minors $)=e_{1} \cdots e_{i}$.

An example

$$
\lambda=(7,6,6,5,3), k=3 \Rightarrow \mu=(4,3,1)
$$

An example

$$
\lambda=(7,6,6,5,3), k=3 \Rightarrow \mu=(4,3,1)
$$

$$
\mathrm{JT}_{\lambda}=\left[\begin{array}{lllll}
h_{7} & h_{8} & h_{9} & h_{10} & h_{11} \\
h_{5} & h_{6} & h_{7} & h_{8} & h_{9} \\
h_{4} & h_{5} & h_{6} & h_{7} & h_{8} \\
h_{2} & h_{3} & h_{4} & h_{5} & h_{6} \\
0 & 1 & h_{1} & h_{2} & h_{3}
\end{array}\right]
$$

An example

$$
\lambda=(7,6,6,5,3), k=3 \Rightarrow \mu=(4,3,1)
$$

$$
\mathrm{JT}_{\lambda}=\left[\begin{array}{ccccc}
h_{7} & h_{8} & h_{9} & h_{10} & h_{11} \\
h_{5} & h_{6} & h_{7} & h_{8} & h_{9} \\
h_{4} & h_{5} & h_{6} & h_{7} & h_{8} \\
h_{2} & h_{3} & h_{4} & h_{5} & h_{6} \\
0 & 1 & h_{1} & h_{2} & h_{3}
\end{array}\right]
$$

An example (cont.)

A "random" 3×3 minor of JT_{λ} :

$$
\mathrm{JT}_{\lambda}=\left[\begin{array}{lllll}
h_{7} & h_{8} & h_{9} & h_{10} & h_{11} \\
h_{5} & h_{6} & h_{7} & h_{8} & h_{9} \\
\boldsymbol{h}_{\mathbf{4}} & h_{5} & \boldsymbol{h}_{\mathbf{6}} & h_{7} & \boldsymbol{h}_{8} \\
\boldsymbol{h}_{\mathbf{2}} & h_{3} & \boldsymbol{h}_{\mathbf{4}} & h_{5} & \boldsymbol{h}_{\mathbf{6}} \\
\mathbf{0} & 1 & \boldsymbol{h}_{\mathbf{1}} & h_{2} & \boldsymbol{h}_{\mathbf{3}}
\end{array}\right]
$$

An example (cont.)

A "random" 3×3 minor of JT_{λ} :

$$
\mathrm{JT}_{\lambda}=\left[\begin{array}{lllll}
h_{7} & h_{8} & h_{9} & h_{10} & h_{11} \\
h_{5} & h_{6} & h_{7} & h_{8} & h_{9} \\
\boldsymbol{h}_{\mathbf{4}} & h_{5} & \boldsymbol{h}_{\mathbf{6}} & h_{7} & \boldsymbol{h}_{8} \\
\boldsymbol{h}_{\mathbf{2}} & h_{3} & \boldsymbol{h}_{\mathbf{4}} & h_{5} & \boldsymbol{h}_{\mathbf{6}} \\
\mathbf{0} & 1 & \boldsymbol{h}_{\mathbf{1}} & h_{2} & \boldsymbol{h}_{\mathbf{3}}
\end{array}\right]
$$

Jacobi-Trudi matrix for $s_{653 / 21}$

An example (concluded)

Every LR-filling contains 1,1,1,1,2,2,2,3. Thus if $\left\langle s_{653 / 21}, s_{\rho}\right\rangle>0$, then $431 \subseteq \rho$. Therefore

$$
\begin{aligned}
& \prod_{u \in 431}(n+c(u)) \mid \prod_{u \in \rho}(n+c(u)) \\
& \Rightarrow \prod_{u \in 431}(n+c(u)) \mid s_{653 / 21}\left(1^{n}\right) .
\end{aligned}
$$

A q-analogue

"Natural" q-analogue of $f\left(1^{n}\right)$ is $f\left(1, q, \ldots, q^{n-1}\right)$.

$$
\begin{aligned}
& h_{i}\left(1, q, \ldots, q^{n-1}\right)=\binom{n+i-1}{i}_{q} \\
& s_{\lambda}\left(1, q, \ldots, q^{n-1}\right)=q^{*} \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}} .
\end{aligned}
$$

A q-analogue

"Natural" q-analogue of $f\left(1^{n}\right)$ is $f\left(1, q, \ldots, q^{n-1}\right)$.

$$
\begin{aligned}
& h_{i}\left(1, q, \ldots, q^{n-1}\right)=\binom{n+i-1}{i}_{q} \\
& s_{\lambda}\left(1, q, \ldots, q^{n-1}\right)=q^{*} \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}} .
\end{aligned}
$$

Doesn't work (and SNF is unknown).

A q-analogue

"Natural" q-analogue of $f\left(1^{n}\right)$ is $f\left(1, q, \ldots, q^{n-1}\right)$.

$$
\begin{aligned}
& h_{i}\left(1, q, \ldots, q^{n-1}\right)=\binom{n+i-1}{i}_{q} \\
& s_{\lambda}\left(1, q, \ldots, q^{n-1}\right)=q^{*} \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}} .
\end{aligned}
$$

Doesn't work (and SNF is unknown).
Before we had $R=\mathbb{Q}[n]$. Now $R=\mathbb{Q}[q]$. Putting $q=1$ doesn't reduce second situation to the first.

What to do?

Set $\boldsymbol{y}=q^{n}$. Thus for instance

$$
\begin{aligned}
h_{3}\left(1, q, \ldots, q^{n-1}\right) & =\frac{\left(1-q^{n+2}\right)\left(1-q^{n+1}\right)\left(1-q^{n}\right)}{\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)} \\
& =\frac{\left(1-q^{2} y\right)(1-q y)(1-y)}{\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)} .
\end{aligned}
$$

Work over the field $\mathbb{Q}(q)[y]$ (a PID).

What to do?

Set $\boldsymbol{y}=q^{n}$. Thus for instance

$$
\begin{aligned}
h_{3}\left(1, q, \ldots, q^{n-1}\right) & =\frac{\left(1-q^{n+2}\right)\left(1-q^{n+1}\right)\left(1-q^{n}\right)}{\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)} \\
& =\frac{\left(1-q^{2} y\right)(1-q y)(1-y)}{\left(1-q^{3}\right)\left(1-q^{2}\right)(1-q)}
\end{aligned}
$$

Work over the field $\mathbb{Q}(q)[y]$ (a PID).
Previous proof carries over (using a couple of tricks).

Notation

Write

$$
(\boldsymbol{i})=\frac{1-q^{i}}{1-q} .
$$

E.g., $(-\mathbf{3})=-q^{-1}-q^{-2}-q^{-3}$ and $(\mathbf{0})=0$. For $k \geq 1$ let

$$
f(k)=\frac{y(y+(1))(y+(2)) \cdots(y+(k-1))}{(1)(2) \cdots(k)}
$$

Set $f(0)=1$ and $f(k)=0$ for $k<0$.

The final result

Theorem. Define

$$
\mathbf{J T}(\boldsymbol{q})_{\boldsymbol{\lambda}}=\left[f\left(\lambda_{i}-i+j\right)\right]_{i, j=1}^{t},
$$

where $\ell(\lambda) \leq t$. Let the SNF of $\mathrm{JT}(q)_{\lambda}$ over the ring $\mathbb{Q}(q)[y]$ have main diagonal $\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right)$. Then we can take

$$
\gamma_{i}=\prod_{u \in D_{t-i+1}} \frac{y+\boldsymbol{c}(\boldsymbol{u})}{\boldsymbol{h}(\boldsymbol{u})} .
$$

The last slide

The last slide

