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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = dia,g(dl, dldg, Ce dldg s dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n x n matrix over commutative ring R (with 1)
Suppose there exist P, Q € GL(n, R) such that
PAQ = B = diag(dl, dldg, Ce d1d2 T dn),

where d; € R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m x n.

(2) unit - det(A) = det(B) = d?dy ' -+ d,,.

Thus SNF is a refinement of det. I



Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.
» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.
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Row and column operations

Can put a matrix into SNF by the following
operations.

» Add a multiple of a row to another row.

» Add a multiple of a column to another column.
» Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form

(with all unit entries equal to 1).



Existence of SNF

PIR: principal ideal ring, e.g., Z, K |z|, Z/mZ.
If Ris a PIR then A has a unique SNF up to units.



Existence of SNF

PIR: principal ideal ring, e.g., Z, K |z|, Z/mZ.
If Ris a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.

B



Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.



Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has

an SNF.



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A



Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, e, ...,e,): SNF of A
Theorem.

R"/(vi,...,v,) Z(R/e1R)®--- D (R/e,R).
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Algebraic interpretation of SNF

R: a PID

A:an n x n matrix over R with rows
v1,...,0, € R"

diag(eq, es,...,e,): SNF of A
Theorem.

R"/(vi,...,v,) 2 (R/etR)®--- & (R/e,R).
R"/(vy,...,v,): (Kasteleyn) cokernel of A

B



An explicit formula for SNF

R: aPID
A:ann x n matrix over R with det(A) # 0

diag(eq,eq,...,e,): SNF of A



An explicit formula for SNF

R: a PID
A:ann x n matrix over R with det(A) # 0
diag(eq,eq,...,e,): SNF of A

Theorem. eje, - - - ¢; IS the gecd of all v x ¢+ minors
of A.

minor: determinant of a square submatrix.

Special case: ¢, is the gcd of all entries of A.



An example

Reduced Laplacian matrix of /;:

3 —1 —1 |
A= | -1 3 -1
~1 -1 3




An example

Reduced Laplacian matrix of /{;:

A:

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.
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An example

Reduced Laplacian matrix of /{;:

A=

3 —1 —1

-1 3 -1
-1 -1 3

Matrix-tree theorem — det(A) = 16, the
number of spanning trees of K.

What about SNF?
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An example (continued)

3 —1 —1
1 3 -1
1 -1 3

0 0 —1
— 10 4 0
4 —4 0

0O 0 —1
—4 4 —1
8 —4 3
0 0 —
— [ 0 4
4 0

0
4 4 0
8 —4 0
40 0
0 4 0
00 1

0 —1




Reduced Laplacian matrix of K,

LO(Kn) = nly,_1— Ju
det Ly(K,) = n"?



Reduced Laplacian matrix of K,

Lo(K,) = nly, 1 — Jy
det Ly(K,) = n"?

Trick: 2 x 2 submatrices (up to row and column
permutations):

n—1 -1 -1 —1 1 -1
1 n—1| 1 -1 =1 1|

with determinants n(n — 2), —n, and 0. Hence
e1e9 = n. Since H €; = n"~? and €¢‘€i+1, we get

the SNF diag(1,n,n,...,n). I



Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further 1
o time fo utedetals&,
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SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.
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Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

B



Is the question interesting?

Matg(n): all n x n Z-matrices with entries in
|—k, k] (uniform distribution)

pr(n, d): probability that if M € Mat,(n) and
SNF(M) = (eq,...,e,), then e; = d.

Recall: ¢; = gcd of 1 x 1 minors (entries) of M

Theorem. limy,_, pi(n, d) = 1/d" ¢(n?)

B



Specifying some e;

with Yinghui Wang



Specifying some e;

with Yinghui Wang (EA%)



Specifying some e¢;

with Yinghui Wang (EA%)

Two general results.
s letay,...,a, 1 €P, a;la;.

i (n): probability that the SNF of a random
A € Mat(n) satisfies e; = «; for
1 <a; <n-—1.

p(n) = lim pi(n).

Then u(n) exists, and 0 < u(n) < 1. I



Second result

» Letao, € P

v (n): probability that the SNF of a random
A € Maty(n) satisfies e, = «,.

Then

lim vi(n) = 0.
k—00



Sample result

i (n): probability that the SNF of a random
A € Maty(n) satisfies e; = 2, e; = 6.

p(n) = lim pi(n).
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Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF
diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.



Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
[ p2 | p3 [ pn

Theorem. x(n) =




Cyclic cokernel

k(m): probability that an n x n Z-matrix has SNF

diag(ey,es,...,e,) Withey = ey =+ =¢€, 1 = 1.
H <1 | 1 | 1 | _|_ i)
- ; | P2 | P> | P
eorem. —

w(n) C2)CE)
Corollary. . =\ _ 1

) = O T o)

~ 0.846936--- .



Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -
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Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -

Theorem. Prob(g < /) =

1 — (3.46275 - )2~"F (1 + O(27")) I



Small number of generators

g. number of generators of cokernel (number of
entries of SNF £ 1) as n — oo

previous slide: Prob(g = 1) = 0.846936 - - -

Prob(g < 2) = 0.99462688 - - -
Prob(g < 3) = 0.99995329 - - -

Theorem. Prob(g < /) =

1~ (3.46275---)2 V(14 027")) I



3.46275 - - -

3.46275 - - =




Universality

What other probablility distributions on n x n
iInteger matrices give the same conclusions?



Universality

What other probablility distributions on n x n
iInteger matrices give the same conclusions?

Example (P.Q. Nguyen and I. E. Shparlinski).

Fix k,n. Choose a subgroup G of Z" of index < k
uniformly.

pr(n) : probability that G is cyclic
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Universality

What other probablility distributions on n x n
iInteger matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski).

Fix k,n. Choose a subgroup G of Z" of index < k
uniformly.

pr(n) : probability that G is cyclic
lim lim pp(n) ~ 0.846936 - - - ,

n—oo k—o00

same probability of cyclic cokernel as k,

n — OO
using previous distribution. I



Part 11: symmetric functions

0
» 5-Di (operator)

» Jacobi-Trudi specializations



A down-up operator

In collaboration with Tommy Wuxing Cai.



A down-up operator
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A down-up operator

In collaboration with Tommy Wuxing Cai (Z£=>%).

Par(n): set of all partitions of n

E.g., Par(4) = {4,31,22,211,1111}.



A down-up operator

In collaboration with Tommy Wuxing Cai (Z£=>%).

Par(n): set of all partitions of n
E.g., Par(4) = {4,31,22,211,1111}.

V... real vector space with basis Par(n)

B



U

DefineU =U,,: V,, — V, 1 by
UN) =D u
7

where i € Par(n+ 1) and p; > \; Vi.
Example.

U(42211) = 52211 + 43211 + 42221 + 422111

B



D

Dually, define D = D,,: V,, — V,,_; by

where v € Par(n — 1) and v; < \; Vi.

Example. D(42211) = 32211 + 42111 + 4221

B



Symmetric functions

NOTE. ldentify V,, with the space Ag of all

homogeneous symmetric functions of degree n
over Q, and identify \ € V,, with the Schur

function s,. Then

0
U(f) =p1f, D(f):a—pl -

B



Symmetric functions

NOTE. ldentify V,, with the space Ag of all

homogeneous symmetric functions of degree n
over Q, and identify \ € V,, with the Schur

function s,. Then

0
U(f) =p1f, D(f):(’?—pl -

Write
— Un: Vn — vn+1

U
D = _Dn_|_1: Un+1 — Vn I



Commutation relation

DU -UD =1

Allows computation of eigenvalues of
DU:V, — V,.

Or note that the eigenvectors of ;7-p; are the py’s

(A F n), with eigenvalue 1 + m1()), where mq ()
IS the number of parts of A equal to 1.

B



Commutation relation

DU -UD =1

Allows computation of eigenvalues of
DU:V, = V,.

Or note that the eigenvectors of ;7-p; are the py’s

(A F n), with eigenvalue 1 + m1()), where mq ()
IS the number of parts of A equal to 1.

NOTE.

H{IANFn :m\N) =1} =pn+1—1)—pn—1)

where p(m) = #Par(m) = dim V,,. _I



Eigenvalues of DU

Theorem. Let1 <:<n+1,i#n. Theni is an
eigenvalue of D, .U, with multiplicity
p(n+1—14)—pn—1i). Hence

n—+1
det Dy U, = | [ Ht=0rln=0),

1=1

B



Eigenvalues of DU

Theorem. Let1 <:<n+1,i#n. Theni is an
eigenvalue of D, .U, with multiplicity
p(n+1—14)—pn—1i). Hence

n—+1
det Dy U, = | [ Ht=0rln=0),
1=1

What about SNF of the matrix [D,,1U,,| (with

respect to the basis Par(n))?



Conjecture of A. R. Miller, 2005

Conjecture (first form). The diagonal entries of
the SNF of |D,,.1U,] are:

» (n+ 1)(n—1)!, with multiplicity 1

» (n — k)! with multiplicity
p(k+1) =2p(k) +p(k—1),3<k<n-2

» 1, with multiplicity p(n) — p(n — 1) + p(n — 2).

B



Not a trivial result

NOTE. {p)}.-n IS NOt an integral basis.



Another form

m4(A\): number of 1'sin A

M (n): multiset of all numbers m(\) + 1,
A\ € Par(n)

Let SNF of | D, 1U,| be diag(fi, fo, ..., fym))-

Conjecture (second form). £, is the product of
the distinct entries of M (n); f,(,)-1 Is the
product of the remaining distinct entries of

Mi(n), etc.
B



An example: n = 6

Par(6) = {6,51,42,33,411, 321,222, 3111,
2211,21111,111111}

Mq(6) = {1,2,1,1,3,2,1,4,3,5,7}

(fiooo. fu) = (7-5-4-3-2-1,3-2-1,
17171 17 717171 1)
— (840,6,1,1,1,1,1,1,1,1,1)

B

p ]

ek



Yet another form

Conjecture (third form). The matrix
'D,+1U, + xI| has an SNF over Z|z|.

Note that Z|x| is not a PID.



Resolution of conjecture

Theorem. The conjecture of Miller is true.



Resolution of conjecture

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis
{8aFaepar(n) (Schur functions) for Ag, use the

basis {hA} \ePar(n) (COMplete symmetric

functions). Since the two bases differ by a matrix
in SL(p(n),Z), the SNF’s stay the same.

B



Conclusion of proof

(second step) Row and column operations.



Conclusion of proof

(second step) Row and column operations.

Not very insightful.



Conclusion of proof

(second step) Row and column operations.

Not very insightful. (e,



A generalization

m;(A): number of j's in A

M (n): multiset of all numbers j(m;(\) + 1),
A\ € Par(n)

p;: power sum symmetric function 3" 2/

Let SNF of the operator f — (;Zj p; f with respect
to the basis {s\} be diag(gi, g2, - - -, 9pm))-

B



A generalization

m;(A): number of j's in A

M (n): multiset of all numbers j(m;(\) + 1),
A\ € Par(n)

p;: power sum symmetric function 3" 2/

Let SNF of the operator f — (;; p; f with respect
to the basis {s\} be diag(gi, g2, - - -, 9pm))-

Theorem (Zipei Nie). g, Is the product of the
distinct entries of M ;(n); g,(, -1 Is the product of

the remaining distinct entries of M (n), efc. I



Two remarks

» The operators D, U and identity
DU — UD = I extend to any differential poset
P . Miller and Reiner have conjectures for the
SNF of DU. Nie has a conjecture on the
structure of P which would prove the
Miller-Reiner conjecture.

B



Two remarks

» The operators D, U and identity
DU — UD = I extend to any differential poset
P . Miller and Reiner have conjectures for the
SNF of DU. Nie has a conjecture on the
structure of P which would prove the
Miller-Reiner conjecture.

» More general operators:

o 0 .
p2p1, €LC.
op? Op1 Ops

No conjecture known for SNF. _I




Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

B



Jacobi-Trudi specialization

Jacobi-Trudi identity:
sy = det|hy, i),

where s, is a Schur function and h; is a
complete symmetric function.

We consider the specialization
r1 =29 =---=ux, =1, other ; = 0. Then

hi%< 7;_ ) _I



Specialized Schur function

UEN

c(u): content of the square «

0|1 2 3| 4
-1/ 0 1| 2
-2/-11 0| 1




Diagonal hooks D4,..., D,

A= (5,4,4,2)



Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




Diagonal hooks D4,..., D,




SNF result

Let

SNFK” SIAE
Ai — 14

Theorem.

00000



Idea of proof

n + c(u)
S ST

UED y,—i41

Want to prove e; = f;. Note that f1f5--- f; Is the
value of the lower-left 2 x + minor. (Special
argument for O minors.)

B



Idea of proof

n + c(u)
S ST

UED y,—i41

Want to prove e; = f;. Note that f1f5--- f; Is the
value of the lower-left 2 x + minor. (Special
argument for O minors.)

Every i x ¢ minor is a specialized skew Schur
function s, ,,. Let s, correspond to the lower left

7 X 7 minor.



Conclusion of proof

Let s,;, = » ci,s,. By Littlewood-Richardson

0

p/v =
rule,

¢y 70 = aCp
= {contents of a} C {contents of p}
(as multisets).

B



Conclusion of proof

Let Sy =

) ¢t s,. By Littlewood-Richardson

P
rule,

¢y, 70 = aCp
= {contents of a} C {contents of p}
(as multisets).

Hence f;--- f; = gcd(i X ¢ minors) = ey - - - ¢;.

B




An example

A= (7,6,6,5,3), k=3=pu=(4,3,1)



An example

A= (7,6,6,5,3), k=3=pu=(4,3,1)

hy hg hy hi hi

JIx= 1| hy hs hg h7 hg




An example

A= (7,6,6,5.3), k=3= u—=(43,1)
- hy hs hg hig hiu
hs he h7 hg hy
JI'yv=1| hy hs hg h: hs
ha h3z hy hs he
O 1 hy hy h;s




t.)
le (con
amp

An ex

A
a

JTy

h7
hs

hs
h

h4 h5
ho s

0

1

hg
h7
he
hy
hq




t.)
le (con
amp

An ex

A
a

JT) =

h7
hs

hg
he

h4 h5
ho s

0

1

hg
h7
he
h4
hq

X for sgs53/21
di matrix fo
bi-Tru
Jaco




An example (concluded)

111/1|1
2| 2] 2
3

Every LR-filling contains 1,1,1,1,2,2,2,3. Thus If
<3653/217 Sp> > O, then 431 C P. Therefore

H n+ c(u \Hn+c

ueddl uep

= H ) | S653/21(1"). I
uc43l



A g-analogue

“Natural” g-analogue of f(1")is f(1,q,...,¢" ).

<n+i—1>
¢ q

n—l) * 1'_'q

h@(17Q7"'7qn_1)

SA(17Q7"'7Q

|
<



A g-analogue

“Natural” g-analogue of f(1")is f(1,q,...,¢" ).

<n+i—1)
¢ q

n—l) * 1 — q

h@(17Q7"'7qn_1)

SA(17Q7"'7Q

|
<

Doesn’t work (and SNF is unknown).



A g-analogue

“Natural” g-analogue of f(1")is f(1,q,...,¢" ).

<n+i—1)
¢ q

n—l) * 1 — q

h@(17Q7"'7qn_1)

SA(17Q7"'7Q

|
<

Doesn’t work (and SNF is unknown).

Before we had R = Q[n]. Now R = Q[g|. Putting

g = 1 doesn’t reduce second situation to the first. I



What to do?

Set y = ¢". Thus for instance
(1-¢")(1—¢""H(1 - ¢")
(1—¢*)(1 —¢*)(1—q)
(1—q°y)(1 — qy)(1 —y)
1-¢)(1-¢*)(1-q)

Work over the field Q(q)|y| (a PID).

h3(17q 7777 qn_l) —

B



What to do?

Set y = ¢". Thus for instance
(1—¢"")(1—¢""M)(1 —q")
(1-¢*)(1—q*)(1—q)
(1—-¢y)(1 —qy)(1 —y)
(I—¢)(1—-¢*)(1—9q)

Work over the field Q(q)[y| (a PID).

h3(17 q,... 7qn_1) —

Previous proof carries over (using a couple of

tricks).
N



Notation

Write |
. 1 —4¢
q

Eg., (=3)=—-q¢'—q?—q¢*and(0)=0. For
k>1let

-+ )y +(2))--(y+(k=1))
(1)(2) - (k) |

Set f(0)=1and f(k) =0 fork < 0.

fk) =~



The final result

Theorem. Define
IT(q)x = [f(h —i+ 7).

where (()\) < t. Let the SNF of JT(q), over the
ring Q(q)|y| have main diagonal (v1,7ve, ..., Vt)-
Then we can take

Vi =



The last slide



/,m'\

The last slide = 2



The last slide
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