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I. REAL ZEROS



Newton’s theorem

Theorem (I. Newton). Let

γ1, . . . , γn ∈ R
and

P(x) =∏(x + γi) = ∑ ai(n
i
)x i = ∑bix
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Newton’s theorem

Theorem (I. Newton). Let

γ1, . . . , γn ∈ R
and

P(x) =∏(x + γi) = ∑ ai(n
i
)x i = ∑bix

i .

Then a0,a1, . . . ,an is log-concave. Same as b0, . . . ,bn strongly
log-concave.

Proof. P(n−i−1)(x) has real zeros
⇒ Q(x) ∶= x i+1P(n−i−1)(1/x) has real zeros

⇒ Q(i−1)(x) has real zeros.
But Q(i−1)(x) = n!

2
(ai−1 + 2aix + ai+1x2)
⇒ a2i ≥ ai−1ai+1. ◻



Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of
det(I + xA) is real.



Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of
det(I + xA) is real.
Example. G : finite graph with vertex set V and µuv edges
between vertices u and v

L: Laplacian matrix of G . Rows and columns indexed by V , with

Luv = { deg(v), if u = v−µuv , if u ≠ v .



The Matrix-Tree theorem

Matrix-Tree Theorem (slightly expanded). det(I + xL) = ∑ aix
i ,

where ai is the number of rooted spanning forests of G with i
edges. Thus ∑ aix

i has only real zeros, so a0,a1, . . . ,a#V is
strongly log-concave.
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More generally, let X be a finite subset of a vector space of
dimension n, and let bi be the number of i -element linearly
independent subsets of X .
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What about unrooted spanning forests?

bi : number of (unrooted) spanning forests of G with i edges.

More generally, let X be a finite subset of a vector space of
dimension n, and let bi be the number of i -element linearly
independent subsets of X .

Theorem (Lenz, 2013, based on Huh, 2012) b0,b1, . . . ,bn is
log-concave (with no external zeros).

Proof of Huh based on Hodge-Riemann relations for the
cohomology of certain varieties. Later generalized by Adiprasito,
Huh, and Katz to any finite matroid (an abstract generalization of
a finite subset of a vector space).

What about strongly log-concave? To be discussed.



Total positivity

Definition. An m × n real matrix is totally nonnegative if all
minors (determinants of square submatrices) are nonnegative.



Total positivity

Definition. An m × n real matrix is totally nonnegative if all
minors (determinants of square submatrices) are nonnegative.

Theorem. Let A be an n × n totally nonnegative matrix. Then all
eigenvalues of A are real and nonnegative. Hence the characteristic
polynomial det(xI −A) has only real zeros.



An application

Let P be a finite poset (partially ordered set) with no induced 3 + 1
or 2 + 2, i.e., there do not exist elements s < t < u, v with no other
relations among them, nor elements s < t,u < v with no other
relationas among them. Let ci be the number of i -element chains
of P .
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Theorem. ∑ cix
i has only real zeros.



Proof

Theorem. ∑ cix
i has only real zeros.

Proof. Let A be the matrix with rows and columns indexed by P ,
with

Ast = { 0, if s ≤ t
1, otherwise.

Then A is totally nonnegative, and det(I + xA) = ∑ cix
i . ◻



Two further remarks

● Can be shown that the (2+ 2)-avoiding hypothesis is unnecessary
(using symmetric functions).



Two further remarks

● Can be shown that the (2+ 2)-avoiding hypothesis is unnecessary
(using symmetric functions).

● Multivariate generalizations of real-rooted polynomials: stable
polynomials (P. Brandén) and Lorentzian polynomials (P.
Brandén and J. Huh). Sample application:

Theorem. If Ik is the number of k-element independent sets of a
matroid, then the sequence I0, I1, . . . is strongly log-concave.
Conjectured by Mason in 1972. Also proved in a similar way by
Anari-Liu-Gharan-Vinzant. (We mentioned earlier the proof by
Lenz of log-concavity.)



II. ANALYTIC METHODS



Partitions

Let p(n,k) be the number of partitions of n into k parts. E.g.,
p(7,3) = 4:

5 + 1 + 1, 4 + 2 + 1, 3 + 3 + 1, 3 + 2 + 2.

∑
n≥0

p(n,k)xn = xk

(1 − x)(1 − x2)⋯(1 − xk)
⇒ p(n,k) = 1

2πi
∮ sk−n−1ds

(1 − s)(1 − s2)⋯(1 − sk) .



Theorem of Szekeres

Theorem (G. Szekeres, 1954) For n > N0, the sequence

p(n,1),p(n,2), . . . ,p(n,n)
is unimodal, with maximum at

k = c√nL + c2 (3
2
+ 3

2
L − 1

4
L2) − 1

2

+O ( log4 n√
n
)

c = √6/π, L = log c√n.



III. ALEXANDROV-FENCHEL INEQUALITIES



Let K ,L be convex bodies (nonempty compact convex sets) in R
n,

and let x , y ≥ 0. Define the Minkowski sum

xK + yL = {xα + yβ ∶ α ∈ K , β ∈ L}.
Then there exist Vi(K ,L) ≥ 0, the (Minkowski) mixed volumes
of K and L, satisfying

Vol(xK + yL) = n∑
i=0

(n
i
)Vi(K ,L)xn−i y i .

Note V0 = Vol(K), Vn = Vol(L).
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n,

and let x , y ≥ 0. Define the Minkowski sum

xK + yL = {xα + yβ ∶ α ∈ K , β ∈ L}.
Then there exist Vi(K ,L) ≥ 0, the (Minkowski) mixed volumes
of K and L, satisfying

Vol(xK + yL) = n∑
i=0

(n
i
)Vi(K ,L)xn−i y i .

Note V0 = Vol(K), Vn = Vol(L).
Theorem (Alexandrov-Fenchel, 1936–38) V 2

i ≥ Vi−1Vi+1



Corollary. Let P be an n-element poset. Fix x ∈ P. Let Ni denote
the number of order-preserving bijections (linear extensions)

f ∶ P → {1,2, . . . ,n}
such that f (x) = i . Then

N2
i ≥ Ni−1Ni+1.

Proof. Find K ,L ⊂ Rn−1 such that Vi(K ,L) = Ni+1. ◻



An example
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(N1, . . . ,N5) = (0,1,2,2,2)



Generalizations

There are algebraic and algebraic-geometric generalizations of the
Alexandrov-Fenchel inequalities with many applications.



IV. REPRESENTATIONS OF SL(2,C) AND sl(2,C)



Representations of SL(2,C)

Let
G = SL(2,C) = {2 × 2 complex

matrices with determinant 1}.
Let A ∈ G , with eigenvalues θ, θ−1. For all n ≥ 0, there is a unique
irreducible (polynomial) representation

ϕn ∶ G → GL(Vn+1)
of dimension n + 1, and ϕn(A) has eigenvalues

θ−n, θ−n+2, θ−n+4, . . . , θn.

Every (continuous) representation is a direct sum of irreducibles.



Unimodal weight multiplicities

If ϕ ∶ G → GL(V ) is any (finite-dimensional) representation, then

trϕ(A) = ∑
i∈Z

aiθ
i , ai = a−i

= a0 + +a1(θ + θ−1) +∑
i≥2

(ai − ai−2) (θ−i + θ−i+2 +⋯+ θi)
⇒ ai ≥ ai−2

⇒ {a2i},{a2i+1} are unimodal

(and symmetric)

(Completely analogous construction for the Lie algebra sl(2,C).)



q-binomial coefficient

For k ,n ≥ 0 define

[n + k
k
] = (1 − qn+k)(1 − qn+k−1)⋯(1 − qn+1)(1 − qk)(1 − qk−1)⋯(1 − q) ,

a polynomial in q with nonnegative integer coefficients.



kth symmetric power

Example. Sk(ϕn), eigenvalues
(θ−n)t0 (θ−n+2)t1 ⋯ (θn)tn ,
t0 + t1 +⋯+ tn = k , ti ≥ 0
⇒ trϕ(A) =

∑
t0+⋯+tn=k

θt0(−n)+t1(−n+2)+⋯+tnn

= θ−nk[n + k
k
]
θ2

= θ−nk∑
i≥0

Pi(n,k)θ2i ,

where Pi(n,k) is the number of partitions of i with ≤ k parts,
largest part ≤ n.



Sylvester’s theorem

⇒ P0(n,k), . . . ,Pnk(n,k)
is unimodal (Sylvester, 1878).

Combinatorial proof by K. O’Hara, 1990.

65443

2210 3

∑
i

Pi(3,2)qi = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

= [5
2
] = (1 − q5)(1 − q4)(1 − q2)(1 − q)



Principal sl(2,C)

Example. Let g be a finite-dimensional complex semisimple Lie
algebra. Then there exists a principal sl(2,C) ⊂ g. A
representation ϕ ∶ g→ gl(V ) restricts to

ϕ ∶ sl(2,C) → gl(V ).
Example. g = so(2n + 1,C), ϕ = spin representation:

⇒ (1 + q)(1 + q2)⋯(1 + qn)
has unimodal coefficients (Dynkin 1950, Hughes 1977). (No
combinatorial proof known.)



Higher dimensional partitions

Recall: Pi (n,k): number of partitions of i with ≤ k parts, largest
part ≤ n, i.e, number of 1-dimensional integer arrays (sequences)
a1,a2, . . . ,ak such that

n ≥ a1 ≥ a2 ≥ ⋯ ≥ ak ≥ 0, ∑aj = i .
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Higher dimensional partitions

Recall: Pi (n,k): number of partitions of i with ≤ k parts, largest
part ≤ n, i.e, number of 1-dimensional integer arrays (sequences)
a1,a2, . . . ,ak such that

n ≥ a1 ≥ a2 ≥ ⋯ ≥ ak ≥ 0, ∑aj = i .
Generalize to Pi(n1,n2, . . . ,nd+1): number of d -dimensional

arrays (aj1,j2,...,ajd )1≤jr≤nr of nonnegative integers, weakly decreasing

in each coordinate, maximum entry ≤ nd+1, sum of entries = i .
Pi(n1,n2, . . . ,nd+1) is symmetric in n1, . . . ,nd+1.

The case d = 2: plane partitions (MacMahon)
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Example: n1 = n2 = n3 = 2

00 10 11 10 20 11 21 20 . . . 22
00 00 00 10 00 10 00 10 22

(P0, . . . ,P8) = (1,1,3,3,4,3,3, 1, 1)
(symmetric, unimodal, not log-concave)

Theorem. For fixed (n1,n2,n3), the sequence P0,P1, . . . is
symmetric (easy) and unimodal.

Proof follows from principal sl(2,C) ⊂ sl(N,C), N = 1 +maxnj ,
and choosing a certain irrep of sl(N,C).



A conjecture

Conjecture. For fixed n1, . . . ,nd+1, the sequence P0,P1, . . . is
unimodal.



A conjecture

Conjecture. For fixed n1, . . . ,nd+1, the sequence P0,P1, . . . is
unimodal.

Open for d = 3. Also open for n1 = n2 = ⋯ = nd+1 = 2. In these
cases, no nice way to compute Pi or ∑Pi .

For n1 = n2 = ⋯ = nd+1 = 2, ∑Pi is the order of the free
distributive lattice on d + 1 generators (Dedekind’s problem).



Projective varieties

Let X be an irreducible n-dimensional complex projective variety
with finite quotient singularities (e.g., smooth).

βi = dimCH i(X ;C)
sl(2,C) acts on H∗(X ;C), and H i(X ;C) is a weight space with
weight i −N

⇒ {β2i},{β2i+1} are unimodal.



Projective varieties

Let X be an irreducible n-dimensional complex projective variety
with finite quotient singularities (e.g., smooth).

βi = dimCH i(X ;C)
sl(2,C) acts on H∗(X ;C), and H i(X ;C) is a weight space with
weight i −N

⇒ {β2i},{β2i+1} are unimodal.

Follows from hard Lefschetz theorem.



Two examples

Example. X = Gk(Cn+k) (Grassmannian). Then

∑βiq
i = [n + k

k
]
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Two examples

Example. X = Gk(Cn+k) (Grassmannian). Then

∑βiq
i = [n + k

k
]
q2
.

Example. (Hessenberg varieties.) Fix 1 ≤ p ≤ n − 1. For
w = w1⋯wn ∈Sn, let

dp(w) =#{(i , j) ∶ wi > wj , 1 ≤ j − i ≤ p}.

d1(w) = #descents of w

dp−1(w) = #inversions of w .

Let Ap(n,k) =#{w ∈ Sn ∶ dp(w) = k}.



de Mari-Shayman theorem



de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

Ap(n,0),Ap(n,1), . . . ,Ap(n,p(2n − p − 1)/2)
is unimodal.



de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

Ap(n,0),Ap(n,1), . . . ,Ap(n,p(2n − p − 1)/2)
is unimodal.

Proof. Construct a “generalized Hessenberg variety” Xnp

satisfying β2k(Xnp) = Ap(n,k). ◻



Polytope definitions

(convex) polytope: the convex hull P of a finite set S ⊂ Rn

dimP: dimension of affine span of P (so P is homeomorphic to a
d -dimensional ball)

face of P: the intersection of P with a supporting hyperplane H
(so P lies on one side of H)
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Simplicial polytopes and f -vectors

i -dimensional simplex: convex hull of i + 1 affinely indepedent
points in R

n

simplicial polytope: every proper face is a simplex

E.g, the tetrahedron, octahedron, and icosahedron are simplicial,
but not the cube or dodecahedron

Let P be a simplicial polytope, with fi i -dimensional faces (with
f−1 = 0). E.g., for the octahedron,

f0 = 6, f1 = 12, f2 = 8.



The h-vector

P : a simplicial polytope of dimension d

Define the h-vector h(P) = (h0,h1, . . . ,hd) of P by

d∑
i=0

fi−1(x − 1)d−i = d∑
i=0

hix
d−i .

E.g., for the octahedron O,,

(x − 1)3 + 6(x − 1)2 + 12(x − 1) + 8 = x3 + 3x2 + 3x + 1,
so h(O) = (1,3,3,1).



Conditions on hi

Dehn-Sommerville equations (1905,1927): hi = hd−i
GLBC (McMullen-Walkup, 1971):

h0 ≤ h1 ≤ ⋯ ≤ h⌊d/2⌋,
so the sequence h0,h1, . . . ,hd is unimodal.

(Generalized Lower Bound Conjecture)



Conditions on hi

Dehn-Sommerville equations (1905,1927): hi = hd−i
GLBC (McMullen-Walkup, 1971):

h0 ≤ h1 ≤ ⋯ ≤ h⌊d/2⌋,
so the sequence h0,h1, . . . ,hd is unimodal.

(Generalized Lower Bound Conjecture)

Even stronger condition (the g -conjecture for simplicial
polytopes) conjectured by McMullen in 1971. Gave a conjectured
complete characterization of f -vectors of simplicial polytopes.



Toric varieties

Note. Every simplicial polytope in R
n can be slightly perturbed to

have rational vertices without affecting the combinatorial type.

Let X (P) be the toric variety corresponding to a rational
simplicial polytope P. Then P is an irreducible complex projective
variety with finite quotient singularities. Let

H(P) = H0
⊕H2

⊕H4
⊕⋯⊕H2d

be its cohomology ring (over C), so β2i ∶= dimCH2i <∞.

Fact. β2i = hi
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Toric varieties

Note. Every simplicial polytope in R
n can be slightly perturbed to

have rational vertices without affecting the combinatorial type.

Let X (P) be the toric variety corresponding to a rational
simplicial polytope P. Then P is an irreducible complex projective
variety with finite quotient singularities. Let

H(P) = H0
⊕H2

⊕H4
⊕⋯⊕H2d

be its cohomology ring (over C), so β2i ∶= dimCH2i <∞.

Fact. β2i = hi
⇒ GLBC.

Also, H(P) is generated as a C-algebra by H2. This and hard
Lefschetz imply the g -conjecture for simplicial polytopes.
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A triangulated sphere is an abstract simplicial complex ∆ whose
geometric realization is a (d − 1)-sphere.
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Triangulated spheres

A triangulated sphere is an abstract simplicial complex ∆ whose
geometric realization is a (d − 1)-sphere.
Example. The boundary of a simplicial polytope defines a
triangulated sphere.

Every triangulated 2-sphere is polytopal (Steinitz’ theorem).
There exist nonpolytopal triangulated 3-spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated

spheres on 106 vertices exceeds 22
619000

. The number which are
polytope is at most 22

42

.

If ∆ triangulates a (d − 1)-sphere, then (h0,h1, . . . ,hd) is defined
as before, and hi = hd−i .



g -conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is
true. In particular, if ∆ triangulates a (d − 1)-sphere then
h0 ≤ h1 ≤ ⋯ ≤ h⌊d/2⌋ (and hi = hd−i ).



g -conjecture for spheres

Theorem (K. Adiprasito, 2018). The g-conjecture for spheres is
true. In particular, if ∆ triangulates a (d − 1)-sphere then
h0 ≤ h1 ≤ ⋯ ≤ h⌊d/2⌋ (and hi = hd−i ).
Idea of proof. There is a ring H(∆) (the face ring modulo a linear
system of parameters) which for a certain l.s.o.p is isomorphic to
H(P) when ∆ is the boundary complex of a rational simplicial
polytope. Then prove a hard Lefschetz theorem for H(∆).



V. SOME OPEN PROBLEMS



Fences

P: a p-element fence, i.e., a poset such as

order ideal: I ⊆ P such that t ∈ I , s ≤ t ⇒ s ∈ I
ci : number of i -element order ideals of P



Conjecture of Morier-Genoud and Ovsienko

a b

c d

∅,a,b,ab,bc ,abc ,abd ,abcd

(c0, . . . , c4) = (1,2,2,2,1)



Conjecture of Morier-Genoud and Ovsienko

a b

c d

∅,a,b,ab,bc ,abc ,abd ,abcd

(c0, . . . , c4) = (1,2,2,2,1)
Conjecture. For any p-element fence, the sequence c0, c1, . . . , cp
is unimodal.



Knots
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∆K(t) ∈ Z[t, t−1]: the Alexander polynomial of K (a famous
knot invariant).

Fact. A polynomial Γ(t) ∈ Z[t, t−1] is the Alexander polynomial of
some knot if and only if Γ(1) = 1 and Γ(1/t) = Γ(t).
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Knots

K : a knot in R
3

∆K(t) ∈ Z[t, t−1]: the Alexander polynomial of K (a famous
knot invariant).

Fact. A polynomial Γ(t) ∈ Z[t, t−1] is the Alexander polynomial of
some knot if and only if Γ(1) = 1 and Γ(1/t) = Γ(t).
alternating knot: can be projected to R

2 so that crossings
alternate between over and under.

Conjecture (A. Stoimenow, 2014) If K is alternating, then
∆K(t) has log-concave coefficients. (Unimodality for ∆K(−t)
conjectured by R.H. Fox in 1962)



Genus distribution of graphs

G : finite connected graph

gi (G): number of combinatorially distinct cellular embeddings
(i.e., every face is homeomorphic to an open disk) of G in an
orientable surface of genus i

Fact. The sequence g0(G),g1(G),g2(G), . . . (the genus
distribution of G ) has finitely many positive terms and no internal
zeros.

Conjecture (Gross-Robbins-Tucker, 1989) The genus
distribution of G is log-concave. (Known that ∑gi(G)t i need not
have only real zeros.)
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