

Smith Normal Form and Combinatorics

Richard P. Stanley

Smith Normal Form and Combinatorics - p. 1

Part I

- basics
- random matrices

Smith Normal Form and Combinatorics – p. 2

Part I

- basics
- random matrices

Part II: symmetric functions

- $\frac{\partial}{\partial p_1} p_1$ (operator)
- Jacobi-Trudi specializations

Smith Normal Form and Combinatorics - p. 2

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that
 - $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$
- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.

- **A**: $n \times n$ matrix over commutative ring **R** (with 1)
- Suppose there exist $P, Q \in GL(n, R)$ such that

 $PAQ := B = \operatorname{diag}(d_1, d_1d_2, \dots, d_1d_2 \cdots d_n),$

- where $d_i \in R$. We then call *B* a Smith normal form (SNF) of *A*.
- **NOTE.** (1) Can extend to $m \times n$.

(2) unit $\cdot \det(A) = \det(B) = d_1^n d_2^{n-1} \cdots d_n.$

Thus SNF is a refinement of $\det.$

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.

Row and column operations

- Can put a matrix into SNF by the following operations.
- Add a multiple of a row to another row.
- Add a multiple of a column to another column.
- Multiply a row or column by a **unit** in R.
- Over a field, SNF is **row reduced echelon form** (with all unit entries equal to 1).

PIR: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.

If *R* is a PIR then *A* has a unique SNF up to units.

- **PIR**: principal ideal ring, e.g., \mathbb{Z} , K[x], $\mathbb{Z}/m\mathbb{Z}$.
- If *R* is a PIR then *A* has a unique SNF up to units.
- Otherwise A "typically" does not have a SNF but may have one in special cases.

Algebraic note

Not known in general for which rings R does every matrix over R have an SNF.

- Not known in general for which rings R does every matrix over R have an SNF.
- Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.
- **Example.** ring of entire functions and ring of all algebraic integers (not PIR's)

- Not known in general for which rings R does every matrix over R have an SNF.
- Necessary condition: *R* is a **Bézout ring**, i.e., every finitely generated ideal is principal.
- **Example.** ring of entire functions and ring of all algebraic integers (not PIR's)
- **Open:** every matrix over a Bézout domain has an SNF.

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

$$R^n/(v_1,\ldots,v_n)\cong (R/e_1R)\oplus\cdots\oplus (R/e_nR).$$

Algebraic interpretation of SNF

R: a PID

- **A**: an $n \times n$ matrix over R with rows $v_1, \ldots, v_n \in R^n$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

Theorem.

 $R^n/(v_1, \dots, v_n) \cong (R/e_1R) \oplus \dots \oplus (R/e_nR).$ $R^n/(v_1, \dots, v_n)$: (Kasteleyn) cokernel of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A

An explicit formula for SNF

R: a PID

- **A**: an $n \times n$ matrix over R with $det(A) \neq 0$
- $\operatorname{diag}(e_1, e_2, \ldots, e_n)$: SNF of A
- **Theorem.** $e_1e_2 \cdots e_i$ is the gcd of all $i \times i$ minors of A.
- minor: determinant of a square submatrix.
- **Special case:** e_1 is the gcd of all entries of A.

An example

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

Reduced Laplacian matrix of K_4 :

$$A = \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Matrix-tree theorem $\implies det(A) = 16$, the number of spanning trees of K_4 .

What about SNF?

An example (continued)

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$
$$\det L_0(K_n) = n^{n-2}$$

Reduced Laplacian matrix of K_n

$$L_0(K_n) = nI_{n-1} - J_{n-1}$$

$$\det L_0(K_n) = n^{n-2}$$

Trick: 2×2 submatrices (up to row and column permutations):

$$\begin{bmatrix} n-1 & -1 \\ -1 & n-1 \end{bmatrix}, \begin{bmatrix} n-1 & -1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix},$$

with determinants n(n-2), -n, and 0. Hence $e_1e_2 = n$. Since $\prod e_i = n^{n-2}$ and $e_i|e_{i+1}$, we get the SNF diag $(1, n, n, \dots, n)$.

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.
- no time for further details

Laplacian matrices of general graphs

- SNF of the Laplacian matrix of a graph: very interesting
- connections with sandpile models, chip firing, abelian avalanches, etc.

no time for further details

SNF of random matrices

- Huge literature on random matrices, mostly connected with eigenvalues.
- Very little work on SNF of random matrices over a PID.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \gcd \text{ of } 1 \times 1 \text{ minors (entries) of } M$

Is the question interesting?

 $Mat_k(n)$: all $n \times n \mathbb{Z}$ -matrices with entries in [-k, k] (uniform distribution)

 $p_k(n, d)$: probability that if $M \in Mat_k(n)$ and $SNF(M) = (e_1, \dots, e_n)$, then $e_1 = d$.

Recall: $e_1 = \text{gcd of } 1 \times 1 \text{ minors (entries) of } M$

Theorem. $\lim_{k\to\infty} p_k(n,d) = 1/d^{n^2}\zeta(n^2)$

Specifying some *e*_i

with Yinghui Wang

Smith Normal Form and Combinatorics – p. 15

Specifying some *e*_i

with Yinghui Wang (王颖慧)

Smith Normal Form and Combinatorics – p. 15

Specifying some e_i

with Yinghui Wang (王颖慧)

- Two general results.
 - Let $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{P}$, $\alpha_i | \alpha_{i+1}$.

 $\mu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_i = \alpha_i$ for $1 \le \alpha_i \le n - 1$.

$$\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$$

Then $\mu(n)$ exists, and $0 < \mu(n) < 1$.

Second result

• Let $\alpha_n \in \mathbb{P}$.

$\nu_k(n)$: probability that the SNF of a random $A \in \operatorname{Mat}_k(n)$ satisfies $e_n = \alpha_n$.

Then

$$\lim_{k \to \infty} \nu_k(n) = 0.$$

 $\mu_k(n)$: probability that the SNF of a random $A \in Mat_k(n)$ satisfies $e_1 = 2, e_2 = 6$.

$$\boldsymbol{\mu(n)} = \lim_{k \to \infty} \mu_k(n).$$

Conclusion

$$\mu(n) = 2^{-n^2} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} 2^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} 2^{-i} \right)$$
$$\cdot \frac{3}{2} \cdot 3^{-(n-1)^2} (1 - 3^{(n-1)^2}) (1 - 3^{-n})^2$$
$$\cdot \prod_{p>3} \left(1 - \sum_{i=(n-1)^2}^{n(n-1)} p^{-i} + \sum_{i=n(n-1)+1}^{n^2-1} p^{-i} \right)$$

Smith Normal Form and Combinatorics – p. 18
$\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \dots, e_n) with $e_1 = e_2 = \dots = e_{n-1} = 1$.

$$\mathbf{Theorem.}\ \kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

 $\kappa(n)$: probability that an $n \times n \mathbb{Z}$ -matrix has SNF diag (e_1, e_2, \ldots, e_n) with $e_1 = e_2 = \cdots = e_{n-1} = 1$.

Theorem.
$$\kappa(n) = \frac{\prod_{p} \left(1 + \frac{1}{p^2} + \frac{1}{p^3} + \dots + \frac{1}{p^n}\right)}{\zeta(2)\zeta(3)\cdots}$$

Corollary. $\lim_{n \to \infty} \kappa(n) = \frac{1}{\zeta(6) \prod_{j \ge 4} \zeta(j)}$

 $\approx 0.846936\cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275...)2^{-(\ell+1)²}(1 + O(2^{-\ell}))

- *g*: number of generators of cokernel (number of entries of SNF \neq 1) as $n \rightarrow \infty$
- **previous slide:** $Prob(g = 1) = 0.846936 \cdots$

 $Prob(g \le 2) = 0.99462688 \cdots$ $Prob(g \le 3) = 0.99995329 \cdots$

Theorem. Prob $(g \le \ell) =$ 1 - (3.46275···)2^{-(\ell+1)²}(1 + O(2^{-l}))

$3.46275\dots = \frac{1}{\prod_{j\geq 1} \left(1 - \frac{1}{2^j}\right)}$

Universality

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski). Fix k, n. Choose a subgroup G of \mathbb{Z}^n of index $\leq k$ uniformly.

 $\rho_k(n)$: probability that *G* is cyclic

What other probablility distributions on $n \times n$ integer matrices give the same conclusions?

Example (P. Q. Nguyen and I. E. Shparlinski). Fix k, n. Choose a subgroup G of \mathbb{Z}^n of index $\leq k$ uniformly.

 $\rho_k(n)$: probability that *G* is cyclic

 $\lim_{n \to \infty} \lim_{k \to \infty} \rho_k(n) \approx 0.846936 \cdots,$

same probability of cyclic cokernel as $k, n \to \infty$ using previous distribution.

Part II: symmetric functions

•
$$\frac{\partial}{\partial p_1} p_1$$
 (operator)

Jacobi-Trudi specializations

A down-up operator

In collaboration with Tommy Wuxing Cai.

A down-up operator

In collaboration with Tommy Wuxing Cai (蔡吴兴).

- In collaboration with Tommy Wuxing Cai (蔡吴兴).
- Par(n): set of all partitions of n
- E.g., $Par(4) = \{4, 31, 22, 211, 1111\}.$

- In collaboration with Tommy Wuxing Cai (蔡旲兴).
- Par(n): set of all partitions of n
- E.g., $Par(4) = \{4, 31, 22, 211, 1111\}.$
- V_n : real vector space with basis Par(n)

Define
$$oldsymbol{U} = oldsymbol{U}_n \colon V_n o V_{n+1}$$
 by $U(\lambda) = \sum_{\mu} \mu,$

where $\mu \in Par(n+1)$ and $\mu_i \geq \lambda_i \quad \forall i$.

Example.

U(42211) = 52211 + 43211 + 42221 + 422111

D

Dually, define $D = D_n : V_n \to V_{n-1}$ by

$$D(\lambda) = \sum_{\nu} \nu,$$

- where $\nu \in Par(n-1)$ and $\nu_i \leq \lambda_i \quad \forall i$.
- **Example.** D(42211) = 32211 + 42111 + 4221

NOTE. Identify V_n with the space $\Lambda_{\mathbb{Q}}^n$ of all homogeneous symmetric functions of degree n over \mathbb{Q} , and identify $\lambda \in V_n$ with the Schur function s_{λ} . Then

$$U(f) = p_1 f, \quad D(f) = \frac{\partial}{\partial p_1} f.$$

NOTE. Identify V_n with the space $\Lambda_{\mathbb{Q}}^n$ of all homogeneous symmetric functions of degree n over \mathbb{Q} , and identify $\lambda \in V_n$ with the Schur function s_{λ} . Then

$$U(f) = p_1 f, \quad D(f) = \frac{\partial}{\partial p_1} f.$$

Write

$$U = \boldsymbol{U_n} \colon V_n \to V_{n+1}$$
$$D = \boldsymbol{D_{n+1}} \colon v_{n+1} \to V_n.$$

Basic commutation relation: DU - UD = I

- Allows computation of eigenvalues of $DU: V_n \rightarrow V_n$.
- Or note that the eigenvectors of $\frac{\partial}{\partial p_1}p_1$ are the p_{λ} 's $(\lambda \vdash n)$, with eigenvalue $1 + m_1(\lambda)$, where $m_1(\lambda)$ is the number of parts of λ equal to 1.

Basic commutation relation: DU - UD = I

- Allows computation of eigenvalues of $DU: V_n \rightarrow V_n$.
- Or note that the eigenvectors of $\frac{\partial}{\partial p_1}p_1$ are the p_{λ} 's $(\lambda \vdash n)$, with eigenvalue $1 + m_1(\lambda)$, where $m_1(\lambda)$ is the number of parts of λ equal to 1.

NOTE.

$$\#\{\lambda \vdash n : m_1(\lambda) = i\} = p(n+1-i) - p(n-i),$$

where $p(m) = \# \operatorname{Par}(m) = \dim V_m$.

Theorem. Let $1 \le i \le n+1$, $i \ne n$. Then *i* is an eigenvalue of $D_{n+1}U_n$ with multiplicity p(n+1-i) - p(n-i). Hence

$$\det D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}$$

Theorem. Let $1 \le i \le n+1$, $i \ne n$. Then *i* is an eigenvalue of $D_{n+1}U_n$ with multiplicity p(n+1-i) - p(n-i). Hence

det
$$D_{n+1}U_n = \prod_{i=1}^{n+1} i^{p(n+1-i)-p(n-i)}$$
.

What about SNF of the matrix $[D_{n+1}U_n]$ (with respect to the basis Par(n))?

Conjecture of A. R. Miller, 2005

- **Conjecture** (first form). The diagonal entries of the SNF of $[D_{n+1}U_n]$ are:
- (n+1)(n-1)!, with multiplicity 1
- (n-k)! with multiplicity
 p(k+1) 2p(k) + p(k-1), 3 ≤ k ≤ n-2
- 1, with multiplicity p(n) p(n-1) + p(n-2).

Not a trivial result

NOTE. $\{p_{\lambda}\}_{\lambda \vdash n}$ is not an integral basis.

- $m_1(\lambda)$: number of 1's in λ
- $\mathcal{M}_1(n)$: multiset of all numbers $m_1(\lambda) + 1$, $\lambda \in \operatorname{Par}(n)$
- Let SNF of $[D_{n+1}U_n]$ be diag $(f_1, f_2, \ldots, f_{p(n)})$.
- Conjecture (second form). $f_{p(n)}$ is the product of the distinct entries of $\mathcal{M}_1(n)$; $f_{p(n)-1}$ is the product of the remaining distinct entries of $\mathcal{M}_1(n)$, etc.

$Par(6) = \{6, 51, 42, 33, 411, 321, 222, 3111, 2211, 2111, 11111\}$

$\mathcal{M}_1(6) = \{1, 2, 1, 1, 3, 2, 1, 4, 3, 5, 7\}$

Conjecture (third form). The matrix $[D_{n+1}U_n + xI]$ has an SNF over $\mathbb{Z}[x]$.

Note that $\mathbb{Z}[x]$ is not a PID.

Resolution of conjecture

Theorem. The conjecture of Miller is true.

Theorem. The conjecture of Miller is true.

Proof (first step). Rather than use the basis $\{s_{\lambda}\}_{\lambda \in Par(n)}$ (Schur functions) for $\Lambda_{\mathbb{Q}}^{n}$, use the basis $\{h_{\lambda}\}_{\lambda \in Par(n)}$ (complete symmetric functions). Since the two bases differ by a matrix in $SL(p(n), \mathbb{Z})$, the SNF's stay the same.

Conclusion of proof

(second step) Row and column operations.

Conclusion of proof

- (second step) Row and column operations.
- Not very insightful.

Conclusion of proof

(second step) Row and column operations.

Not very insightful.

A generalization

- $m_j(\lambda)$: number of j's in λ
- $\mathcal{M}_{j}(n)$: multiset of all numbers $j(m_{j}(\lambda) + 1)$, $\lambda \in \operatorname{Par}(n)$
- p_j : power sum symmetric function $\sum x_i^j$
- Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_j} p_j f$ with respect to the basis $\{s_{\lambda}\}$ be diag $(g_1, g_2, \dots, g_{p(n)})$.
A generalization

- $m_j(\lambda)$: number of j's in λ
- $\mathcal{M}_{j}(n)$: multiset of all numbers $j(m_{j}(\lambda) + 1)$, $\lambda \in \operatorname{Par}(n)$
- p_j : power sum symmetric function $\sum x_i^j$
- Let SNF of the operator $f \mapsto j \frac{\partial}{\partial p_j} p_j f$ with respect to the basis $\{s_\lambda\}$ be diag $(g_1, g_2, \dots, g_{p(n)})$.
- Theorem (Zipei Nie). $g_{p(n)}$ is the product of the distinct entries of $\mathcal{M}_j(n)$; $g_{p(n)-1}$ is the product of the remaining distinct entries of $\mathcal{M}_j(n)$, etc.

The operators D, U and identity DU - UD = I extend to any differential poset P. Miller and Reiner have conjectures for the SNF of DU. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.

- The operators D, U and identity DU - UD = I extend to any differential poset P. Miller and Reiner have conjectures for the SNF of DU. Nie has a conjecture on the structure of P which would prove the Miller-Reiner conjecture.
- More general operators:

$$\frac{\partial^2}{\partial p_1^2} p 1^2$$
, $2 \frac{\partial}{\partial p_1} \frac{\partial}{\partial p_2} p_2 p_1$, etc.

No conjecture known for SNF.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

$$s_{\lambda} = \det[h_{\lambda_i - i + j}],$$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

Jacobi-Trudi specialization

Jacobi-Trudi identity:

 $s_{\lambda} = \det[h_{\lambda_i - i + j}],$

where s_{λ} is a Schur function and h_i is a complete symmetric function.

We consider the specialization $x_1 = x_2 = \cdots = x_n = 1$, other $x_i = 0$. Then

$$h_i \to \binom{n+i-1}{i}$$

Specialized Schur function

$$s_{\lambda} \to \prod_{u \in \lambda} \frac{n + c(u)}{h(u)}.$$

c(u): content of the square u

0	1	2	3	4
-1	0	1	2	
-2	-1	0	1	
-3	-2			•

$$\lambda = (5, 4, 4, 2)$$

 D_1

 D_2

 D_3

$$\mathbf{R} = \mathbb{Q}[n] \quad (a \text{ PID})$$

Let

SNF
$$\begin{bmatrix} \binom{n+\lambda_i-i+j-1}{\lambda_i-i+j} \end{bmatrix} = \operatorname{diag}(e_1,\ldots,e_m).$$

Theorem.

$$e_i = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Idea of proof

$$\mathbf{f_i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Want to prove $e_i = f_i$. Note that $f_1 f_2 \cdots f_i$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Idea of proof

$$\mathbf{f}_{i} = \prod_{u \in D_{m-i+1}} \frac{n + c(u)}{h(u)}$$

Want to prove $e_i = f_i$. Note that $f_1 f_2 \cdots f_i$ is the value of the lower-left $i \times i$ minor. (Special argument for 0 minors.)

Every $i \times i$ minor is a specialized skew Schur function $s_{\mu/\nu}$. Let s_{α} correspond to the lower left $i \times i$ minor.

Conclusion of proof

Let
$$s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}$$
. By Littlewood-Richardson rule,

$c^{\mu}_{\nu\rho} \neq 0 \implies \alpha \subseteq \rho$ $\implies \{\text{contents of } \alpha\} \subseteq \{\text{contents of } \rho\}$ (as multisets).

Let
$$s_{\mu/\nu} = \sum_{\rho} c^{\mu}_{\nu\rho} s_{\rho}$$
. By Littlewood-Richardson rule,

$$c^{\mu}_{\nu\rho} \neq 0 \implies \alpha \subseteq \rho$$

$$\implies \{\text{contents of } \alpha\} \subseteq \{\text{contents of } \rho\}$$

$$(\text{as multisets}).$$

Hence $f_1 \cdots f_i = \gcd(i \times i \text{ minors}) = e_1 \cdots e_i$. \Box

An example

$\lambda = (7, 6, 6, 5, 3), \ k = 3 \Rightarrow \mu = (4, 3, 1)$

$$\lambda = (7, 6, 6, 5, 3), \ k = 3 \Rightarrow \mu = (4, 3, 1)$$

$$JT_{\lambda} = \begin{bmatrix} h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_5 & h_6 & h_7 & h_8 & h_9 \\ h_4 & h_5 & h_6 & h_7 & h_8 \\ h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 1 & h_1 & h_2 & h_3 \end{bmatrix}$$

$$\lambda = (7, 6, 6, 5, 3), \ k = 3 \Rightarrow \mu = (4, 3, 1)$$

$$JT_{\lambda} = \begin{bmatrix} h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_5 & h_6 & h_7 & h_8 & h_9 \\ h_4 & h_5 & h_6 & h_7 & h_8 \\ h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 1 & h_1 & h_2 & h_3 \end{bmatrix}$$

A "random" 3×3 minor of JT_{λ} :

$$JT_{\lambda} = \begin{bmatrix} h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_5 & h_6 & h_7 & h_8 & h_9 \\ h_4 & h_5 & h_6 & h_7 & h_8 \\ h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 1 & h_1 & h_2 & h_3 \end{bmatrix}$$

A "random" 3×3 minor of JT_{λ} :

$$JT_{\lambda} = \begin{bmatrix} h_7 & h_8 & h_9 & h_{10} & h_{11} \\ h_5 & h_6 & h_7 & h_8 & h_9 \\ h_4 & h_5 & h_6 & h_7 & h_8 \\ h_2 & h_3 & h_4 & h_5 & h_6 \\ 0 & 1 & h_1 & h_2 & h_3 \end{bmatrix}$$

Jacobi-Trudi matrix for $s_{653/21}$

An example (concluded)

Every LR-filling contains 1,1,1,1,2,2,2,3. Thus if $\langle s_{653/21}, s_{\rho} \rangle > 0$, then $431 \subseteq \rho$. Therefore

$$\prod_{u \in 431} (n + c(u)) \mid \prod_{u \in \rho} (n + c(u))$$

$$\Rightarrow \prod_{u \in 431} (n + c(u)) \,|\, s_{653/21}(1^n).$$

A q-analogue

"Natural" q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

$$h_i(1, q, \dots, q^{n-1}) = \binom{n+i-1}{i}_q$$

$$s_\lambda(1, q, \dots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}}.$$

A q-analogue

"Natural" q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

$$h_i(1, q, \dots, q^{n-1}) = \binom{n+i-1}{i}_q$$

$$s_\lambda(1, q, \dots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}}.$$

Doesn't work (and SNF is unknown).

A q-analogue

"Natural" q-analogue of $f(1^n)$ is $f(1, q, \ldots, q^{n-1})$.

$$h_i(1, q, \dots, q^{n-1}) = \binom{n+i-1}{i}_q$$

$$s_\lambda(1, q, \dots, q^{n-1}) = q^* \prod_{u \in \lambda} \frac{1-q^{n+c(u)}}{1-q^{h(u)}}.$$

Doesn't work (and SNF is unknown).

Before we had $R = \mathbb{Q}[n]$. Now $R = \mathbb{Q}[q]$. Putting q = 1 doesn't reduce second situation to the first.

Set $\boldsymbol{y} = q^n$. Thus for instance

$$h_3(1,q,\ldots,q^{n-1}) = \frac{(1-q^{n+2})(1-q^{n+1})(1-q^n)}{(1-q^3)(1-q^2)(1-q)}$$
$$= \frac{(1-q^2y)(1-qy)(1-y)}{(1-q^3)(1-q^2)(1-q)}.$$

Work over the field $\mathbb{Q}(q)[y]$ (a PID).

Set $\boldsymbol{y} = q^n$. Thus for instance

$$h_3(1,q,\ldots,q^{n-1}) = \frac{(1-q^{n+2})(1-q^{n+1})(1-q^n)}{(1-q^3)(1-q^2)(1-q)}$$
$$= \frac{(1-q^2y)(1-qy)(1-y)}{(1-q^3)(1-q^2)(1-q)}.$$

- Work over the field $\mathbb{Q}(q)[y]$ (a PID).
- Previous proof carries over (using a couple of tricks).

Notation

Write

$$(i) = \frac{1-q^i}{1-q}.$$

E.g., $(-3) = -q^{-1} - q^{-2} - q^{-3}$ and $(0) = 0$. For $k \ge 1$ let

$$f(k) = \frac{y(y + (1))(y + (2)) \cdots (y + (k - 1))}{(1)(2) \cdots (k)}.$$

Set f(0) = 1 and f(k) = 0 for k < 0.

Theorem. Define

$$\mathbf{JT}(\boldsymbol{q})_{\boldsymbol{\lambda}} = [f(\lambda_i - i + j)]_{i,j=1}^t,$$

where $\ell(\lambda) \leq t$. Let the SNF of $JT(q)_{\lambda}$ over the ring $\mathbb{Q}(q)[y]$ have main diagonal $(\gamma_1, \gamma_2, \dots, \gamma_t)$. Then we can take

$$\gamma_i = \prod_{u \in D_{t-i+1}} rac{y + \boldsymbol{c}(\boldsymbol{u})}{\boldsymbol{h}(\boldsymbol{u})}.$$

The last slide

The last slide

