A Survey of Unimodality and Log-Concavity

Richard P. Stanley U. Miami & M.I.T.

4 October 2021

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some j.

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some j.

(2) log-concave if $a_i^2 \ge a_{i-1}a_{i+1}$, $1 \le i \le n-1$.

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some j.

(2) log-concave if $a_i^2 \ge a_{i-1}a_{i+1}$, $1 \le i \le n-1$.

(3) strongly log-concave if

$$\left(\frac{a_i}{\binom{n}{i}}\right)^2 \geq \frac{a_{i-1}}{\binom{n}{i-1}}\frac{a_{i+1}}{\binom{n}{i+1}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some *j*.

(2) **log-concave** if $a_i^2 \ge a_{i-1}a_{i+1}$, $1 \le i \le n-1$.

3) strongly log-concave if
$$\left(\frac{a_i}{\binom{n}{i}}\right)^2 \ge \frac{a_{i-1}}{\binom{n}{i-1}}\frac{a_{i+1}}{\binom{n}{i+1}}$$

(4) no internal zeros if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some *j*.

(2) **log-concave** if $a_i^2 \ge a_{i-1}a_{i+1}$, $1 \le i \le n-1$.

(3) strongly log-concave if
$$\left(\frac{a_i}{\binom{n}{i}}\right)^2 \ge \frac{a_{i-1}}{\binom{n}{i-1}}\frac{a_{i+1}}{\binom{n}{i+1}}$$

(4) no internal zeros if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. Log-concave, NIZ, $a_i \ge 0 \Rightarrow$ unimodal.

Definition. (1) A sequence a_0, \ldots, a_n of real numbers is **unimodal** if $a_0 \le a_1 \le \cdots \le a_j \ge a_{j+1} \ge \cdots \ge a_n$ for some *j*.

(2) **log-concave** if $a_i^2 \ge a_{i-1}a_{i+1}$, $1 \le i \le n-1$.

(3) strongly log-concave if
$$\left(\frac{a_i}{\binom{n}{i}}\right)^2 \ge \frac{a_{i-1}}{\binom{n}{i-1}}\frac{a_{i+1}}{\binom{n}{i+1}}$$

(4) no internal zeros if $a_i = 0 \Rightarrow$ either $a_1 = \cdots = a_{i-1} = 0$ or $a_{i+1} = \cdots = a_n = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note. Log-concave, NIZ, $a_i \ge 0 \Rightarrow$ unimodal. **Example.** $\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$ (strongly log-concave)

I. REAL ZEROS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Newton's theorem

Theorem (I. Newton). Let

$$\gamma_1, \ldots, \gamma_n \in \mathbb{R}$$

and

$$P(x) = \prod (x + \gamma_i) = \sum a_i \binom{n}{i} x^i = \sum b_i x^i.$$

(日)

Then a_0, a_1, \ldots, a_n is log-concave. Same as b_0, \ldots, b_n strongly log-concave.

Newton's theorem

Theorem (I. Newton). Let

$$\gamma_1, \ldots, \gamma_n \in \mathbb{R}$$

and

$$P(x) = \prod (x + \gamma_i) = \sum a_i \binom{n}{i} x^i = \sum b_i x^i.$$

Then a_0, a_1, \ldots, a_n is log-concave. Same as b_0, \ldots, b_n strongly log-concave.

Proof. $P^{(n-i-1)}(x)$ has real zeros $\Rightarrow Q(x) \coloneqq x^{i+1}P^{(n-i-1)}(1/x)$ has real zeros $\Rightarrow Q^{(i-1)}(x)$ has real zeros. But $Q^{(i-1)}(x) = \frac{n!}{2} (a_{i-1} + 2a_ix + a_{i+1}x^2)$ $\Rightarrow a_i^2 \ge a_{i-1}a_{i+1}$.

Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of det(I + xA) is real.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Basic linear algebra

Theorem. If A is a (real) symmetric matrix, then every zero of det(I + xA) is real.

Example. G: finite graph with vertex set **V** and μ_{uv} edges between vertices u and v

L: Laplacian matrix of G. Rows and columns indexed by V, with

$$L_{uv} = \begin{cases} \deg(v), & \text{if } u = v \\ -\mu_{uv}, & \text{if } u \neq v \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Matrix-Tree theorem

Matrix-Tree Theorem (slightly expanded). det $(I + xL) = \sum a_i x^i$, where a_i is the number of rooted spanning forests of G with i edges. Thus $\sum a_i x^i$ has only real zeros, so $a_0, a_1, \ldots, a_{\#V}$ is strongly log-concave.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What about unrooted spanning forests?

b_i: number of (unrooted) spanning forests of G with *i* edges.

More generally, let X be a finite subset of a vector space of dimension n, and let \mathbf{b}_i be the number of *i*-element linearly independent subsets of X.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

What about unrooted spanning forests?

b_i: number of (unrooted) spanning forests of G with *i* edges.

More generally, let X be a finite subset of a vector space of dimension n, and let b_i be the number of *i*-element linearly independent subsets of X.

Theorem (Lenz, 2013, based on **Huh**, 2012) b_0, b_1, \ldots, b_n is log-concave (with no external zeros).

Proof of Huh based on **Hodge-Riemann relations** for the cohomology of certain varieties. Later generalized by **Adiprasito**, **Huh**, and **Katz** to any finite matroid (an abstract generalization of a finite subset of a vector space).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What about unrooted spanning forests?

 b_i : number of (unrooted) spanning forests of G with *i* edges.

More generally, let X be a finite subset of a vector space of dimension n, and let b_i be the number of *i*-element linearly independent subsets of X.

Theorem (Lenz, 2013, based on **Huh**, 2012) b_0, b_1, \ldots, b_n is log-concave (with no external zeros).

Proof of Huh based on **Hodge-Riemann relations** for the cohomology of certain varieties. Later generalized by **Adiprasito**, **Huh**, and **Katz** to any finite matroid (an abstract generalization of a finite subset of a vector space).

What about **strongly** log-concave? To be discussed.

Total positivity

Definition. An $m \times n$ real matrix is **totally nonnegative** if all minors (determinants of square submatrices) are nonnegative.

Total positivity

Definition. An $m \times n$ real matrix is **totally nonnegative** if all minors (determinants of square submatrices) are nonnegative.

Theorem. Let A be an $n \times n$ totally nonnegative matrix. Then all eigenvalues of A are real and nonnegative. Hence the characteristic polynomial det(xI - A) has only real zeros.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An application

Let *P* be a finite poset (partially ordered set) with no induced 3 + 1 or 2 + 2, i.e., there do not exist elements s < t < u, v with no other relations among them, nor elements s < t, u < v with no other relationas among them. Let c_i be the number of *i*-element chains of *P*.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. $\sum c_i x^i$ has only real zeros.

Theorem. $\sum c_i x^i$ has only real zeros.

Proof. Let *A* be the matrix with rows and columns indexed by *P*, with

$$A_{st} = \begin{cases} 0, & \text{if } s \leq t \\ 1, & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Then A is totally nonnegative, and $det(I + xA) = \sum c_i x^i$. \Box

Two further remarks

• Can be shown that the (2+2)-avoiding hypothesis is unnecessary (using symmetric functions).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Two further remarks

• Can be shown that the (2+2)-avoiding hypothesis is unnecessary (using symmetric functions).

• Multivariate generalizations of real-rooted polynomials: **stable polynomials** (**P. Brandén**) and **Lorentzian polynomials** (**P. Brandén** and **J. Huh**). Sample application:

Theorem. If I_k is the number of *k*-element independent sets of a matroid, then the sequence I_0, I_1, \ldots is strongly log-concave. Conjectured by **Mason** in 1972. Also proved in a similar way by **Anari-Liu-Gharan-Vinzant**. (We mentioned earlier the proof by Lenz of log-concavity.)

II. ANALYTIC METHODS

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

Partitions

Let p(n, k) be the number of partitions of *n* into *k* parts. E.g., p(7,3) = 4:

$$5+1+1, \quad 4+2+1, \quad 3+3+1, \quad 3+2+2.$$
$$\sum_{n\geq 0} p(n,k)x^{n} = \frac{x^{k}}{(1-x)(1-x^{2})\cdots(1-x^{k})}$$
$$\Rightarrow p(n,k) = \frac{1}{2\pi i} \oint \frac{s^{k-n-1}ds}{(1-s)(1-s^{2})\cdots(1-s^{k})}.$$

Theorem of Szekeres

Theorem (G. Szekeres, 1954) For $n > N_0$, the sequence

$$p(n,1), p(n,2), \ldots, p(n,n)$$

is unimodal, with maximum at

$$k = c\sqrt{nL} + c^2 \left(\frac{3}{2} + \frac{3}{2}L - \frac{1}{4}L^2\right) - \frac{1}{2}$$
$$+ O\left(\frac{\log^4 n}{\sqrt{n}}\right)$$
$$c = \sqrt{6}/\pi, \qquad L = \log c\sqrt{n}.$$

III. ALEXANDROV-FENCHEL INEQUALITIES

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^n , and let $x, y \ge 0$. Define the Minkowski sum

$$xK + yL = \{x\alpha + y\beta : \alpha \in K, \beta \in L\}.$$

Then there exist $V_i(K, L) \ge 0$, the (Minkowski) mixed volumes of K and L, satisfying

$$\operatorname{Vol}(xK+yL) = \sum_{i=0}^n \binom{n}{i} V_i(K,L) x^{n-i} y^i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note $V_0 = Vol(K)$, $V_n = Vol(L)$.

Let K, L be convex bodies (nonempty compact convex sets) in \mathbb{R}^n , and let $x, y \ge 0$. Define the Minkowski sum

$$xK + yL = \{x\alpha + y\beta : \alpha \in K, \beta \in L\}.$$

Then there exist $V_i(K, L) \ge 0$, the (Minkowski) mixed volumes of K and L, satisfying

$$\operatorname{Vol}(xK+yL) = \sum_{i=0}^{n} \binom{n}{i} V_i(K,L) x^{n-i} y^i.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Note $V_0 = Vol(K)$, $V_n = Vol(L)$.

Theorem (Alexandrov-Fenchel, 1936–38) $V_i^2 \ge V_{i-1}V_{i+1}$

Corollary. Let P be an n-element poset. Fix $x \in P$. Let N_i denote the number of order-preserving bijections (linear extensions)

$$f: P \to \{1, 2, \ldots, n\}$$

such that f(x) = i. Then

$$N_i^2 \ge N_{i-1}N_{i+1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof. Find $K, L \subset \mathbb{R}^{n-1}$ such that $V_i(K, L) = N_{i+1}$. \Box

An example

[2]

 $(N_1,\ldots,N_5) = (0,1,2,2,2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

There are algebraic and algebraic-geometric generalizations of the Alexandrov-Fenchel inequalities with many applications.

(4日) (個) (主) (主) (三) の(の)

IV. REPRESENTATIONS OF SL $(2,\mathbb{C})$ AND $\mathfrak{sl}(2,\mathbb{C})$

Representations of $SL(2, \mathbb{C})$

Let

$$G = SL(2, \mathbb{C}) = \{2 \times 2 \text{ complex} \\ \text{matrices with determinant } 1\}.$$

Let $A \in G$, with eigenvalues θ, θ^{-1} . For all $n \ge 0$, there is a unique irreducible (polynomial) representation

$$\varphi_n: G \to \mathrm{GL}(V_{n+1})$$

of dimension n + 1, and $\varphi_n(A)$ has eigenvalues

$$\theta^{-n}, \theta^{-n+2}, \theta^{-n+4}, \ldots, \theta^n.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Every (continuous) representation is a direct sum of irreducibles.

Unimodal weight multiplicities

If $\varphi : G \to GL(V)$ is any (finite-dimensional) representation, then

$$\operatorname{tr} \varphi(A) = \sum_{i \in \mathbb{Z}} a_i \theta^i, \quad a_i = a_{-i}$$

$$= a_0 + a_1(\theta + \theta^{-1}) + \sum_{i \ge 2} (a_i - a_{i-2}) (\theta^{-i} + \theta^{-i+2} + \dots + \theta^i)$$

$$\Rightarrow a_i \ge a_{i-2}$$

$$\Rightarrow \{a_{2i}\}, \{a_{2i+1}\} \text{ are unimodal}$$

(and symmetric)

(Completely analogous construction for the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.)

q-binomial coefficient

For $k, n \ge 0$ define

$$\binom{n+k}{k} = \frac{(1-q^{n+k})(1-q^{n+k-1})\cdots(1-q^{n+1})}{(1-q^k)(1-q^{k-1})\cdots(1-q)},$$

a polynomial in q with nonnegative integer coefficients.

*k*th symmetric power

Example. $S^k(\varphi_n)$, eigenvalues

$$(\theta^{-n})^{t_0} (\theta^{-n+2})^{t_1} \cdots (\theta^n)^{t_n},$$

$$t_0 + t_1 + \dots + t_n = k, \quad t_i \ge 0$$

$$\Rightarrow \operatorname{tr} \varphi(A) =$$

$$\sum_{t_0 + \dots + t_n = k} \theta^{t_0(-n) + t_1(-n+2) + \dots + t_n n}$$

$$= \theta^{-nk} \begin{bmatrix} n+k \\ k \end{bmatrix}_{\theta^2}$$
$$= \theta^{-nk} \sum_{i \ge 0} P_i(n,k) \theta^{2i},$$

where $P_i(n, k)$ is the number of partitions of *i* with $\leq k$ parts, largest part $\leq n$.
Sylvester's theorem

$$\Rightarrow P_0(n,k),\ldots,P_{nk}(n,k)$$

is unimodal (Sylvester, 1878).

Combinatorial proof by K. O'Hara, 1990.

$$\sum_{i} P_{i}(3,2)q^{i} = 1 + q + 2q^{2} + 2q^{3} + 2q^{4} + q^{5} + q^{6}$$
$$= \begin{bmatrix} 5\\2 \end{bmatrix} = \frac{(1-q^{5})(1-q^{4})}{(1-q^{2})(1-q)}$$

Principal $\mathfrak{sl}(2,\mathbb{C})$

Example. Let \mathfrak{g} be a finite-dimensional complex semisimple Lie algebra. Then there exists a **principal** $\mathfrak{sl}(2,\mathbb{C}) \subset \mathfrak{g}$. A representation $\varphi : \mathfrak{g} \to \mathfrak{gl}(V)$ restricts to

 $\varphi:\mathfrak{sl}(2,\mathbb{C})\to\mathfrak{gl}(V).$

Example. $\mathfrak{g} = \mathfrak{so}(2n+1,\mathbb{C}), \varphi = \text{spin representation}$:

$$\Rightarrow (1+q)(1+q^2)\cdots(1+q^n)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

has unimodal coefficients (**Dynkin** 1950, **Hughes** 1977). (No combinatorial proof known.)

Recall: $P_i(n, k)$: number of partitions of *i* with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \ge a_1 \ge a_2 \ge \cdots \ge a_k \ge 0, \quad \sum a_j = i.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recall: $P_i(n, k)$: number of partitions of *i* with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \ge a_1 \ge a_2 \ge \cdots \ge a_k \ge 0, \quad \sum a_j = i.$$

Generalize to $P_i(n_1, n_2, ..., n_{d+1})$: number of *d*-dimensional arrays $(a_{j_1, j_2, ..., a_{j_d}})_{1 \le j_r \le n_r}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\le n_{d+1}$, sum of entries = *i*.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Recall: $P_i(n, k)$: number of partitions of *i* with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \ge a_1 \ge a_2 \ge \cdots \ge a_k \ge 0, \quad \sum a_j = i.$$

Generalize to $P_i(n_1, n_2, ..., n_{d+1})$: number of *d*-dimensional arrays $(a_{j_1, j_2, ..., a_{j_d}})_{1 \le j_r \le n_r}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\le n_{d+1}$, sum of entries = *i*.

 $P_i(n_1, n_2, ..., n_{d+1})$ is symmetric in $n_1, ..., n_{d+1}$.

Recall: $P_i(n, k)$: number of partitions of *i* with $\leq k$ parts, largest part $\leq n$, i.e., number of 1-dimensional integer arrays (sequences) a_1, a_2, \ldots, a_k such that

$$n \ge a_1 \ge a_2 \ge \cdots \ge a_k \ge 0, \quad \sum a_j = i.$$

Generalize to $P_i(n_1, n_2, ..., n_{d+1})$: number of *d*-dimensional arrays $(a_{j_1, j_2, ..., a_{j_d}})_{1 \le j_r \le n_r}$ of nonnegative integers, weakly decreasing in each coordinate, maximum entry $\le n_{d+1}$, sum of entries = *i*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $P_i(n_1, n_2, ..., n_{d+1})$ is symmetric in $n_1, ..., n_{d+1}$.

The case *d* = 2: plane partitions (MacMahon)

 $(P_0,\ldots,P_8) = (1,1,3,3,4,3,3,1,1)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(symmetric, unimodal, not log-concave)

 $(P_0,\ldots,P_8) = (1,1,3,3,4,3,3,1,1)$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

(symmetric, unimodal, not log-concave)

Theorem. For fixed (n_1, n_2, n_3) , the sequence P_0, P_1, \ldots is symmetric (easy) and unimodal.

 $(P_0,\ldots,P_8) = (1,1,3,3,4,3,3,1,1)$

(symmetric, unimodal, not log-concave)

Theorem. For fixed (n_1, n_2, n_3) , the sequence P_0, P_1, \ldots is symmetric (easy) and unimodal.

Proof follows from principal $\mathfrak{sl}(2,\mathbb{C}) \subset \mathfrak{sl}(N,\mathbb{C})$, $N = 1 + \max n_j$, and choosing a certain irrep of $\mathfrak{sl}(N,\mathbb{C})$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A conjecture

Conjecture. For fixed n_1, \ldots, n_{d+1} , the sequence P_0, P_1, \ldots is unimodal.

A conjecture

Conjecture. For fixed n_1, \ldots, n_{d+1} , the sequence P_0, P_1, \ldots is unimodal.

Open for d = 3. Also open for $n_1 = n_2 = \cdots = n_{d+1} = 2$. In these cases, no nice way to compute P_i or $\sum P_i$.

For $n_1 = n_2 = \dots = n_{d+1} = 2$, $\sum P_i$ is the order of the **free** distributive lattice on d + 1 generators (Dedekind's problem).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Projective varieties

Let X be an irreducible *n*-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

 $\beta_i = \dim_{\mathbb{C}} H^i(X;\mathbb{C})$

 $\mathfrak{sl}(2,\mathbb{C})$ acts on $H^*(X;\mathbb{C})$, and $H^i(X;\mathbb{C})$ is a weight space with weight i - N

 $\Rightarrow \{\beta_{2i}\}, \{\beta_{2i+1}\}$ are unimodal.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Projective varieties

Let X be an irreducible *n*-dimensional complex projective variety with finite quotient singularities (e.g., smooth).

 $\beta_i = \dim_{\mathbb{C}} H^i(X;\mathbb{C})$

 $\mathfrak{sl}(2,\mathbb{C})$ acts on $H^*(X;\mathbb{C})$, and $H^i(X;\mathbb{C})$ is a weight space with weight i - N $\Rightarrow \{\beta_{2i}\}, \{\beta_{2i+1}\}$ are unimodal.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Follows from hard Lefschetz theorem.

Two examples

Example. $X = G_k(\mathbb{C}^{n+k})$ (**Grassmannian**). Then

$$\sum \beta_i q^i = \begin{bmatrix} n+k \\ k \end{bmatrix}_{q^2}.$$

Two examples

Example. $X = G_k(\mathbb{C}^{n+k})$ (**Grassmannian**). Then

$$\sum \beta_i q^i = \begin{bmatrix} n+k\\k \end{bmatrix}_{q^2}$$

Example. (Hessenberg varieties.) Fix $1 \le p \le n-1$. For $w = w_1 \cdots w_n \in \mathfrak{S}_n$, let

$$d_{p}(w) = \#\{(i,j) : w_{i} > w_{j}, 1 \leq j - i \leq p\}.$$

 $d_1(w) = #$ descents of w $d_{p-1}(w) = #$ inversions of w.

Let $A_p(n,k) = \#\{w \in \mathfrak{S}_n : d_p(w) = k\}.$

de Mari-Shayman theorem

de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

$$A_p(n,0), A_p(n,1), \ldots, A_p(n,p(2n-p-1)/2)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

is **unimodal**.

de Mari-Shayman theorem

Theorem (de Mari-Shayman, 1987). The sequence

$$A_p(n,0), A_p(n,1), \ldots, A_p(n,p(2n-p-1)/2)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is unimodal.

Proof. Construct a "generalized Hessenberg variety" X_{np} satisfying $\beta_{2k}(X_{np}) = A_p(n,k)$. \Box

Polytope definitions

(convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^n$

dim \mathcal{P} : dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a *d*-dimensional ball)

face of \mathcal{P} : the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Polytope definitions

(convex) polytope: the convex hull \mathcal{P} of a finite set $S \subset \mathbb{R}^n$

dim \mathcal{P} : dimension of affine span of \mathcal{P} (so \mathcal{P} is homeomorphic to a *d*-dimensional ball)

face of \mathcal{P} : the intersection of \mathcal{P} with a supporting hyperplane H (so \mathcal{P} lies on one side of H)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Simplicial polytopes and *f*-vectors

i-dimensional simplex: convex hull of i + 1 affinely indepedent points in \mathbb{R}^n

simplicial polytope: every proper face is a simplex

E.g, the tetrahedron, octahedron, and icosahedron are simplicial, but not the cube or dodecahedron

Let \mathcal{P} be a simplicial polytope, with f_i *i*-dimensional faces (with $f_{-1} = 0$). E.g., for the octahedron,

$$f_0 = 6$$
, $f_1 = 12$, $f_2 = 8$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The *h*-vector

 \mathcal{P} : a simplicial polytope of dimension d

Define the **h**-vector $h(\mathcal{P}) = (h_0, h_1, \dots, h_d)$ of \mathcal{P} by

$$\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} = \sum_{i=0}^{d} h_i x^{d-i}.$$

E.g., for the octahedron $\mathcal{O}_{,,}$

$$(x-1)^{3} + 6(x-1)^{2} + 12(x-1) + 8 = x^{3} + 3x^{2} + 3x + 1,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

so $h(\mathcal{O}) = (1, 3, 3, 1)$.

Conditions on *h_i*

Dehn-Sommerville equations (1905,1927): $h_i = h_{d-i}$ **GLBC** (McMullen-Walkup, 1971):

$$h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor},$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

so the sequence h_0, h_1, \ldots, h_d is unimodal.

(Generalized Lower Bound Conjecture)

Conditions on *h_i*

Dehn-Sommerville equations (1905,1927): $h_i = h_{d-i}$ **GLBC** (McMullen-Walkup, 1971):

$$h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor},$$

so the sequence h_0, h_1, \ldots, h_d is unimodal.

(Generalized Lower Bound Conjecture)

Even stronger condition (the *g*-conjecture for simplicial polytopes) conjectured by McMullen in 1971. Gave a conjectured complete characterization of *f*-vectors of simplicial polytopes.

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the **toric variety** corresponding to a rational simplicial polytope \mathcal{P} . Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(P) = H^0 \oplus H^2 \oplus H^4 \oplus \dots \oplus H^{2d}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

be its cohomology ring (over \mathbb{C}), so $\beta^{2i} \coloneqq \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the **toric variety** corresponding to a rational simplicial polytope \mathcal{P} . Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(P) = H^0 \oplus H^2 \oplus H^4 \oplus \cdots \oplus H^{2d}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

be its cohomology ring (over \mathbb{C}), so $\beta^{2i} \coloneqq \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$ \Rightarrow GLBC

Toric varieties

Note. Every simplicial polytope in \mathbb{R}^n can be slightly perturbed to have rational vertices without affecting the combinatorial type.

Let $X(\mathcal{P})$ be the **toric variety** corresponding to a rational simplicial polytope \mathcal{P} . Then \mathcal{P} is an irreducible complex projective variety with finite quotient singularities. Let

$$H(P) = H^0 \oplus H^2 \oplus H^4 \oplus \dots \oplus H^{2d}$$

be its cohomology ring (over \mathbb{C}), so $\beta^{2i} \coloneqq \dim_{\mathbb{C}} H^{2i} < \infty$.

Fact. $\beta_{2i} = h_i$

\Rightarrow GLBC.

・ロト・西ト・ヨト・ヨト・ 日・ うらの

Also, H(P) is generated as a \mathbb{C} -algebra by H^2 . This and hard Lefschetz imply the *g*-conjecture for simplicial polytopes.

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a (d-1)-sphere.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a (d-1)-sphere.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Example. The boundary of a simplicial polytope defines a triangulated sphere.

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a (d-1)-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz' theorem**). There exist nonpolytopal triangulated 3-spheres.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a (d-1)-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz' theorem**). There exist nonpolytopal triangulated 3-spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated spheres on 10^6 vertices exceeds $2^{2^{619000}}$. The number which are polytope is at most $2^{2^{42}}$.

A triangulated sphere is an abstract simplicial complex Δ whose geometric realization is a (d-1)-sphere.

Example. The boundary of a simplicial polytope defines a triangulated sphere.

Every triangulated 2-sphere is polytopal (**Steinitz' theorem**). There exist nonpolytopal triangulated 3-spheres.

In fact (Kalai, Goodman-Pollack), the number of triangulated spheres on 10^6 vertices exceeds $2^{2^{619000}}$. The number which are polytope is at most $2^{2^{42}}$.

If Δ triangulates a (d-1)-sphere, then (h_0, h_1, \ldots, h_d) is defined as before, and $h_i = h_{d-i}$.

g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The *g*-conjecture for spheres is true. In particular, if Δ triangulates a (d - 1)-sphere then $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor}$ (and $h_i = h_{d-i}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

g-conjecture for spheres

Theorem (K. Adiprasito, 2018). The *g*-conjecture for spheres is true. In particular, if Δ triangulates a (d - 1)-sphere then $h_0 \leq h_1 \leq \cdots \leq h_{\lfloor d/2 \rfloor}$ (and $h_i = h_{d-i}$).

Idea of proof. There is a ring $H(\Delta)$ (the face ring modulo a linear system of parameters) which for a certain l.s.o.p is isomorphic to $H(\mathcal{P})$ when Δ is the boundary complex of a rational simplicial polytope. Then prove a hard Lefschetz theorem for $H(\Delta)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

V. SOME OPEN PROBLEMS

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●
Fences

P: a *p*-element **fence**, i.e., a poset such as

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

order ideal: $I \subseteq P$ such that $t \in I, s \leq t \Rightarrow s \in I$

c_i: number of *i*-element order ideals of P

Conjecture of Morier-Genoud and Ovsienko

 \emptyset , a, b, ab, bc, abc, abd, abcd $(c_0, \dots, c_4) = (1, 2, 2, 2, 1)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conjecture of Morier-Genoud and Ovsienko

 \emptyset , a, b, ab, bc, abc, abd, abcd $(c_0, \dots, c_4) = (1, 2, 2, 2, 1)$

Conjecture. For any *p*-element fence, the sequence c_0, c_1, \ldots, c_p is unimodal.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Knots

K: a knot in \mathbb{R}^3

 $\Delta_{\kappa}(t) \in \mathbb{Z}[t, t^{-1}]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}[t, t^{-1}]$ is the Alexander polynomial of some knot if and only if $\Gamma(1) = 1$ and $\Gamma(1/t) = \Gamma(t)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Knots

K: a knot in \mathbb{R}^3

 $\Delta_{\kappa}(t) \in \mathbb{Z}[t, t^{-1}]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}[t, t^{-1}]$ is the Alexander polynomial of some knot if and only if $\Gamma(1) = 1$ and $\Gamma(1/t) = \Gamma(t)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

alternating knot: can be projected to \mathbb{R}^2 so that crossings alternate between over and under.

Knots

K: a knot in \mathbb{R}^3

 $\Delta_{\kappa}(t) \in \mathbb{Z}[t, t^{-1}]$: the Alexander polynomial of K (a famous knot invariant).

Fact. A polynomial $\Gamma(t) \in \mathbb{Z}[t, t^{-1}]$ is the Alexander polynomial of some knot if and only if $\Gamma(1) = 1$ and $\Gamma(1/t) = \Gamma(t)$.

alternating knot: can be projected to \mathbb{R}^2 so that crossings alternate between over and under.

Conjecture (A. Stoimenow, 2014) If K is alternating, then $\Delta_K(t)$ has log-concave coefficients. (Unimodality for $\Delta_K(-t)$ conjectured by **R. H. Fox** in 1962)

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

Genus distribution of graphs

G: finite connected graph

 $g_i(G)$: number of combinatorially distinct cellular embeddings (i.e., every face is homeomorphic to an open disk) of G in an orientable surface of genus *i*

Fact. The sequence $g_0(G), g_1(G), g_2(G), \ldots$ (the **genus distribution** of *G*) has finitely many positive terms and no internal zeros.

Conjecture (Gross-Robbins-Tucker, 1989) The genus distribution of G is log-concave. (Known that $\sum g_i(G)t^i$ need not have only real zeros.)

The last slide

The last slide

