GENERALIZED
 RIFFLE SHUFFLES AND
 QUASISYMMETRIC FUNCTIONS

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:
http://www-math.mit.edu/~rstan/trans.html

Let $\mathbf{x}_{\mathbf{i}}=$ probability of $i \in \mathbb{P}=\{1,2 \ldots\}$.
Fix $n \in \mathbb{P}$. Define a random $w \in \mathfrak{S}_{n}$ as follows:

For $1 \leq j \leq n$, choose independently an integer i_{j} from the distribution x_{i}. Then standardize the sequence $\boldsymbol{i}=$ $i_{1} \cdots i_{n}$, i.e., replace the 1 's with $1,2, \ldots, a_{1}$ from left-to-right, then the 2's with $a_{1}+$ $1, a_{1}+2, \ldots, a_{1}+a_{2}$ from left-to-right, etc.

$$
\begin{aligned}
\boldsymbol{i} & =311431 \\
w & =412653
\end{aligned}
$$

Call this the QS-distribution or $\mathbf{Q S}(\boldsymbol{x})$ distribution.

Previously studied by

- Diaconis-Fill-Pitman
- Fulman
- Its-Tracy-Widom
- Kuperberg,
at least when x_{i} has finite support.

Example. $w=213$. The sequence $i_{1} i_{2} i_{3}$ has standardization 213 if and only if $i_{2}<i_{1} \leq i_{3}$. Hence

$$
\operatorname{Prob}(213)=\sum x_{a} x_{b} x_{c}=L_{(1,2)}(x)
$$

Theorem. Let $w \in \mathfrak{S}_{n}$. The probability $\operatorname{Prob}(w)$ that a permutation in \mathfrak{S}_{n} chosen from the QS-permutation is equal to w is given by

$$
\operatorname{Prob}(w)=L_{\operatorname{co}\left(w^{-1}\right)}(x)
$$

Example. $w=74513826$

$$
\begin{aligned}
w^{-1} & =47 \cdot 5 \cdot 238 \cdot 16 \\
\operatorname{co}\left(w^{-1}\right) & =(2,1,3,2) \\
L_{(2,1,3,2)}(x) & =\sum_{a \leq b<c<d \leq e \leq f<g \leq h} x_{a} \cdots x_{h} .
\end{aligned}
$$

Special cases:

- $x_{1}=x_{2}=1 / 2$: riffle or dovetail shuffle (Bayer-Diaconis), the $\mathbf{U}_{\mathbf{2}}$-distribution
- $x_{1}=\cdots=x_{q}=1 / q: q$-shuffle (BayerDiaconis), the $\mathbf{U}_{\mathbf{q}}$-distribution
- $\lim _{q \rightarrow \infty} U_{q}$: the uniform distribution U

Note. A q-shuffle followed by an r shuffle is a $q r$-shuffle, i.e., $U_{q} * U_{r}=U_{q r}$.

Theorem. Let y have finite support. Then

$$
\operatorname{QS}(x) * \operatorname{QS}(y)=\operatorname{QS}(x y)
$$

where $x y$ denotes the variables $x_{i} y_{j}$ in lexicographic order.

The QS-distribution defines a Markov chain (or random walk) on \mathfrak{S}_{n} by

$$
\operatorname{Prob}(u, u w)=L_{\operatorname{co}\left(w^{-1}\right)}(x) .
$$

Theorem. The eigenvalues of M_{n} are the power sum symmetric functions $p_{\lambda}(x)$ for $\lambda \vdash n$. The eigenvalue $p_{\lambda}(x)$ occurs with multiplicity $n!/ z_{\lambda}$, the number of elements in \mathfrak{S}_{n} of cycle type λ.
(consequence of Bergeron-Garsia or Bid-igare-Hanlon-Rockmore)

Sample enumerative results. For $w \in \mathfrak{S}_{n}$ let

$$
\begin{aligned}
\operatorname{inv}(\mathbf{w}) & =\#\{(i, j): i<j, w(i)>w(j)\} \\
\operatorname{maj}(\mathbf{w}) & =\sum_{i: w(i)>w(i+1)} i \\
\mathbf{I}_{\mathbf{n}}(\mathbf{j}) & =\operatorname{Prob}(\operatorname{inv}(w)=j) \\
\mathbf{M}_{\mathbf{n}}(\mathbf{j}) & =\operatorname{Prob}(\operatorname{maj}(w)=j) .
\end{aligned}
$$

Theorem. We have

$$
\begin{gathered}
M_{n}(j)=I_{n}(j) \\
\sum_{n \geq 0} \sum_{j \geq 0} \frac{M_{n}(j) t^{j} z^{n}}{(1-t)\left(1-t^{2}\right) \cdots\left(1-t^{n}\right)} \\
=\prod_{i, j \geq 1}\left(1-t^{i-1} x_{j} z\right)^{-1}
\end{gathered}
$$

MacMahon (1913):

$$
\begin{aligned}
& \#\left\{w \in \mathfrak{S}_{n}: \operatorname{maj}(w)=j\right\} \\
& =\#\left\{w \in \mathfrak{S}_{n}: \operatorname{inv}(w)=j\right\}
\end{aligned}
$$

Since $U=\lim _{q \rightarrow \infty} U_{q}$, the result $M_{n}(j)=$ $I_{n}(j)$ is a generalization.

In fact, if

$$
\begin{aligned}
& F_{\lambda}(t)=\sum_{v} t^{\operatorname{maj}(v)} \\
& G_{\lambda}(t)=\sum_{v} t^{\operatorname{inv}(v)}
\end{aligned}
$$

where v ranges over all permutations of the multiset $\left\{1^{\lambda_{1}}, 2^{\lambda_{2}}, \ldots\right\}$, then

$$
\begin{aligned}
\sum_{j} M_{n}(j) t^{j} & =\sum_{\lambda \vdash n} F_{\lambda}(t) m_{\lambda}(x) \\
\sum_{j} I_{n}(j) t^{j} & =\sum_{\lambda \vdash n} G_{\lambda}(t) m_{\lambda}(x) .
\end{aligned}
$$

Thus $M_{n}(j)=I_{n}(j)$ is equivalent to MacMahon's result for multisets.

Let

$$
\begin{aligned}
L_{n}(x) & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d}(x) \\
& =\operatorname{ch} \operatorname{ind}_{C_{n}}^{\mathfrak{S}_{n}} e^{2 \pi i / n} .
\end{aligned}
$$

Theorem. Let w be a random permutation in \mathfrak{S}_{n}, chosen from the $Q S$ distribution. The probability $\operatorname{Prob}(\rho(w)=$ $\lambda)$ that w has cycle type $\lambda=\left\langle 1^{m_{1}} 2^{m_{2}} \cdots\right\rangle$ $\vdash n$ (i.e., m_{i} cycles of length i) is given by

$$
\operatorname{Prob}(\rho(w)=\lambda)=\prod_{i \geq 1} h_{m_{i}}\left[L_{i}\right]
$$

where brackets denote plethysm.

Connections with the RSK algorithm

Let $w \in \mathfrak{S}_{n}$, and let $w \xrightarrow{\text { RSK }}(P, Q)$ denote the RSK algorithm, so P and Q are SYT of the same shape $\lambda \vdash n$. Write

$$
\operatorname{sh}(w)=\lambda
$$

Theorem. Choose $w \in \mathfrak{S}_{n}$ from the $Q S$-distribution, and let $w \xrightarrow{\text { RSK }}$ (P, Q). Let T be a SYT of shape $\lambda \vdash$ n. Then

$$
\operatorname{Prob}(P=T)=s_{\lambda}(x),
$$

where $s_{\lambda}(x)$ denotes a Schur function.

Corollary. Choose $w \in \mathfrak{S}_{n}$ from the $Q S$-distribution, and let $\lambda \vdash n$. Then

$$
\operatorname{Prob}(\operatorname{sh}(w)=\lambda)=f^{\lambda} s_{\lambda}(x),
$$

where f^{λ} denotes the number of SYT of shape λ (given explicitly by the Frame-Robinson-Thrall hook-length formula).

Longest increasing subsequences

Let is (w) be the length of the longest increasing subsequence of $w=w_{1} \cdots w_{n}$. Theorem (Schensted). If

$$
\operatorname{sh}(w)=\left(\lambda_{1}, \lambda_{2}, \ldots\right)
$$

then $\lambda_{1}=$ is (w). Hence

$$
E_{U}(\operatorname{is}(w))=\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} .
$$

Theorem (Vershik-Kerov):

$$
E_{U}(\text { is }(w)) \sim 2 \sqrt{n}
$$

For the QS-distribution,

$$
\begin{gathered}
E(\operatorname{is}(w))=\sum_{\lambda \vdash n} \lambda_{1} f^{\lambda} s_{\lambda}(x) . \\
E_{U_{q}}(\mathrm{is}(w))=\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2} \prod_{u \in \lambda}\left(1+q^{-1} c(u)\right) \\
=E_{U}(\operatorname{is}(w)) \\
+\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}\left(\sum_{u \in \lambda} c(u)\right) \frac{1}{q}+\cdots .
\end{gathered}
$$

Let
$F_{1}(n)=\frac{1}{n!} \sum_{\lambda \vdash n} \lambda_{1}\left(f^{\lambda}\right)^{2}\left(\sum_{u \in \lambda} c(u)\right)$.
Numerical evidence suggests that $F_{1}(n) / n$ is slowly increasing, possibly to a finite limit. We computed $F_{1}(47) / 47 \approx 0.6991$.

Logan-Shepp, Vershik-Kerov:

 "asymptotic shape" of a "typical" $w \in$ \mathfrak{S}_{n} (uniform distribution) as $n \rightarrow \infty$.Baik-Deift-Johansson: Asymptotic distribution of $\operatorname{sh}(w)$ for $w \in \mathfrak{S}_{n}$ (uniform distribution) as $n \rightarrow \infty$.
Theorem. For each $n \in \mathbb{P}$ let $w^{(n)} \in$
\mathfrak{S}_{n} be chosen from the QS-distribution. Let $\operatorname{sh}\left(w^{(n)}\right)=\left(\lambda_{1}^{(n)}, \lambda_{2}^{(n)}, \ldots\right)$, and let $y_{1} \geq y_{2} \geq \cdots$ be the decreasing rearrangement of x_{1}, x_{2}, \ldots Then almost surely (i.e., with probability 1) for all i there holds

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{i}^{(n)}}{n}=y_{i}
$$

Corollary. Fix $x=\left(x_{1}, x_{2}, \ldots\right)$, with $x_{i} \geq 0$ and $\sum x_{i}=1$ as usual. Let $\mu^{(n)}$ be a partition $\nu \vdash n$ that maximizes $f^{\nu} s_{\nu}(x)$. Then

$$
\lim _{n \rightarrow \infty} \frac{\mu_{i}^{(n)}}{n}=y_{i}
$$

Theorem (Its-Tracy-Widom) Let

$$
x_{1}>x_{2}>\cdots .
$$

Then

$$
E(\operatorname{is}(w))=x_{1} n+\sum_{j>1} \frac{p_{j}}{p_{1}-p_{j}}+O\left(\frac{1}{\sqrt{n}}\right) .
$$

Open: Find an asymptotic formula for the expected value of λ_{1} (where $\operatorname{sh}(w)$ $=\lambda$ under the $\mathrm{QS}(x)$-distribution) that specializes to both the Vershik-Kerov result (uniform distribution) and the case x fixed, $n \rightarrow \infty$.

