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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.
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Smith normal form

A: n× n matrix over commutative ring R (with 1)

Suppose there exist P ,Q ∈ GL(n,R) such that

PAQ := B = diag(d1, d1d2, . . . d1d2 · · · dn),

where di ∈ R. We then call B a Smith normal
form (SNF) of A.

NOTE. (1) Can extend to m× n.

(2) unit · det(A) = det(B) = dn1d
n−1
2 · · · dn.

Thus SNF is a refinement of det.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.
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Row and column operations

Can put a matrix into SNF by the following
operations.

Add a multiple of a row to another row.

Add a multiple of a column to another column.

Multiply a row or column by a unit in R.

Over a field, SNF is row reduced echelon form
(with all unit entries equal to 1).
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Existence of SNF

PIR: principal ideal ring, e.g., Z, K[x], Z/mZ.

If R is a PIR then A has a unique SNF up to units.
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Existence of SNF

PIR: principal ideal ring, e.g., Z, K[x], Z/mZ.

If R is a PIR then A has a unique SNF up to units.

Otherwise A “typically” does not have a SNF but
may have one in special cases.
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)
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Algebraic note

Not known in general for which rings R does
every matrix over R have an SNF.

Necessary condition: R is a Bézout ring, i.e.,
every finitely generated ideal is principal.

Example. ring of entire functions and ring of all
algebraic integers (not PIR’s)

Open: every matrix over a Bézout domain has
an SNF.
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).
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Algebraic interpretation of SNF

R: a PID

A: an n× n matrix over R with rows
v1, . . . , vn ∈ Rn

diag(e1, e2, . . . , en): SNF of A

Theorem.

Rn/(v1, . . . , vn) ∼= (R/e1R)⊕ · · · ⊕ (R/enR).

Rn/(v1, . . . , vn): (Kasteleyn) cokernel of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A
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An explicit formula for SNF

R: a PID

A: an n× n matrix over R with det(A) 6= 0

diag(e1, e2, . . . , en): SNF of A

Theorem. e1e2 · · · ei is the gcd of all i× i minors
of A.

minor: determinant of a square submatrix.

Special case: e1 is the gcd of all entries of A.

Smith Normal Form and Combinatorics – p. 8



An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.
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An example

Reduced Laplacian matrix of K4:

A =







3 −1 −1

−1 3 −1

−1 −1 3







Matrix-tree theorem =⇒ det(A) = 16, the
number of spanning trees of K4.

What about SNF?
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An example (continued)













3 −1 −1

−1 3 −1

−1 −1 3













→













0 0 −1

−4 4 −1

8 −4 3













→













0 0 −1

−4 4 0

8 −4 0













→







0 0 −1

0 4 0

4 −4 0






→







0 0 −1

0 4 0

4 0 0






→







4 0 0

0 4 0

0 0 1
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Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

detL0(Kn) = nn−2
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Reduced Laplacian matrix of Kn

L0(Kn) = nIn−1 − Jn−1

detL0(Kn) = nn−2

Trick: 2× 2 submatrices (up to row and column
permutations):
[

n− 1 −1

−1 n− 1

]

,

[

n− 1 −1

−1 −1

]

,

[

−1 −1

−1 −1

]

,

with determinants n(n− 2), −n, and 0. Hence

e1e2 = n. Since
∏

ei = nn−2 and ei|ei+1, we get
the SNF diag(1, n, n, . . . , n).
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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Laplacian matrices of general graphs

SNF of the Laplacian matrix of a graph: very
interesting

connections with sandpile models, chip firing,
abelian avalanches, etc.

no time for further details
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SNF of random matrices

Huge literature on random matrices, mostly
connected with eigenvalues.

Very little work on SNF of random matrices over
a PID.
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M
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Is the question interesting?

Matk(n): all n× n Z-matrices with entries in
[−k, k] (uniform distribution)

pk(n, d): probability that if M ∈ Matk(n) and
SNF(M) = (e1, . . . , en), then e1 = d.

Recall: e1 = gcd of 1× 1 minors (entries) of M

Theorem. limk→∞ pk(n, d) = 1/dn
2

ζ(n2)
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Specifying some ei

with Yinghui Wang
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Specifying some ei

with Yinghui Wang ( )
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Specifying some ei

with Yinghui Wang ( )

Two general results.

Let α1, . . . , αn−1 ∈ P, αi|αi+1.

µk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies ei = αi for
1 ≤ αi ≤ n− 1.

µ(n) = lim
k→∞

µk(n).

Then µ(n) exists, and 0 < µ(n) < 1.
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Second result

Let αn ∈ P.

νk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies en = αn.

Then

lim
k→∞

νk(n) = 0.
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Sample result

µk(n): probability that the SNF of a random
A ∈ Matk(n) satisfies e1 = 2, e2 = 6.

µ(n) = lim
k→∞

µk(n).
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Conclusion

µ(n) = 2−n2



1−

n(n−1)
∑

i=(n−1)2

2−i +
n2−1
∑

i=n(n−1)+1

2−i





·
3

2
· 3−(n−1)2(1− 3(n−1)2)(1− 3−n)2

·
∏

p>3



1−

n(n−1)
∑

i=(n−1)2

p−i +
n2−1
∑

i=n(n−1)+1

p−i



 .
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·
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Cyclic cokernel

κ(n): probability that an n× n Z-matrix has SNF
diag(e1, e2, . . . , en) with e1 = e2 = · · · = en−1 = 1.

Theorem. κ(n) =

∏

p

(

1 +
1

p2
+

1

p3
+ · · ·+

1

pn

)

ζ(2)ζ(3) · · ·

Corollary. lim
n→∞

κ(n) =
1

ζ(6)
∏

j≥4 ζ(j)

≈ 0.846936 · · · .
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·

Theorem. Prob(g ≤ ℓ) =

1− (3.46275 · · · )2−(ℓ+1)2(1 +O(2−ℓ))
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Small number of generators

g: number of generators of cokernel (number of
entries of SNF 6= 1) as n → ∞

previous slide: Prob(g = 1) = 0.846936 · · ·

Prob(g ≤ 2) = 0.99462688 · · ·

Prob(g ≤ 3) = 0.99995329 · · ·

Theorem. Prob(g ≤ ℓ) =

1− (3.46275 · · ·)2−(ℓ+1)2(1 +O(2−ℓ))

Smith Normal Form and Combinatorics – p. 20



3.46275 · · ·

3.46275 · · · =
1

∏

j≥1

(

1−
1

2j

)
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Universality

What other probablility distributions on n× n
integer matrices give the same conclusions?
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Universality

What other probablility distributions on n× n
integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski).
Fix k, n. Choose a subgroup G of Zn of index ≤ k
uniformly.

ρk(n) : probability that G is cyclic
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Universality

What other probablility distributions on n× n
integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski).
Fix k, n. Choose a subgroup G of Zn of index ≤ k
uniformly.

ρk(n) : probability that G is cyclic

lim
n→∞

lim
k→∞

ρk(n) ≈ 0.846936 · · · ,

same probability of cyclic cokernel as k, n → ∞
using previous distribution.
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Part II: symmetric functions

∂
∂p1

p1 (operator)

Jacobi-Trudi specializations
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A down-up operator

In collaboration with Tommy Wuxing Cai.
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A down-up operator

In collaboration with Tommy Wuxing Cai ( ).
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A down-up operator

In collaboration with Tommy Wuxing Cai ( ).

Par(n): set of all partitions of n

E.g., Par(4) = {4, 31, 22, 211, 1111}.
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A down-up operator

In collaboration with Tommy Wuxing Cai ( ).

Par(n): set of all partitions of n

E.g., Par(4) = {4, 31, 22, 211, 1111}.

Vn: real vector space with basis Par(n)
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U

Define U = Un : Vn → Vn+1 by

U(λ) =
∑

µ

µ,

where µ ∈ Par(n+ 1) and µi ≥ λi ∀i.

Example.

U(42211) = 52211 + 43211 + 42221 + 422111
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D

Dually, define D = Dn : Vn → Vn−1 by

D(λ) =
∑

ν

ν,

where ν ∈ Par(n− 1) and νi ≤ λi ∀i.

Example. D(42211) = 32211 + 42111 + 4221
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Symmetric functions

NOTE. Identify Vn with the space Λn
Q

of all

homogeneous symmetric functions of degree n
over Q, and identify λ ∈ Vn with the Schur
function sλ. Then

U(f) = p1f, D(f) =
∂

∂p1
f.
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Symmetric functions

NOTE. Identify Vn with the space Λn
Q

of all

homogeneous symmetric functions of degree n
over Q, and identify λ ∈ Vn with the Schur
function sλ. Then

U(f) = p1f, D(f) =
∂

∂p1
f.

Write

U = Un : Vn → Vn+1

D = Dn+1 : vn+1 → Vn.
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Commutation relation

Basic commutation relation: DU − UD = I

Allows computation of eigenvalues of
DU : Vn → Vn.

Or note that the eigenvectors of ∂
∂p1

p1 are the pλ’s

(λ ⊢ n), with eigenvalue 1 +m1(λ), where m1(λ)
is the number of parts of λ equal to 1.
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Commutation relation

Basic commutation relation: DU − UD = I

Allows computation of eigenvalues of
DU : Vn → Vn.

Or note that the eigenvectors of ∂
∂p1

p1 are the pλ’s

(λ ⊢ n), with eigenvalue 1 +m1(λ), where m1(λ)
is the number of parts of λ equal to 1.

NOTE.

#{λ ⊢ n : m1(λ) = i} = p(n+ 1− i)− p(n− i),

where p(m) = #Par(m) = dimVm.
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Eigenvalues of DU

Theorem. Let 1 ≤ i ≤ n+ 1, i 6= n. Then i is an
eigenvalue of Dn+1Un with multiplicity
p(n+ 1− i)− p(n− i). Hence

detDn+1Un =
n+1
∏

i=1

ip(n+1−i)−p(n−i).
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Eigenvalues of DU

Theorem. Let 1 ≤ i ≤ n+ 1, i 6= n. Then i is an
eigenvalue of Dn+1Un with multiplicity
p(n+ 1− i)− p(n− i). Hence

detDn+1Un =
n+1
∏

i=1

ip(n+1−i)−p(n−i).

What about SNF of the matrix [Dn+1Un] (with
respect to the basis Par(n))?
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Conjecture of A. R. Miller, 2005

Conjecture (first form). The diagonal entries of
the SNF of [Dn+1Un] are:

(n+ 1)(n− 1)!, with multiplicity 1

(n− k)! with multiplicity
p(k + 1)− 2p(k) + p(k − 1), 3 ≤ k ≤ n− 2

1, with multiplicity p(n)− p(n− 1) + p(n− 2).
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Not a trivial result

NOTE. {pλ}λ⊢n is not an integral basis.
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Another form

m1(λ): number of 1’s in λ

M1(n): multiset of all numbers m1(λ) + 1,
λ ∈ Par(n)

Let SNF of [Dn+1Un] be diag(f1, f2, . . . , fp(n)).

Conjecture (second form). fp(n) is the product of

the distinct entries of M1(n); fp(n)−1 is the

product of the remaining distinct entries of
M1(n), etc.
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An example: n = 6

Par(6) = {6, 51, 42, 33, 411, 321, 222, 3111,

2211, 21111, 111111}

M1(6) = {1, 2, 1, 1, 3, 2, 1, 4, 3, 5, 7}

(f1, . . . , f11) = (7 · 5 · 4 · 3 · 2 · 1, 3 · 2 · 1,

1, 1, 1, 1, 1, 1, 1, 1, 1)

= (840, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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Yet another form

Conjecture (third form). The matrix
[Dn+1Un + xI] has an SNF over Z[x].

Note that Z[x] is not a PID.
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Resolution of conjecture

Theorem. The conjecture of Miller is true.
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Resolution of conjecture

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis
{sλ}λ∈Par(n) (Schur functions) for Λn

Q, use the

basis {hλ}λ∈Par(n) (complete symmetric

functions). Since the two bases differ by a matrix
in SL(p(n),Z), the SNF’s stay the same.
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Conclusion of proof

(second step) Row and column operations.
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Conclusion of proof

(second step) Row and column operations.

Not very insightful.
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Conclusion of proof

(second step) Row and column operations.

Not very insightful.
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A generalization

mj(λ): number of j’s in λ

Mj(n): multiset of all numbers j(mj(λ) + 1),
λ ∈ Par(n)

pj: power sum symmetric function
∑

xji

Let SNF of the operator f 7→ j ∂
∂pj

pjf with respect

to the basis {sλ} be diag(g1, g2, . . . , gp(n)).
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A generalization

mj(λ): number of j’s in λ

Mj(n): multiset of all numbers j(mj(λ) + 1),
λ ∈ Par(n)

pj: power sum symmetric function
∑

xji

Let SNF of the operator f 7→ j ∂
∂pj

pjf with respect

to the basis {sλ} be diag(g1, g2, . . . , gp(n)).

Theorem (Zipei Nie). gp(n) is the product of the

distinct entries of Mj(n); gp(n)−1 is the product of

the remaining distinct entries of Mj(n), etc.
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Two remarks

The operators D,U and identity
DU − UD = I extend to any differential poset
P . Miller and Reiner have conjectures for the
SNF of DU . Nie has a conjecture on the
structure of P which would prove the
Miller-Reiner conjecture.
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Two remarks

The operators D,U and identity
DU − UD = I extend to any differential poset
P . Miller and Reiner have conjectures for the
SNF of DU . Nie has a conjecture on the
structure of P which would prove the
Miller-Reiner conjecture.

More general operators:

∂2

∂p21
p12, 2

∂

∂p1

∂

∂p2
p2p1, etc.

No conjecture known for SNF.
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Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j],

where sλ is a Schur function and hi is a
complete symmetric function.
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Jacobi-Trudi specialization

Jacobi-Trudi identity:

sλ = det[hλi−i+j],

where sλ is a Schur function and hi is a
complete symmetric function.

We consider the specialization
x1 = x2 = · · · = xn = 1, other xi = 0. Then

hi →

(

n+ i− 1

i

)

.
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Specialized Schur function

sλ →
∏

u∈λ

n+ c(u)

h(u)
.

c(u): content of the square u

−1

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2
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Diagonal hooks D1, . . . , Dm

λ = (5,4,4,2)

0 1 2 3 4

0 1 2

0 1

−1

−2

−3 −2

−1
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Diagonal hooks D1, . . . , Dm

D1

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0
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Diagonal hooks D1, . . . , Dm

D2

0 1 2 3 4

1 2

0 1−2

−3 −2

−1

−1 0
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Diagonal hooks D1, . . . , Dm

D3

0 1 2 3 4

1 2

0 1

−1

−2

−3 −2

−1

0
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SNF result

R = Q[n] (a PID)

Let

SNF

[(

n+ λi − i+ j − 1

λi − i+ j

)]

= diag(e1, . . . , em).

Theorem.

ei =
∏

u∈Dm−i+1

n+ c(u)

h(u)
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Idea of proof

fi =
∏

u∈Dm−i+1

n+ c(u)

h(u)

Want to prove ei = fi. Note that f1f2 · · · fi is the
value of the lower-left i× i minor. (Special
argument for 0 minors.)
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Idea of proof

fi =
∏

u∈Dm−i+1

n+ c(u)

h(u)

Want to prove ei = fi. Note that f1f2 · · · fi is the
value of the lower-left i× i minor. (Special
argument for 0 minors.)

Every i× i minor is a specialized skew Schur
function sµ/ν. Let sα correspond to the lower left

i× i minor.

Smith Normal Form and Combinatorics – p. 43



Conclusion of proof

Let sµ/ν =
∑

ρ

cµνρsρ. By Littlewood-Richardson

rule,

cµνρ 6= 0 ⇒ α ⊆ ρ

⇒ {contents of α} ⊆ {contents of ρ}

(as multisets).
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Conclusion of proof

Let sµ/ν =
∑

ρ

cµνρsρ. By Littlewood-Richardson

rule,

cµνρ 6= 0 ⇒ α ⊆ ρ

⇒ {contents of α} ⊆ {contents of ρ}

(as multisets).

Hence f1 · · · fi = gcd(i× i minors) = e1 · · · ei. �
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An example

λ = (7, 6, 6, 5, 3), k = 3 ⇒ µ = (4, 3, 1)
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An example

λ = (7, 6, 6, 5, 3), k = 3 ⇒ µ = (4, 3, 1)

JTλ =















h7 h8 h9 h10 h11

h5 h6 h7 h8 h9

h4 h5 h6 h7 h8

h2 h3 h4 h5 h6

0 1 h1 h2 h3
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An example

λ = (7, 6, 6, 5, 3), k = 3 ⇒ µ = (4, 3, 1)

JTλ =















h7 h8 h9 h10 h11

h5 h6 h7 h8 h9

h4 h5 h6 h7 h8

h2 h3 h4 h5 h6

0 1 h1 h2 h3
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An example (cont.)

A “random” 3× 3 minor of JTλ:

JTλ =















h7 h8 h9 h10 h11

h5 h6 h7 h8 h9

h4 h5 h6 h7 h8

h2 h3 h4 h5 h6

0 1 h1 h2 h3
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An example (cont.)

A “random” 3× 3 minor of JTλ:

JTλ =















h7 h8 h9 h10 h11

h5 h6 h7 h8 h9

h4 h5 h6 h7 h8

h2 h3 h4 h5 h6

0 1 h1 h2 h3















Jacobi-Trudi matrix for s653/21

Smith Normal Form and Combinatorics – p. 46



An example (concluded)

11 1 1

2 2 2

3

Every LR-filling contains 1,1,1,1,2,2,2,3. Thus if
〈s653/21, sρ〉 > 0, then 431 ⊆ ρ. Therefore

∏

u∈431

(n+ c(u)) |
∏

u∈ρ

(n+ c(u))

⇒
∏

u∈431

(n+ c(u)) | s653/21(1
n).
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A q-analogue

“Natural” q-analogue of f(1n) is f(1, q, . . . , qn−1).

hi(1, q, . . . , q
n−1) =

(

n+ i− 1

i

)

q

sλ(1, q, . . . , q
n−1) = q∗

∏

u∈λ

1− qn+c(u)

1− qh(u)
.
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A q-analogue

“Natural” q-analogue of f(1n) is f(1, q, . . . , qn−1).

hi(1, q, . . . , q
n−1) =

(

n+ i− 1

i

)

q

sλ(1, q, . . . , q
n−1) = q∗

∏

u∈λ

1− qn+c(u)

1− qh(u)
.

Doesn’t work (and SNF is unknown).

Smith Normal Form and Combinatorics – p. 48



A q-analogue

“Natural” q-analogue of f(1n) is f(1, q, . . . , qn−1).

hi(1, q, . . . , q
n−1) =

(

n+ i− 1

i

)

q

sλ(1, q, . . . , q
n−1) = q∗

∏

u∈λ

1− qn+c(u)

1− qh(u)
.

Doesn’t work (and SNF is unknown).

Before we had R = Q[n]. Now R = Q[q]. Putting
q = 1 doesn’t reduce second situation to the first.
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What to do?

Set y = qn. Thus for instance

h3(1, q, . . . , q
n−1) =

(1− qn+2)(1− qn+1)(1− qn)

(1− q3)(1− q2)(1− q)

=
(1− q2y)(1− qy)(1− y)

(1− q3)(1− q2)(1− q)
.

Work over the field Q(q)[y] (a PID).
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What to do?

Set y = qn. Thus for instance

h3(1, q, . . . , q
n−1) =

(1− qn+2)(1− qn+1)(1− qn)

(1− q3)(1− q2)(1− q)

=
(1− q2y)(1− qy)(1− y)

(1− q3)(1− q2)(1− q)
.

Work over the field Q(q)[y] (a PID).

Previous proof carries over (using a couple of
tricks).
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Notation

Write

(i) =
1− qi

1− q
.

E.g., (−3) = −q−1 − q−2 − q−3 and (0) = 0. For
k ≥ 1 let

f(k) =
y(y + (1))(y + (2)) · · · (y + (k − 1))

(1)(2) · · · (k)
.

Set f(0) = 1 and f(k) = 0 for k < 0.
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The final result

Theorem. Define

JT(q)λ = [f(λi − i+ j)]ti,j=1 ,

where ℓ(λ) ≤ t. Let the SNF of JT(q)λ over the
ring Q(q)[y] have main diagonal (γ1, γ2, . . . , γt).
Then we can take

γi =
∏

u∈Dt−i+1

y + c(u)

h(u)
.
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The last slide
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The last slide
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The last slide

Smith Normal Form and Combinatorics – p. 53


	�ma {Outline}
	�ma {Outline}

	�ma {Smith normal form}
	�ma {Smith normal form}

	�ma {Row and column operations}
	�ma {Row and column operations}

	�ma {Existence of SNF}
	�ma {Existence of SNF}

	�ma {Algebraic note}
	�ma {Algebraic note}
	�ma {Algebraic note}

	�ma {Algebraic interpretation of SNF}
	�ma {Algebraic interpretation of SNF}
	�ma {Algebraic interpretation of SNF}

	�ma {An explicit formula for SNF}
	�ma {An explicit formula for SNF}

	�ma {An example}
	�ma {An example}
	�ma {An example}

	�ma {An example (continued)}
	�ma {Reduced Laplacian matrix of $�m {K_n}$}
	�ma {Reduced Laplacian matrix of $�m {K_n}$}

	�ma {Laplacian matrices of general graphs}
	�ma {Laplacian matrices of general graphs}
	�ma {Laplacian matrices of general graphs}

	SNF of random matrices
	�ma {Is the question interesting?}
	�ma {Is the question interesting?}
	�ma {Is the question interesting?}

	�ma {Specifying some $�m {e_i}$}
	�ma {Specifying some $�m {e_i}$}
	�ma {Specifying some $�m {e_i}$}

	�ma {Second result}
	�ma {Sample result}
	�ma {Conclusion}
	�ma {Cyclic cokernel}
	�ma {Cyclic cokernel}
	�ma {Cyclic cokernel}

	�ma {Small number of generators}
	�ma {Small number of generators}
	�ma {Small number of generators}
	�ma {Small number of generators}
	�ma {Small number of generators}

	�ma {$�m {3.46275cdots }$}
	�ma {Universality}
	�ma {Universality}
	�ma {Universality}

	�ma {Part II: symmetric functions}
	�ma {A down-up operator}
	�ma {A down-up operator}
	�ma {A down-up operator}
	�ma {A down-up operator}

	�ma {$�m {U}$}
	�ma {$�m {D}$}
	�ma {Symmetric functions}
	�ma {Symmetric functions}

	�ma {Commutation relation}
	�ma {Commutation relation}

	�ma {Eigenvalues of $�m {DU}$}
	�ma {Eigenvalues of $�m {DU}$}

	�ma {Conjecture of A. R. Miller, 2005}
	�ma {Not a trivial result}
	�ma {Another form}
	�ma {An example: $�m {n=6}$}
	�ma {Yet another form}
	�ma {Resolution of conjecture}
	�ma {Resolution of conjecture}

	�ma {Conclusion of proof}
	�ma {Conclusion of proof}
	�ma {Conclusion of proof}

	�ma {A generalization}
	�ma {A generalization}

	�ma {Two remarks}
	�ma {Two remarks}

	�ma {Jacobi-Trudi specialization}
	�ma {Jacobi-Trudi specialization}

	�ma {Specialized Schur function}
	�ma {Diagonal hooks $�m {D_1,dots ,D_m}$}
	�ma {Diagonal hooks $�m {D_1,dots ,D_m}$}
	�ma {Diagonal hooks $�m {D_1,dots ,D_m}$}
	�ma {Diagonal hooks $�m {D_1,dots ,D_m}$}

	�ma {SNF result}
	�ma {Idea of proof}
	�ma {Idea of proof}

	�ma {Conclusion of proof}
	�ma {Conclusion of proof}

	�ma {An example}
	�ma {An example}
	�ma {An example}

	�ma {An example (cont.)}
	�ma {An example (cont.)}

	�ma {An example (concluded)}
	�ma {A $�m {q}$-analogue}
	�ma {A $�m {q}$-analogue}
	�ma {A $�m {q}$-analogue}

	�ma {What to do?}
	�ma {What to do?}

	�ma {Notation}
	�ma {The final result}
	smallskip �ma {The last slide}
	�ma {The last slide}qquad includegraphics [width=1cm, trim=0 33 0 0]{cryingface.eps} 
	�ma {The last slide}qquad includegraphics [width=1cm, trim=0 33 0 0]{cryingface.eps} 


