A Survey of Unimodality and Log-Concavity

Richard P. Stanley
U. Miami \& M.I.T.

4 October 2021

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1$.

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1$.
(3) strongly log-concave if $\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2} \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n+1}{i+1}}$

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1$.
(3) strongly log-concave if $\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2} \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n+1}{i+1}}$
(4) no internal zeros if $a_{i}=0 \Rightarrow$ either $a_{1}=\cdots=a_{i-1}=0$ or $a_{i+1}=\cdots=a_{n}=0$.

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1$.
(3) strongly log-concave if $\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2} \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n+1}{i+1}}$
(4) no internal zeros if $a_{i}=0 \Rightarrow$ either $a_{1}=\cdots=a_{i-1}=0$ or $a_{i+1}=\cdots=a_{n}=0$.
Note. Log-concave, NIZ, $a_{i} \geq 0 \Rightarrow$ unimodal.

Basic definitions

Definition. (1) A sequence a_{0}, \ldots, a_{n} of real numbers is unimodal if $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j.
(2) log-concave if $a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1$.
(3) strongly log-concave if $\left(\frac{a_{i}}{\binom{n}{i}}\right)^{2} \geq \frac{a_{i-1}}{\binom{n}{i-1}} \frac{a_{i+1}}{\binom{n+1}{i+1}}$
(4) no internal zeros if $a_{i}=0 \Rightarrow$ either $a_{1}=\cdots=a_{i-1}=0$ or $a_{i+1}=\cdots=a_{n}=0$.

Note. Log-concave, NIZ, $a_{i} \geq 0 \Rightarrow$ unimodal.
Example. $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}$ (strongly log-concave)
I. REAL ZEROS

Newton's theorem

Theorem (I. Newton). Let

$$
\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R}
$$

and

$$
P(x)=\prod\left(x+\gamma_{i}\right)=\sum a_{i}\binom{n}{i} x^{i}=\sum b_{i} x^{i} .
$$

Then $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave. Same as b_{0}, \ldots, b_{n} strongly log-concave.

Newton's theorem

Theorem (I. Newton). Let

$$
\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R}
$$

and

$$
P(x)=\prod\left(x+\gamma_{i}\right)=\sum a_{i}\binom{n}{i} x^{i}=\sum b_{i} x^{i} .
$$

Then $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave. Same as b_{0}, \ldots, b_{n} strongly log-concave.
Proof. $P^{(n-i-1)}(x)$ has real zeros

$$
\begin{aligned}
\Rightarrow Q(x) & :=x^{i+1} P^{(n-i-1)}(1 / x) \text { has real zeros } \\
& \Rightarrow Q^{(i-1)}(x) \text { has real zeros. }
\end{aligned}
$$

But $Q^{(i-1)}(x)=\frac{n!}{2}\left(a_{i-1}+2 a_{i} x+a_{i+1} x^{2}\right)$

$$
\Rightarrow a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of $\operatorname{det}(I+x A)$ is real.

Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of $\operatorname{det}(I+x A)$ is real.

Example. G : finite graph with vertex set V and $\mu_{u v}$ edges between vertices u and v

L: Laplacian matrix of G. Rows and columns indexed by V, with

$$
L_{u v}=\left\{\begin{aligned}
\operatorname{deg}(v), & \text { if } u=v \\
-\mu_{u v}, & \text { if } u \neq v .
\end{aligned}\right.
$$

The Matrix-Tree theorem

Matrix-Tree Theorem (slightly expanded). $\operatorname{det}(I+x L)=\sum a_{i} x^{i}$, where a_{i} is the number of rooted spanning forests of G with i edges. Thus $\sum a_{i} x^{i}$ has only real zeros, so $a_{0}, a_{1}, \ldots, a_{\# V}$ is strongly log-concave.

What about unrooted spanning forests?

$\boldsymbol{b}_{\boldsymbol{i}}$: number of (unrooted) spanning forests of G with i edges.
More generally, let X be a finite subset of a vector space of dimension n, and let $\boldsymbol{b}_{\boldsymbol{i}}$ be the number of i-element linearly independent subsets of X.

What about unrooted spanning forests?

$\boldsymbol{b}_{\boldsymbol{i}}$: number of (unrooted) spanning forests of G with i edges.
More generally, let X be a finite subset of a vector space of dimension n, and let $\boldsymbol{b}_{\boldsymbol{i}}$ be the number of i-element linearly independent subsets of X.

Theorem (Lenz, 2013, based on Huh, 2012) $b_{0}, b_{1}, \ldots, b_{n}$ is log-concave (with no external zeros).

Proof of Huh based on Hodge-Riemann relations for the cohomology of certain varieties. Later generalized by Adiprasito, Huh, and Katz to any finite matroid (an abstract generalization of a finite subset of a vector space).

What about unrooted spanning forests?

$\boldsymbol{b}_{\boldsymbol{i}}$: number of (unrooted) spanning forests of G with i edges.
More generally, let X be a finite subset of a vector space of dimension n, and let $\boldsymbol{b}_{\boldsymbol{i}}$ be the number of i-element linearly independent subsets of X.

Theorem (Lenz, 2013, based on Huh, 2012) $b_{0}, b_{1}, \ldots, b_{n}$ is log-concave (with no external zeros).

Proof of Huh based on Hodge-Riemann relations for the cohomology of certain varieties. Later generalized by Adiprasito, Huh, and Katz to any finite matroid (an abstract generalization of a finite subset of a vector space).

What about strongly log-concave? To be discussed.

Total positivity

Definition. An $m \times n$ real matrix is totally nonnegative if all minors (determinants of square submatrices) are nonnegative.

Total positivity

Definition. An $m \times n$ real matrix is totally nonnegative if all minors (determinants of square submatrices) are nonnegative.

Theorem. Let A be an $n \times n$ totally nonnegative matrix. Then all eigenvalues of A are real and nonnegative. Hence the characteristic polynomial $\operatorname{det}(x I-A)$ has only real zeros.

An application

Let P be a finite poset (partially ordered set) with no induced $3+1$ or $2+2$, i.e., there do not exist elements $s<t<u, v$ with no other relations among them, nor elements $s<t, u<v$ with no other relationas among them. Let c_{i} be the number of i-element chains of P.

bad

$$
\begin{aligned}
& \mathrm{c}_{0}=1 \\
& \mathrm{c}_{1}=5 \\
& \mathrm{c}_{2}=5 \\
& \mathrm{c}_{3}=1
\end{aligned}
$$

Theorem. $\sum c_{i} x^{i}$ has only real zeros.

Proof

Theorem. $\sum c_{i} x^{i}$ has only real zeros.
Proof. Let A be the matrix with rows and columns indexed by P, with

$$
A_{s t}= \begin{cases}0, & \text { if } s \leq t \\ 1, & \text { otherwise. }\end{cases}
$$

Then A is totally nonnegative, and $\operatorname{det}(I+x A)=\sum c_{i} x^{i}$.

Two further remarks

- Can be shown that the $(2+2)$-avoiding hypothesis is unnecessary (using symmetric functions).

Two further remarks

- Can be shown that the $(2+2)$-avoiding hypothesis is unnecessary (using symmetric functions).
- Multivariate generalizations of real-rooted polynomials: stable polynomials (P. Brandén) and Lorentzian polynomials (P . Brandén and J. Huh). Sample application:

Theorem. If $\boldsymbol{I}_{\boldsymbol{k}}$ is the number of k-element independent sets of a matroid, then the sequence I_{0}, I_{1}, \ldots is strongly log-concave. Conjectured by Mason in 1972. Also proved in a similar way by Anari-Liu-Gharan-Vinzant. (We mentioned earlier the proof by Lenz of log-concavity.)
II. ANALYTIC METHODS

Partitions

Let $p(n, k)$ be the number of partitions of n into k parts. E.g., $p(7,3)=4$:

$$
\begin{aligned}
& 5+1+1, \quad 4+2+1, \quad 3+3+1, \quad 3+2+2 . \\
& \sum_{n \geq 0} p(n, k) x^{n}=\frac{x^{k}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)} \\
\Rightarrow & p(n, k)=\frac{1}{2 \pi i} \oint \frac{s^{k-n-1} d s}{(1-s)\left(1-s^{2}\right) \cdots\left(1-s^{k}\right)} .
\end{aligned}
$$

Theorem of Szekeres

Theorem (G. Szekeres, 1954) For $n>N_{0}$, the sequence

$$
p(n, 1), p(n, 2), \ldots, p(n, n)
$$

is unimodal, with maximum at

$$
\begin{gathered}
k=c \sqrt{n} L+c^{2}\left(\frac{3}{2}+\frac{3}{2} L-\frac{1}{4} L^{2}\right)-\frac{1}{2} \\
+O\left(\frac{\log ^{4} n}{\sqrt{n}}\right) \\
c=\sqrt{6} / \pi, \quad L=\log c \sqrt{n} .
\end{gathered}
$$

III. ALEXANDROV-FENCHEL INEQUALITIES

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^{n}, and let $x, y \geq 0$. Define the Minkowski sum

$$
x K+y L=\{x \alpha+y \beta: \alpha \in K, \beta \in L\} .
$$

Then there exist $V_{i}(K, L) \geq 0$, the (Minkowski) mixed volumes of K and L, satisfying

$$
\operatorname{Vol}(x K+y L)=\sum_{i=0}^{n}\binom{n}{i} V_{i}(K, L) x^{n-i} y^{i} .
$$

Note $V_{0}=\operatorname{Vol}(K), V_{n}=\operatorname{Vol}(L)$.

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^{n}, and let $x, y \geq 0$. Define the Minkowski sum

$$
x K+y L=\{x \alpha+y \beta: \alpha \in K, \beta \in L\} .
$$

Then there exist $V_{i}(K, L) \geq 0$, the (Minkowski) mixed volumes of K and L, satisfying

$$
\operatorname{Vol}(x K+y L)=\sum_{i=0}^{n}\binom{n}{i} V_{i}(K, L) x^{n-i} y^{i} .
$$

Note $V_{0}=\operatorname{Vol}(K), V_{n}=\operatorname{Vol}(L)$.
Theorem (Alexandrov-Fenchel, 1936-38) $V_{i}^{2} \geq V_{i-1} V_{i+1}$

Corollary. Let P be an n-element poset. Fix $x \in P$. Let $\boldsymbol{N}_{\boldsymbol{i}}$ denote the number of order-preserving bijections (linear extensions)

$$
f: P \rightarrow\{1,2, \ldots, n\}
$$

such that $f(x)=i$. Then

$$
N_{i}^{2} \geq N_{i-1} N_{i+1}
$$

Proof. Find $K, L \subset \mathbb{R}^{n-1}$ such that $V_{i}(K, L)=N_{i+1}$. \square

An example

5

3 \quad| | 12345 | 4 |
| :--- | :--- | :--- |
| 12354 | 5 | |
| 12435 | 3 | |
| 21345 | 4 | |
| 21354 | 5 | |
| 21435 | 3 | |
| 24135 | 4 | |

[2]

$$
\left(N_{1}, \ldots, N_{5}\right)=(0,1,2,2,2)
$$

Generalizations

There are algebraic and algebraic-geometric generalizations of the Alexandrov-Fenchel inequalities with many applications.
IV. REPRESENTATIONS OF $\operatorname{SL}(2, \mathbb{C})$ AND $\mathfrak{s l}(2, \mathbb{C})$

Representations of $\operatorname{SL}(2, \mathbb{C})$

Let

$$
\begin{gathered}
\boldsymbol{G}=\mathrm{SL}(2, \mathbb{C})=\{2 \times 2 \text { complex } \\
\text { matrices } \text { with determinant } 1\} .
\end{gathered}
$$

Let $A \in G$, with eigenvalues θ, θ^{-1}. For all $n \geq 0$, there is a unique irreducible (polynomial) representation

$$
\varphi_{n}: G \rightarrow \mathrm{GL}\left(V_{n+1}\right)
$$

of dimension $n+1$, and $\varphi_{n}(A)$ has eigenvalues

$$
\theta^{-n}, \theta^{-n+2}, \theta^{-n+4}, \ldots, \theta^{n}
$$

Every (continuous) representation is a direct sum of irreducibles.

Unimodal weight multiplicities

If $\varphi: G \rightarrow \mathrm{GL}(V)$ is any (finite-dimensional) representation, then

$$
\begin{gathered}
\operatorname{tr} \varphi(A)=\sum_{i \in \mathbb{Z}} a_{i} \theta^{i}, \quad a_{i}=a_{-i} \\
=a_{0}++a_{1}\left(\theta+\theta^{-1}\right)+\sum_{i \geq 2}\left(a_{i}-a_{i-2}\right)\left(\theta^{-i}+\theta^{-i+2}+\cdots+\theta^{i}\right) \\
\Rightarrow a_{i} \geq a_{i-2} \\
\Rightarrow\left\{a_{2 i}\right\}, \\
\left\{a_{2 i+1}\right\} \text { are unimodal } \\
\\
\text { (and symmetric) }
\end{gathered}
$$

(Completely analogous construction for the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$.)

q-binomial coefficient

For $k, n \geq 0$ define

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]=\frac{\left(1-q^{n+k}\right)\left(1-q^{n+k-1}\right) \cdots\left(1-q^{n+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

a polynomial in q with nonnegative integer coefficients.

k th symmetric power

Example. $S^{k}\left(\varphi_{n}\right)$, eigenvalues

$$
\begin{gathered}
\left(\theta^{-n}\right)^{t_{0}}\left(\theta^{-n+2}\right)^{t_{1}} \cdots\left(\theta^{n}\right)^{t_{n}} \\
t_{0}+t_{1}+\cdots+t_{n}=k, \quad t_{i} \geq 0 \\
\Rightarrow \operatorname{tr} \varphi(A)= \\
\sum_{t_{0}+\cdots+t_{n}=k} \theta^{t_{0}(-n)+t_{1}(-n+2)+\cdots+t_{n} n} \\
=\theta^{-n k}\left[\begin{array}{c}
n+k \\
k
\end{array} \theta_{\theta^{2}}\right. \\
=\theta^{-n k} \sum_{i \geq 0} P_{i}(n, k) \theta^{2 i}
\end{gathered}
$$

where $P_{i}(n, k)$ is the number of partitions of i with $\leq k$ parts, largest part $\leq n$.

Sylvester's theorem

$$
\Rightarrow P_{0}(n, k), \ldots, P_{n k}(n, k)
$$

is unimodal (Sylvester, 1878).
Combinatorial proof by K. O'Hara, 1990.

$$
\begin{aligned}
& \\
& \sum_{i} P_{i}(3,2) q^{i}=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6} \\
& =\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\frac{\left(1-q^{5}\right)\left(1-q^{4}\right)}{\left(1-q^{2}\right)(1-q)}
\end{aligned}
$$

Principal $\mathfrak{s l}(2, \mathbb{C})$

Example. Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra. Then there exists a principal $\mathfrak{s l}(2, \mathbb{C}) \subset \mathfrak{g}$. A representation $\varphi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ restricts to

$$
\varphi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g l}(V) .
$$

Example. $\mathfrak{g}=\mathfrak{s o}(2 n+1, \mathbb{C}), \varphi=\operatorname{spin}$ representation:

$$
\Rightarrow(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)
$$

has unimodal coefficients (Dynkin 1950, Hughes 1977). (No combinatorial proof known.)

Higher dimensional partitions

Recall: $P_{i}(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e, number of 1-dimensional integer arrays (sequences) $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 0, \quad \sum a_{j}=i
$$

Higher dimensional partitions

Recall: $P_{i}(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e, number of 1-dimensional integer arrays (sequences) $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 0, \quad \sum a_{j}=i
$$

Generalize to $P_{i}\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{\boldsymbol{d}+1}\right)$: number of d-dimensional arrays $\left(a_{j_{1}, j_{2}, \ldots, a_{j_{d}}}\right)_{1 \leq j_{r} \leq n_{r}}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\leq n_{d+1}$, sum of entries $=i$.

Higher dimensional partitions

Recall: $P_{i}(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e, number of 1-dimensional integer arrays (sequences) $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 0, \quad \sum a_{j}=i
$$

Generalize to $P_{i}\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{\boldsymbol{d}+1}\right)$: number of d-dimensional arrays $\left(a_{j_{1}, j_{2}, \ldots, a_{j_{d}}}\right)_{1 \leq j_{r} \leq n_{r}}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\leq n_{d+1}$, sum of entries $=i$.
$P_{i}\left(n_{1}, n_{2}, \ldots, n_{d+1}\right)$ is symmetric in n_{1}, \ldots, n_{d+1}.

Higher dimensional partitions

Recall: $P_{i}(n, k)$: number of partitions of i with $\leq k$ parts, largest part $\leq n$, i.e, number of 1-dimensional integer arrays (sequences) $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
n \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 0, \quad \sum a_{j}=i
$$

Generalize to $P_{i}\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{\boldsymbol{d}+1}\right)$: number of \boldsymbol{d}-dimensional arrays $\left(a_{j_{1}, j_{2}, \ldots, a_{j_{d}}}\right)_{1 \leq j_{r} \leq n_{r}}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\leq n_{d+1}$, sum of entries $=i$.
$P_{i}\left(n_{1}, n_{2}, \ldots, n_{d+1}\right)$ is symmetric in n_{1}, \ldots, n_{d+1}.
The case $d=2$: plane partitions (MacMahon)

Example: $n_{1}=n_{2}=n_{3}=2$

$$
\begin{array}{l|l|lll|lll|l|l}
00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & \cdots & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & & 22
\end{array}
$$

Example: $n_{1}=n_{2}=n_{3}=2$

$$
\begin{gathered}
00 \\
00
\end{gathered} \left\lvert\, \begin{array}{l|lll|lll|l|l}
10 & 11 & 10 & 20 & 11 & 21 & 20 & \cdots & 22 \\
22 & 00 & 10 & 00 & 10 & 00 & 10 & \\
\left(P_{0}, \ldots, P_{8}\right) & =(1,1,3,3,4,3,3,1,1)
\end{array}\right.
$$

(symmetric, unimodal, not log-concave)

Example: $\boldsymbol{n}_{1}=\boldsymbol{n}_{2}=\boldsymbol{n}_{3}=2$

$$
\begin{gathered}
00 \\
00
\end{gathered} \left\lvert\, \begin{array}{l|lll|lll|l|l}
10 & 11 & 10 & 20 & 11 & 21 & 20 & \cdots & 22 \\
00 & 00 & 10 & 00 & 10 & 00 & 10 & \\
22
\end{array}\right., \begin{gathered}
\left(P_{0}, \ldots, P_{8}\right)=(1,1,3,3,4,3,3,1,1)
\end{gathered}
$$

(symmetric, unimodal, not log-concave)
Theorem. For fixed (n_{1}, n_{2}, n_{3}), the sequence P_{0}, P_{1}, \ldots is symmetric (easy) and unimodal.

Example: $n_{1}=n_{2}=n_{3}=2$

$$
\begin{array}{c|l|lll|lll|l|l}
00 & 10 & 11 & 10 & 20 & 11 & 21 & 20 & \ldots & 22 \\
00 & 00 & 00 & 10 & 00 & 10 & 00 & 10 & & 22 \\
\left(P_{0}, \ldots, P_{8}\right)=(1,1,3,3,4,3,3,1,1)
\end{array}
$$

(symmetric, unimodal, not log-concave)
Theorem. For fixed $\left(n_{1}, n_{2}, n_{3}\right)$, the sequence P_{0}, P_{1}, \ldots is symmetric (easy) and unimodal.

Proof follows from principal $\mathfrak{s l}(2, \mathbb{C}) \subset \mathfrak{s l l}(N, \mathbb{C}), N=1+\max n_{j}$, and choosing a certain irrep of $\mathfrak{s l}(N, \mathbb{C})$.

A conjecture

Conjecture. For fixed n_{1}, \ldots, n_{d+1}, the sequence P_{0}, P_{1}, \ldots is unimodal.

A conjecture

Conjecture. For fixed n_{1}, \ldots, n_{d+1}, the sequence P_{0}, P_{1}, \ldots is unimodal.

Open for $d=3$. Also open for $n_{1}=n_{2}=\cdots=n_{d+1}=2$. In these cases, no nice way to compute P_{i} or $\sum P_{i}$.

For $n_{1}=n_{2}=\cdots=n_{d+1}=2, \sum P_{i}$ is the order of the free distributive lattice on $d+1$ generators (Dedekind's problem).

Projective varieties

Let \mathbf{X} be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$
\beta_{i}=\operatorname{dim}_{\mathbb{C}} H^{i}(X ; \mathbb{C})
$$

$\mathfrak{s l}(2, \mathbb{C})$ acts on $H^{*}(X ; \mathbb{C})$, and $H^{i}(X ; \mathbb{C})$ is a weight space with weight $i-N$

$$
\Rightarrow\left\{\beta_{2 i}\right\},\left\{\beta_{2 i+1}\right\} \text { are unimodal. }
$$

Projective varieties

Let \mathbf{X} be an irreducible n-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

$$
\beta_{i}=\operatorname{dim}_{\mathbb{C}} H^{i}(X ; \mathbb{C})
$$

$\mathfrak{s l}(2, \mathbb{C})$ acts on $H^{*}(X ; \mathbb{C})$, and $H^{i}(X ; \mathbb{C})$ is a weight space with weight $i-N$

$$
\Rightarrow\left\{\beta_{2 i}\right\},\left\{\beta_{2 i+1}\right\} \text { are unimodal. }
$$

Follows from hard Lefschetz theorem.

Two examples

Example. $X=G_{k}\left(\mathbb{C}^{n+k}\right)$ (Grassmannian). Then

$$
\sum \beta_{i} q^{i}=\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q^{2}} .
$$

Two examples

Example. $X=G_{k}\left(\mathbb{C}^{n+k}\right)$ (Grassmannian). Then

$$
\sum \beta_{i} q^{i}=\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q^{2}} .
$$

Example. (Hessenberg varieties.) Fix $1 \leq p \leq n-1$. For $w=w_{1} \cdots w_{n} \in \mathfrak{S}_{n}$, let

$$
\begin{aligned}
& d_{p}(w)=\#\left\{(i, j): w_{i}>w_{j}, 1 \leq j-i \leq p\right\} . \\
& d_{1}(w)=\# \text { descents of } w \\
& d_{p-1}(w)=\# \text { inversions of } w .
\end{aligned}
$$

Let $\boldsymbol{A}_{\boldsymbol{p}}(\boldsymbol{n}, \boldsymbol{k})=\#\left\{w \in \mathfrak{S}_{n}: d_{p}(w)=k\right\}$.

de Mari-Shayman theorem

de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

$$
A_{p}(n, 0), A_{p}(n, 1), \ldots, A_{p}(n, p(2 n-p-1) / 2)
$$

is unimodal.

de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

$$
A_{p}(n, 0), A_{p}(n, 1), \ldots, A_{p}(n, p(2 n-p-1) / 2)
$$

is unimodal.

Proof. Construct a "generalized Hessenberg variety" $X_{n p}$ satisfying $\beta_{2 k}\left(X_{n p}\right)=A_{p}(n, k)$.

Polytope definitions

(convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^{n}$
$\operatorname{dim} \mathcal{P}$: dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a d-dimensional ball)
face of \mathcal{P} : the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)

Polytope definitions

(convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^{n}$
$\operatorname{dim} \mathcal{P}$: dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a d-dimensional ball)
face of \mathcal{P} : the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)

Simplicial polytopes and f-vectors

\boldsymbol{i}-dimensional simplex: convex hull of $i+1$ affinely indepedent points in \mathbb{R}^{n}
simplicial polytope: every proper face is a simplex
E.g, the tetrahedron, octahedron, and icosahedron are simplicial, but not the cube or dodecahedron

Let \mathcal{P} be a simplicial polytope, with $f_{i} i$-dimensional faces (with $f_{-1}=0$). E.g., for the octahedron,

$$
f_{0}=6, \quad f_{1}=12, \quad f_{2}=8
$$

The h-vector

\mathcal{P} : a simplicial polytope of dimension d
Define the \boldsymbol{h}-vector $\boldsymbol{h}(\mathcal{P})=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of \mathcal{P} by

$$
\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}=\sum_{i=0}^{d} h_{i} x^{d-i} .
$$

E.g., for the octahedron \mathcal{O},,

$$
(x-1)^{3}+6(x-1)^{2}+12(x-1)+8=x^{3}+3 x^{2}+3 x+1
$$

so $h(\mathcal{O})=(1,3,3,1)$.

Conditions on h_{i}

Dehn-Sommerville equations $(1905,1927): h_{i}=h_{d-i}$
GLBC (McMullen-Walkup, 1971):

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}
$$

so the sequence $h_{0}, h_{1}, \ldots, h_{d}$ is unimodal.
(Generalized Lower Bound Conjecture)

Conditions on h_{i}

Dehn-Sommerville equations $(1905,1927): h_{i}=h_{d-i}$
GLBC (McMullen-Walkup, 1971):

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}
$$

so the sequence $h_{0}, h_{1}, \ldots, h_{d}$ is unimodal.

(Generalized Lower Bound Conjecture)

Even stronger condition (the g-conjecture for simplicial polytopes) conjectured by McMullen in 1971. Gave a conjectured complete characterization of f-vectors of simplicial polytopes.

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^{n} can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the toric variety corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$
H(P)=H^{0} \oplus H^{2} \oplus H^{4} \oplus \cdots \oplus H^{2 d}
$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2 i}:=\operatorname{dim}_{\mathbb{C}} H^{2 i}<\infty$.
Fact. $\beta_{2 i}=h_{i}$

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^{n} can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the toric variety corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$
H(P)=H^{0} \oplus H^{2} \oplus H^{4} \oplus \cdots \oplus H^{2 d}
$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2 i}:=\operatorname{dim}_{\mathbb{C}} H^{2 i}<\infty$.
Fact. $\beta_{2 i}=h_{i}$
\Rightarrow GLBC.

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^{n} can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the toric variety corresponding to a rational simplicial polytope \mathcal{P}. Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$
H(P)=H^{0} \oplus H^{2} \oplus H^{4} \oplus \cdots \oplus H^{2 d}
$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2 i}:=\operatorname{dim}_{\mathbb{C}} H^{2 i}<\infty$.
Fact. $\beta_{2 i}=h_{i}$

$$
\Rightarrow \text { GLBC. }
$$

Also, $H(P)$ is generated as a \mathbb{C}-algebra by H^{2}. This and hard Lefschetz imply the g-conjecture for simplicial polytopes.

Triangulated spheres

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Triangulated spheres

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Triangulated spheres

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (Steinitz' theorem). There exist nonpolytopal triangulated 3-spheres.

Triangulated spheres

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (Steinitz' theorem). There exist nonpolytopal triangulated 3 -spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated spheres on 10^{6} vertices exceeds $2^{2^{619000}}$. The number which are polytope is at most $2^{2^{42}}$.

Triangulated spheres

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a $(d-1)$-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (Steinitz' theorem). There exist nonpolytopal triangulated 3 -spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated spheres on 10^{6} vertices exceeds $2^{2^{619000}}$. The number which are polytope is at most $2^{2^{42}}$.

If Δ triangulates a $(d-1)$-sphere, then $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is defined as before, and $h_{i}=h_{d-i}$.

g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is true. In particular, if Δ triangulates a $(d-1)$-sphere then $h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}$ (and $h_{i}=h_{d-i}$).

g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is true. In particular, if Δ triangulates a $(d-1)$-sphere then $h_{0} \leq h_{1} \leq \cdots \leq h_{\lfloor d / 2\rfloor}$ (and $h_{i}=h_{d-i}$).

Idea of proof. There is a ring $H(\Delta)$ (the face ring modulo a linear system of parameters) which for a certain l.s.o.p is isomorphic to $H(\mathcal{P})$ when Δ is the boundary complex of a rational simplicial polytope. Then prove a hard Lefschetz theorem for $H(\Delta)$.

V. SOME OPEN PROBLEMS

Fences

P : a p-element fence, i.e., a poset such as

order ideal: $I \subseteq P$ such that $t \in I, s \leq t \Rightarrow s \in I$
c_{i} : number of i-element order ideals of P

Conjecture of Morier-Genoud and Ovsienko

$\varnothing, a, b, a b, b c, a b c, a b d, a b c d$

$$
\left(c_{0}, \ldots, c_{4}\right)=(1,2,2,2,1)
$$

Conjecture of Morier-Genoud and Ovsienko

$$
\varnothing, a, b, a b, b c, a b c, a b d, a b c d
$$

$$
\left(c_{0}, \ldots, c_{4}\right)=(1,2,2,2,1)
$$

Conjecture. For any p-element fence, the sequence $c_{0}, c_{1}, \ldots, c_{p}$ is unimodal.

Knots

K : a knot in \mathbb{R}^{3}
$\Delta_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is the Alexander polynomial of some knot if and only if $\Gamma(1)=1$ and $\Gamma(1 / t)=\Gamma(t)$.

Knots

K : a knot in \mathbb{R}^{3}
$\Delta_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is the Alexander polynomial of some knot if and only if $\Gamma(1)=1$ and $\Gamma(1 / t)=\Gamma(t)$.
alternating knot: can be projected to \mathbb{R}^{2} so that crossings alternate between over and under.

Knots

K : a knot in \mathbb{R}^{3}
$\Delta_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ is the Alexander polynomial of some knot if and only if $\Gamma(1)=1$ and $\Gamma(1 / t)=\Gamma(t)$.
alternating knot: can be projected to \mathbb{R}^{2} so that crossings alternate between over and under.

Conjecture (A. Stoimenow, 2014) If K is alternating, then $\Delta_{K}(t)$ has log-concave coefficients. (Unimodality for $\Delta_{K}(-t)$ conjectured by R. H. Fox in 1962)

Genus distribution of graphs

G : finite connected graph
$g_{i}(G)$: number of combinatorially distinct cellular embeddings (i.e., every face is homeomorphic to an open disk) of G in an orientable surface of genus i
Fact. The sequence $g_{0}(G), g_{1}(G), g_{2}(G), \ldots$ (the genus distribution of G) has finitely many positive terms and no internal zeros.

Conjecture (Gross-Robbins-Tucker, 1989) The genus distribution of G is log-concave. (Known that $\sum g_{i}(G) t^{i}$ need not have only real zeros.)

The last slide

The last slide

