Some aspects of (r, k)－parking functions

Richard P．Stanley
University of Miami and M．I．T．
and

Yinghui Wang（王颖慧）
M．I．T．

Basic definition

(r, k)-parking function: a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers whose decreasing rearrangement $b_{1} \leq \cdots \leq b_{n}$ satisfies

$$
b_{i} \leq k+(i-1) r .
$$

$\mathbf{P F}_{n}^{(r, k)}$: set of (r, k)-parking functions of length n $r=k=1$ (so $b_{i} \leq i$): ordinary parking function

Basic definition

(r, k)-parking function: a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers whose decreasing rearrangement $b_{1} \leq \cdots \leq b_{n}$ satisfies

$$
b_{i} \leq k+(i-1) r .
$$

$\mathbf{P F}_{n}^{(r, k)}$: set of (r, k)-parking functions of length n
$r=k=1$ (so $b_{i} \leq i$): ordinary parking function
Example. $(8,4,8,2)$ is not a (2,3)-parking function, since $(2,4,8,8) \npreceq(3,5,7,9)$ (termwise).

Parking scenario

Cars $C_{1}, \ldots, C_{r n}$ need to park in spaces
$1,2, \ldots, r n+k-1$.
preference vector $\boldsymbol{\alpha}=\left(a_{1}, \ldots, a_{n}\right)$,
$1 \leq a_{i} \leq r n+k-1$, where cars $C_{r(i-1)+1}, \ldots, C_{r i}$ all prefer a_{i}.

Cars go one at a time to their preferred space and then park in first available space.

Easy: all cars can park if and only if α is an (r, k)-parking function.

Number of (r, k)-parking functions

Theorem (Steck 1969, essentially).

$$
\# \mathrm{PF}_{n}^{(r, k)}=k(r n+k)^{n-1}
$$

Number of (r, k)-parking functions

Theorem (Steck 1969, essentially).

$$
\# \mathrm{PF}_{n}^{(r, k)}=k(r n+k)^{n-1}
$$

Proof. Completely analogous to Pollak's proof for $r=k=1$.

Parking function symmetric function

\mathfrak{S}_{n} acts on $\mathrm{PF}_{n}^{(r, k)}$ by permuting coordinates. Let $\boldsymbol{F}_{n}^{(r, k)}$ denote the Frobenius characteristic of this action.

Parking function symmetric function

\mathfrak{S}_{n} acts on $\mathrm{PF}_{n}^{(r, k)}$ by permuting coordinates. Let $\boldsymbol{F}_{n}^{(r, k)}$ denote the Frobenius characteristic of this action.

Equivalently,

$$
F_{n}^{(r, k)}=\sum_{\beta} h_{m_{1}(\beta)} h_{m_{2}(\beta)} \cdots
$$

where $\boldsymbol{\beta}$ runs over all weakly increasing (r, k)-parking functions, and $m_{i}(\beta)$ is the number of i 's in β.

An example

Let $r=1, k=2, n=3$. The weakly increasing $(1,2)$-parking functions (a, b, c) of length three, i.e, $(a, b, c) \leq(2,3,4)$:

$$
\begin{array}{lllllll}
111 & 112 & 113 & 114 & 122 & 123 & 124 \\
133 & 134 & 222 & 223 & 224 & 233 & 234
\end{array}
$$

Hence

$$
F_{3}^{(2,1)}=2 h_{3}+8 h_{2} h_{1}+4 h_{1}^{3} .
$$

Basis expansions

$F_{n}^{(r, k)}$ has "nice" expansions in terms of the six classical bases m, p, h, e, s, f.
E.g.,

$$
\begin{aligned}
F_{n}^{(r, k)} & =\frac{k}{r n+k} \sum_{\lambda \vdash n}\binom{r n+k}{d_{1}(\lambda), \ldots, d_{n}(\lambda), r n+k-\ell(\lambda)} h_{\lambda} \\
& =k \sum_{\lambda \vdash n} z_{\lambda}^{-1}(r n+k)^{\ell(\lambda)-1} p_{\lambda},
\end{aligned}
$$

where $d_{i}(\lambda)$ is the number of parts of λ equal to i.

A generating function

$$
\mathcal{P}^{(r, k)}(t):=\sum_{n \geq 0} F_{n}^{(r, k)} t^{n}
$$

A generating function

$$
\mathcal{P}^{(r, k)}(\boldsymbol{t}):=\sum_{n \geq 0} F_{n}^{(r, k)} t^{n}
$$

Theorem. For $n \geq 1$, we have

$$
\mathcal{P}^{(r, k)}(t)=\left(\mathcal{P}^{r, 1}(t)\right)^{k}
$$

A generating function

$$
\mathcal{P}^{(r, k)}(\boldsymbol{t}):=\sum_{n \geq 0} F_{n}^{(r, k)} t^{n}
$$

Theorem. For $n \geq 1$, we have

$$
\mathcal{P}^{(r, k)}(t)=\left(\mathcal{P}^{r, 1}(t)\right)^{k} .
$$

Proof: simple factorization argument.

Negative exponents

What about $\left(\mathcal{P}^{r, 1}(t)\right)^{k}$ for $k<0$?
Simplest case: $r=1$ and $k=-1$.

Motivation

Let

$$
\begin{aligned}
\boldsymbol{A}(\boldsymbol{t}) & =\sum_{n \geq 0} a_{n} t^{n} \\
\boldsymbol{B}(\boldsymbol{t}) & =\sum_{n \geq 0} b_{n} t^{n} \\
& =\frac{1}{1-A(t)}=\sum_{k \geq 0} A(t)^{k} .
\end{aligned}
$$

Thus a_{n} counts "prime" objects and b_{n} all objects.

$B(t)=F(t)$

Note. $B(t)=\frac{1}{1-A(t)} \Leftrightarrow A(t)=1-\frac{1}{B(t)}$.

$B(t)=F(t)$

Note. $B(t)=\frac{1}{1-A(t)} \Leftrightarrow A(t)=1-\frac{1}{B(t)}$.
Suggests: $1-\frac{1}{\mathcal{P}^{(1,1)}(t)}$ might be connected with "prime" parking functions.

Prime parking functions

Definition (I. Gessel). A parking function is prime if it remains a parking function when we delete a 1 from it.

Note. A sequence $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ is an increasing parking function if and only if $1 \leq b_{1} \leq \cdots \leq b_{n}$ is an increasing prime parking function.

The prime parking function sym. fn.

E.g., $n=4$: increasing prime parking functions are

$$
1111,1112,1113,1122,1123 .
$$

The prime parking function sym. fn.

E.g., $n=4$: increasing prime parking functions are

$$
\begin{gathered}
1111,1112,1113,1122,1123 . \\
\Rightarrow \mathcal{P}_{4}^{(1,1)}=h_{4}+2 h_{3} h_{1}+h_{2}^{2}+h_{2} h_{1}^{2}
\end{gathered}
$$

Factorization of increasing PF's

$$
\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1 & 1 & 3 & 3 & 4 & 4 & 7 & 8 & 8 & 9 & 10
\end{array}
$$

Factorization of increasing PF's

$$
\begin{array}{cc|cccc|c|cccc}
\mathbf{1} & 2 & \mathbf{3} & 4 & 5 & 6 & \mathbf{7} & \mathbf{8} & 9 & 10 & 11 \\
\hline \mathbf{1} & 1 & \mathbf{3} & 3 & 4 & 4 & \mathbf{7} & \mathbf{8} & 8 & 9 & 10
\end{array}
$$

Factorization of increasing PF's

$$
\begin{array}{cc|cccc|c|cccc}
\mathbf{1} & 2 & \mathbf{3} & 4 & 5 & 6 & \mathbf{7} & \mathbf{8} & 9 & 10 & 11 \\
\hline \mathbf{1} & 1 & \mathbf{3} & 3 & 4 & 4 & \mathbf{7} & \mathbf{8} & 8 & 9 & 10 \\
\rightarrow \\
\rightarrow(1,1), & (1,1,2,2), & (1),(1,1,2,3)
\end{array}
$$

Factorization of increasing PF's

$$
\begin{aligned}
& \begin{array}{|cc|cccc|c|cccc|}
\mathbf{1} & 2 & \mathbf{3} & 4 & 5 & 6 & \mathbf{7} & \mathbf{8} & 9 & 10 & 11 \\
\hline \mathbf{1} & \mathbf{1} & \mathbf{3} & 3 & 4 & 4 & \mathbf{7} & \mathbf{8} & 8 & 9 & 10
\end{array} \\
& \rightarrow(1,1),(1,1,2,2),(1),(1,1,2,3)
\end{aligned}
$$

Theorem. $\left(\mathcal{P}^{(1,1)}(t)\right)^{-1}=1-\sum_{n \geq 1} \operatorname{PPF}_{n} t^{n}$

A more complicated example

Coefficient of t^{5} in $-\mathcal{P}^{(1,1)}(t)^{-2}$ is

$$
2 h_{3} h_{1}^{2}+2 h_{2}^{2} h_{1}+4 h_{3} h_{2}+4 h_{4} h_{1}+2 h_{5} .
$$

Frobenius characteristic of the action of \mathfrak{S}_{5} on all sequences $\left(a_{1}, \ldots, a_{5}\right) \in \mathbb{P}^{(1,1)}$ whose increasing rearrangement $b_{1} \leq \cdots \leq b_{5}$ satisfies either of the conditions

1. $b_{1}=b_{2}=1, b_{3} \leq 2, b_{4} \leq 3, b_{5} \leq 3$, or
2. $b_{1}=b_{2}=b_{3}=2, b_{4} \leq 3, b_{5} \leq 4$.

Parking function basis

Write $\boldsymbol{F}_{n}=F_{n}^{(1,1)}$ (simplest case), with $F_{0}=1$.
For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ write

$$
\boldsymbol{F}_{\lambda}=F_{\lambda_{1}} F_{\lambda_{2}} \cdots
$$

Easy. $\left\{F_{\lambda}: \lambda \vdash n\right\}$ is a \mathbb{Z}-basis for Λ_{n} (homogeneous symmetric functions of degree n with integer coefficients).

Some problems

- Expand F_{λ} in the classical bases m, h, e, p, s, f, and vice versa.
- Formula or combinatorial interpretation of $\left\langle F_{\lambda}, F_{\mu}\right\rangle$.

Some problems

- Expand F_{λ} in the classical bases m, h, e, p, s, f, and vice versa.
- Formula or combinatorial interpretation of $\left\langle F_{\lambda}, F_{\mu}\right\rangle$.

Very little is known.

Scalar products

Theorem.

$$
\left\langle F_{n}, F_{\lambda}\right\rangle=\frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_{i}+1}\binom{(n+1)\left(\lambda_{i}+1\right)+\lambda_{i}-1}{\lambda_{i}}
$$

Scalar products

Theorem.

$$
\left\langle F_{n}, F_{\lambda}\right\rangle=\frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_{i}+1}\binom{(n+1)\left(\lambda_{i}+1\right)+\lambda_{i}-1}{\lambda_{i}}
$$

Corollary. $\left\langle F_{n}, F_{n}\right\rangle=\frac{1}{n+1}\binom{n(n+3)}{n}$

Scalar products

Theorem.
$\left\langle F_{n}, F_{\lambda}\right\rangle=\frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_{i}+1}\binom{(n+1)\left(\lambda_{i}+1\right)+\lambda_{i}-1}{\lambda_{i}}$
Corollary. $\left\langle F_{n}, F_{n}\right\rangle=\frac{1}{n+1}\binom{n(n+3)}{n}$
In general $\left\langle F_{\lambda}, F_{\mu}\right\rangle$ has large prime factors. Is there a combinatorial interpretation?

Scalar products

Theorem.
$\left\langle F_{n}, F_{\lambda}\right\rangle=\frac{1}{n+1} \prod_{i \geq 1} \frac{1}{\lambda_{i}+1}\binom{(n+1)\left(\lambda_{i}+1\right)+\lambda_{i}-1}{\lambda_{i}}$
Corollary. $\left\langle F_{n}, F_{n}\right\rangle=\frac{1}{n+1}\binom{n(n+3)}{n}$
In general $\left\langle F_{\lambda}, F_{\mu}\right\rangle$ has large prime factors. Is there a combinatorial interpretation, even for $\frac{1}{n+1}\binom{n(n+3)}{n}$?

Three expansions

d_{i} : number of parts of λ equal to i

$$
\begin{aligned}
e_{n} & =\frac{1}{n+1} \sum_{\lambda \vdash n}(-1)^{n-\ell(\lambda)}\binom{n+\ell(\lambda)}{d_{1}, d_{2}, \ldots, r n} F_{\lambda} \\
p_{n} & =\sum_{\lambda \vdash n}(-1)^{\ell(\lambda)+1}\binom{n+\ell(\lambda)-1}{d_{1}, d_{2}, \ldots, r n-1} F_{\lambda} \\
h_{n} & =\frac{1}{n-1} \sum_{\lambda \vdash n}(-1)^{\ell(\lambda)+1}\binom{n+\ell(\lambda)-2}{d_{1}, d_{2}, \ldots, r n-2} F_{\lambda}
\end{aligned}
$$

The last slide

The last slide

