Catalan Numbers

Richard P. Stanley

July 19, 2021

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.
Comments. ... This is probably the longest entry in OEIS, and rightly so.

An OEIS entry

OEIS: Online Encylopedia of Integer Sequences (Neil Sloane). See http://oeis.org. A database of over 345,000 sequences of integers.

A000108: $1,1,2,5,14,42,132,429, \ldots$
$C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, \ldots$
C_{n} is a Catalan number.
Comments. ... This is probably the longest entry in OEIS, and rightly so.

Aside. A000001: number of groups of order n

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Catalan monograph

R. Stanley, Catalan Numbers, Cambridge University Press, 2015.

Includes 214 combinatorial interpretations of C_{n} and 68 additional problems.

Catalan Numbers

RICHARD P．STANLEY

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

First example of an infinite trigonometric series．

History

Sharabiin Myangat，also known as Minggatu，Ming＇antu （明安图），and Jing An（c．1692－c．1763）：a Mongolian astronomer，mathematician，and topographic scientist who worked at the Qing court in China．

Typical result（1730＇s）：

$$
\sin (2 \alpha)=2 \sin \alpha-\sum_{n=1}^{\infty} \frac{C_{n-1}}{4^{n-1}} \sin ^{2 n+1} \alpha
$$

First example of an infinite trigonometric series．
No combinatorics，no further work in China．

Ming'antu

Manuscript of Ming'antu

Manuscript of Ming'antu

Manuscript of Ming'antu

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

$1,2,5,14, \ldots$

More history, via Igor Pak

- Euler (1751): conjectured formula for the number of triangulations of a convex $(n+2)$-gon. In other words, draw $n-1$ noncrossing diagonals of a convex polygon with $n+2$ sides.

$$
1, \quad 2, \quad 5,14, \ldots
$$

We define these numbers to be the Catalan numbers C_{n}.

Completion of proof

- Goldbach and Segner (1758-1759): helped Euler complete the proof, in pieces.
- Lamé (1838): first self-contained, complete proof.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.

Catalan

- Eugène Charles Catalan (1838): wrote C_{n} in the form $\frac{(2 n)!}{n!(n+1)!}$ and showed it counted (nonassociative) bracketings (or parenthesizations) of a string of $n+1$ letters.
Born in 1814 in Bruges (now in Belgium, then under Dutch rule). Studied in France and worked in France and Liège, Belgium. Died in Liège in 1894.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.

Why "Catalan numbers"?

- John Riordan (1948): introduced the term "Catalan number" in Math Reviews.
- Riordan (1964): used the term again in Math. Reviews.
- Riordan (1968): used the term in his book Combinatorial Identities. Finally caught on.
- Martin Gardner (1976): used the term in his Mathematical Games column in Scientific American. Real popularity began.

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

The primary recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $y=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $y=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).
Multiply both sides by x^{n} and sum on $n \geq 0$:

$$
\begin{aligned}
\sum_{n \geq 0} C_{n+1} x^{n} & =\frac{y-1}{x} \\
\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n} & =y^{2}
\end{aligned}
$$

Solving the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k}, \quad C_{0}=1
$$

Let $y=\sum_{n \geq 0} C_{n} x^{n}$ (generating function).
Multiply both sides by x^{n} and sum on $n \geq 0$:

$$
\begin{aligned}
\sum_{n \geq 0} C_{n+1} x^{n} & =\frac{y-1}{x} \\
\sum_{n \geq 0}\left(\sum_{k=0}^{n} C_{k} C_{n-k}\right) x^{n} & =y^{2} \\
\Rightarrow x y^{2}-y+1 & =0
\end{aligned}
$$

Solving the recurrence (cont.)

$$
x y^{2}-y+1=0
$$

Solving the recurrence (cont.)

$$
\begin{gathered}
x y^{2}-y+1=0 \\
\Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
\end{gathered}
$$

Solving the recurrence (cont.)

$$
\begin{gathered}
x y^{2}-y+1=0 \\
\Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
\end{gathered}
$$

The - sign is correct:

$$
\begin{aligned}
y & =\frac{1}{2 x}-\frac{1}{2 x}(1-4 x)^{1 / 2} \\
& =\frac{1}{2 x}-\frac{1}{2 x} \sum_{n \geq 0}\binom{1 / 2}{n}(-4 x)^{n},
\end{aligned}
$$

where

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}
$$

Solving the recurrence (cont.)

$$
\begin{gathered}
x y^{2}-y+1=0 \\
\Rightarrow y=\frac{1 \pm \sqrt{1-4 x}}{2 x}
\end{gathered}
$$

The - sign is correct:

$$
\begin{aligned}
y & =\frac{1}{2 x}-\frac{1}{2 x}(1-4 x)^{1 / 2} \\
& =\frac{1}{2 x}-\frac{1}{2 x} \sum_{n \geq 0}\binom{1 / 2}{n}(-4 x)^{n},
\end{aligned}
$$

where

$$
\begin{aligned}
\binom{\alpha}{n} & =\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} . \\
C_{n} & =\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{n!(n+1)!}
\end{aligned}
$$

Other combinatorial interpretations

$$
\begin{aligned}
\mathcal{P}_{\boldsymbol{n}} & :=\{\text { triangulations of convex }(n+2) \text {-gon }\} \\
\Rightarrow \# \mathcal{P}_{n} & =C_{n}(\text { where } \# S=\text { number of elements of } S)
\end{aligned}
$$

We want other combinatorial interpretations of C_{n}, i.e., other sets \mathcal{S}_{n} for which $C_{n}=\# \mathcal{S}_{n}$.

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

"Transparent" interpretations

4. Binary trees with n vertices (each vertex has a left subtree and a right subtree, which may be empty)

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters

$$
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x
$$

$$
((x(x x)) x)(x((x x)(x x)))
$$

Binary parenthesizations

3. Binary parenthesizations or bracketings of a string of $n+1$ letters

$$
\begin{gathered}
(x x \cdot x) x \quad x(x x \cdot x) \quad(x \cdot x x) x \quad x(x \cdot x x) \quad x x \cdot x x \\
((x(x x)) x)(x((x x)(x x)))
\end{gathered}
$$

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

The ballot problem

Bertrand's ballot problem: first published by W. A. Whitworth in 1878 but named after Joseph Louis François Bertrand who rediscovered it in 1887 (one of the first results in probability theory).

Special case: there are two candidates A and B in an election. Each receives n votes. What is the probability that A will never trail B during the count of votes?

Example. $A A B A B B B A A B$ is bad, since after seven votes, A receives 3 while B receives 4 .

Definition of ballot sequence

Encode a vote for A by 1 , and a vote for B by -1 (abbreviated -). Clearly a sequence $a_{1} a_{2} \cdots a_{2 n}$ of n each of 1 and -1 is allowed if and only if $\sum_{i=1}^{k} a_{i} \geq 0$ for all $1 \leq k \leq 2 n$. Such a sequence is called a ballot sequence.

Ballot sequences

77. Ballot sequences, i.e., sequences of $n 1$'s and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)

$$
111---11-1--11--1-\quad 1-11--1-1-1-
$$

Ballot sequences

77. Ballot sequences, i.e., sequences of $n 1$'s and $n-1$'s such that every partial sum is nonnegative (with -1 denoted simply as below)
```
111--- 11-1-- 11--1- 1-11-- 1-1-1-
```

Note. Answer to original problem (probability that a sequence of n each of 1 's and -1 's is a ballot sequence) is therefore

$$
\frac{C_{n}}{\binom{2 n}{n}}=\frac{\frac{1}{n+1}\binom{2 n}{n}}{\binom{2 n}{n}}=\frac{1}{n+1}
$$

The ballot recurrence

$11-11-1---1-11-1--$

The ballot recurrence

$$
11-11-1---1-11-1--
$$

$$
11-11-1---\mid 1-11-1--
$$

The ballot recurrence

$$
11-11-1---1-11-1--
$$

$$
11-11-1---\mid 1-11-1--
$$

$$
1-11-1--\quad \mid 1-11-1--
$$

A combinatorial proof

$B(n)$: number of ballot sequences of length $2 n$
Goal: a direct combinatorial proof that $B(n)=\frac{1}{n+1}\binom{2 n}{n}$

A combinatorial proof

$B(n)$: number of ballot sequences of length $2 n$
Goal: a direct combinatorial proof that $B(n)=\frac{1}{n+1}\binom{2 n}{n}$
Note. Let $C(n)$ denote the number of sequences $b_{1} b_{2} \ldots b_{2 n+1}$ with $n+1$ occurrences of 1 and n occurrences of -1 , such that $b_{1}+b_{2}+\cdots+b_{i}>0,1 \leq i \leq 2 n+1$ (strict ballot sequence). In particular, $b_{1}=1$. Then $C(n)=B(n)$.

A combinatorial proof

$B(n)$: number of ballot sequences of length $2 n$
Goal: a direct combinatorial proof that $B(n)=\frac{1}{n+1}\binom{2 n}{n}$
Note. Let $C(n)$ denote the number of sequences $b_{1} b_{2} \ldots b_{2 n+1}$ with $n+1$ occurrences of 1 and n occurrences of -1 , such that $b_{1}+b_{2}+\cdots+b_{i}>0,1 \leq i \leq 2 n+1$ (strict ballot sequence). In particular, $b_{1}=1$. Then $C(n)=B(n)$.

Proof. $b_{1} b_{2} \cdots b_{2 n+1}$ is counted by $C(n)$ if and only if $b_{2} b_{3} \cdots b_{2 n+1}$ is a ballot sequence.\square

Crucial lemma

Lemma. Every sequence $b_{1} b_{2} \cdots b_{2 n+1}$ where 1 occurs $n+1$ times and -1 occurs n times, with $b_{1}=1$, has a unique cyclic shift $b_{i} b_{i+1} \cdots b_{2 n+1} b_{1} \cdots b_{i-1}$ that is a strict ballot sequence.

Crucial Iemma

Lemma. Every sequence $b_{1} b_{2} \cdots b_{2 n+1}$ where 1 occurs $n+1$ times and -1 occurs n times, with $b_{1}=1$, has a unique cyclic shift $b_{i} b_{i+1} \cdots b_{2 n+1} b_{1} \cdots b_{i-1}$ that is a strict ballot sequence.

Proof \#1. Induction on n. Clear for $n=0$. Assume for $n-1$. Let $\beta=b_{1} b_{2} \cdots b_{2 n+1}$ be a sequence with $b_{1}=1,1$ occurring $n+1$ times and -1 occuring n times. Let $b_{j}=1, b_{j+1}=-1$ (subscripts $\bmod 2 n+1$). Remove b_{j}, b_{j+1} from β, obtaining β^{\prime}.

By induction, β^{\prime} has a unique cyclic shift, say beginning with b_{k}, that is a strict ballot sequence.

Easy to check: the cyclic shift of β beginning with b_{k} is a strict ballot sequence, and no other cyclic shift has this property.

Geometric proof.

Proof \#2. Example. (1, $-1,-1,1,-1,1,1)$

Geometric proof.

Proof \#2. Example. $(1,-1,-1,1,-1,1,1)$

Proof that $C(n)=\frac{1}{n+1}\binom{2 \boldsymbol{n}}{\boldsymbol{n}}$

- There are $\binom{2 n}{n}$ sequences with 1 occurring $n+1$ times and -1 occurring n times, beginning with a 1 .

Proof that $C(n)=\frac{1}{n+1}\binom{2 \boldsymbol{n}}{\boldsymbol{n}}$

- There are $\binom{2 n}{n}$ sequences with 1 occurring $n+1$ times and -1 occurring n times, beginning with a 1 .
- There are $n+1$ cyclic shifts of such a sequence beginning with a 1.

Proof that $C(n)=\frac{1}{n+1}\binom{2 \boldsymbol{n}}{\boldsymbol{n}}$

- There are $\binom{2 n}{n}$ sequences with 1 occurring $n+1$ times and -1 occurring n times, beginning with a 1 .
- There are $n+1$ cyclic shifts of such a sequence beginning with a 1.
- Exactly one of these cyclic shifts is a strict ballot sequence (previous lemma).

Proof that $C(n)=\frac{1}{n+1}\binom{2 \boldsymbol{n}}{\boldsymbol{n}}$

- There are $\binom{2 n}{n}$ sequences with 1 occurring $n+1$ times and -1 occurring n times, beginning with a 1 .
- There are $n+1$ cyclic shifts of such a sequence beginning with a 1.
- Exactly one of these cyclic shifts is a strict ballot sequence (previous lemma).
- $\Rightarrow C(n)=\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{2 n+1}\binom{2 n+1}{n} \square$

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Dyck paths

25. Dyck paths of length $2 n$, i.e., lattice paths from $(0,0)$ to $(2 n, 0)$ with steps $(1,1)$ and $(1,-1)$, never falling below the x-axis

Walther von Dyck (1856-1934)

Bijection with ballot sequences

For each upstep, record 1.
For each downstep, record -1 .

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)
$\begin{array}{lllll}123 & 132 & 213 & 231 & 321\end{array}$

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

34251768

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

3425768

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

$$
3425768 \text { (note red<blue) }
$$

312-avoiding permutations

116. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ for which there does not exist $i<j<k$ and $a_{j}<a_{k}<a_{i}$ (called 312-avoiding) permutations)

$$
\begin{array}{lllll}
123 & 132 & 213 & 231 & 321
\end{array}
$$

$$
3425768 \text { (note red<blue) }
$$

part of the subject of pattern avoidance

321-avoiding permutations

Another example of pattern avoidance:
115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k, a_{i}>a_{j}>a_{k}$), called 321-avoiding permutations

321-avoiding permutations

Another example of pattern avoidance:
115. Permutations $a_{1} a_{2} \cdots a_{n}$ of $1,2, \ldots, n$ with longest decreasing subsequence of length at most two (i.e., there does not exist $i<j<k, a_{i}>a_{j}>a_{k}$), called 321-avoiding permutations

$$
\begin{array}{lllll}
123 & 213 & 132 & 312 & 231
\end{array}
$$

more subtle: no obvious decomposition into two pieces

Bijection with ballot sequences

$$
w=412573968
$$

Bijection with ballot sequences

$$
w=412573968
$$

Bijection with ballot sequences

$$
w=412573968
$$

Bijection with ballot sequences

$$
w=412573968
$$

An unexpected interpretation

92. n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of integers $a_{i} \geq 2$ such that in the sequence $1 a_{1} a_{2} \cdots a_{n} 1$, each a_{i} divides the sum of its two neighbors

$$
\begin{array}{lllll}
14321 & 13521 & 13231 & 12531 & 12341
\end{array}
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
\begin{array}{llllll}
1 & 2 & 5 & 4
\end{array}
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1 \left\lvert\, \begin{array}{lllll}
2 & 5 & 3 & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1|25| 341
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
1||2 \quad 5| 3 \quad 4 \quad 1
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
|1| \left\lvert\, 2 \begin{array}{llll}
\mid & 5 & 4 & 1
\end{array}\right.
$$

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

\[

\]

Bijection with ballot sequences

remove largest; insert bar before the element to its left; continue until only 1 's remain; then replace bar with 1 and an original number with -1 , except last two

$$
\begin{aligned}
& \text { |1||2 } 5 \left\lvert\, \begin{array}{lll}
\mid 3 & 4 & 1
\end{array}\right. \\
& \begin{array}{lll|lll|lll}
\mid & 1 & \mid & 2 & 5 & 3 & 4 & 1
\end{array} \\
& 1-11-2-1-
\end{aligned}
$$

tricky to prove

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all
$(n-1) \times(n-1)$ upper triangular matrices over a field

A8. Algebraic interpretations

(a) Number of two-sided ideals of the algebra of all
$(n-1) \times(n-1)$ upper triangular matrices over a field

Diagonal harmonics

(i) Let the symmetric group \mathfrak{S}_{n} act on the polynomial ring $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ by $w \cdot f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=f\left(x_{w(1)}, \ldots, x_{w(n)}, y_{w(1)}, \ldots, y_{w(n)}\right)$ for all $w \in \mathfrak{S}_{n}$. Let $/$ be the ideal generated by all invariants of positive degree, i.e.,

$$
I=\left\langle f \in A: w \cdot f=f \text { for all } w \in \mathfrak{S}_{n}, \text { and } f(0)=0\right\rangle
$$

Diagonal harmonics (cont.)

Then C_{n} is the dimension of the subspace of A / I affording the sign representation, i.e.,

$$
C_{n}=\operatorname{dim}\left\{f \in A / l: w \cdot f=(\operatorname{sgn} w) f \text { for all } w \in \mathfrak{S}_{n}\right\}
$$

Diagonal harmonics (cont.)

Then C_{n} is the dimension of the subspace of A / I affording the sign representation, i.e.,

$$
C_{n}=\operatorname{dim}\left\{f \in A / l: w \cdot f=(\operatorname{sgn} w) f \text { for all } w \in \mathfrak{S}_{n}\right\}
$$

Very deep proof by Mark Haiman, 1994.

Generalizations \& refinements

A12. \boldsymbol{k}-triangulation of n-gon: maximal collections of diagonals such that no $k+1$ of them pairwise intersect in their interiors
$k=1$: an ordinary triangulation
superfluous edge: an edge between vertices at most k steps apart (along the boundary of the n-gon). They appear in all k-triangulations and are irrelevant.

An example

Example. 2-triangulations of a hexagon (superfluous edges omitted):

Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All
k-triangulations of an n-gon have $k(n-2 k-1)$ nonsuperfluous edges.

Some theorems

Theorem (Nakamigawa, Dress-Koolen-Moulton). All
k-triangulations of an n-gon have $k(n-2 k-1)$ nonsuperfluous edges.

Theorem (Jonsson, Serrano-Stump). The number $T_{k}(n)$ of k-triangulations of an n-gon is given by

$$
\begin{aligned}
T_{k}(n) & =\operatorname{det}\left[C_{n-i-j}\right]_{i, j=1}^{k} \\
& =\prod_{1 \leq i<j \leq n-2 k} \frac{2 k+i+j-1}{i+j-1} .
\end{aligned}
$$

Representation theory?

Note. The number $T_{k}(n)$ is the dimension of an irreducible representation of the symplectic group $\operatorname{Sp}(2 n-4)$.

Representation theory?

Note. The number $T_{k}(n)$ is the dimension of an irreducible representation of the symplectic group $\operatorname{Sp}(2 n-4)$.

Is there a direct connection?

Number theory

A61. Let $b(n)$ denote the number of 1 's in the binary expansion of n. Using Kummer's theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_{n} is equal to $b(n+1)-1$.

Number theory

A61. Let $b(n)$ denote the number of 1 's in the binary expansion of n. Using Kummer's theorem on binomial coefficients modulo a prime power, show that the exponent of the largest power of 2 dividing C_{n} is equal to $b(n+1)-1$.

Kummer's theorem. Let \boldsymbol{p} be prime, $0 \leq k \leq n$. Then the exponent of the largest power of p dividing $\binom{n}{k}$ is equal to the number of carries in adding k and $n-k$.

Sums of three squares

Let $\boldsymbol{f}(\boldsymbol{n})$ denote the number of integers $1 \leq k \leq n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}=\frac{5}{6}
$$

Sums of three squares

Let $\boldsymbol{f}(\boldsymbol{n})$ denote the number of integers $1 \leq k \leq n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}=\frac{5}{6}
$$

A63. Let $\boldsymbol{g}(\boldsymbol{n})$ denote the number of integers $1 \leq k \leq n$ such that C_{k} is the sum of three squares. Then

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{n}=? ? .
$$

Sums of three squares

Let $\boldsymbol{f}(\boldsymbol{n})$ denote the number of integers $1 \leq k \leq n$ such that k is the sum of three squares (of nonnegative integers). Well-known:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{n}=\frac{5}{6}
$$

A63. Let $\boldsymbol{g}(\boldsymbol{n})$ denote the number of integers $1 \leq k \leq n$ such that C_{k} is the sum of three squares. Then

$$
\lim _{n \rightarrow \infty} \frac{g(n)}{n}=\frac{7}{8}
$$

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n=4^{k}(8 m+7)$.

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n=4^{k}(8 m+7)$.

- Probability that $C_{n}=4^{k}(2 r+1)$ is $\frac{1}{2}$.

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n=4^{k}(8 m+7)$.

- Probability that $C_{n}=4^{k}(2 r+1)$ is $\frac{1}{2}$.
- All congruence classes of r mod 4 are equally likely (as $n \rightarrow \infty)$. Thus the probability is $\frac{1}{4}$ that $r \equiv 3(\bmod 4)($ so $2 r+1 \equiv 7(\bmod 8))$.

Why?

Theorem. A positive integer n is not the sum of three squares if and only if $n=4^{k}(8 m+7)$.

- Probability that $C_{n}=4^{k}(2 r+1)$ is $\frac{1}{2}$.
- All congruence classes of r mod 4 are equally likely (as $n \rightarrow \infty)$. Thus the probability is $\frac{1}{4}$ that $r \equiv 3(\bmod 4)($ so $2 r+1 \equiv 7(\bmod 8))$.

$$
1-\frac{1}{2} \cdot \frac{1}{4}=\frac{7}{8}
$$

Analysis

A65.(b)

$$
\sum_{n \geq 0} \frac{1}{C_{n}}=? ?
$$

Analysis

A65.(b)

$$
\begin{gathered}
\sum_{n \geq 0} \frac{1}{C_{n}}=? ? \\
1+1+\frac{1}{2}+\frac{1}{5}=2.7
\end{gathered}
$$

Analysis

A65.(b)

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{1}{C_{n}}=2+\frac{4 \sqrt{3} \pi}{27} \\
& 1+1+\frac{1}{2}+\frac{1}{5}=2.7
\end{aligned}
$$

Analysis

A65.(b)

$$
\begin{gathered}
\sum_{n \geq 0} \frac{1}{C_{n}}=2+\frac{4 \sqrt{3} \pi}{27} \\
1+1+\frac{1}{2}+\frac{1}{5}=2.7 \\
2+\frac{4 \sqrt{3} \pi}{27}=2.806133 \cdots
\end{gathered}
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Why?

A65.(a)

$$
\sum_{n \geq 0} \frac{x^{n}}{C_{n}}=\frac{2(x+8)}{(4-x)^{2}}+\frac{24 \sqrt{x} \sin ^{-1}\left(\frac{1}{2} \sqrt{x}\right)}{(4-x)^{5 / 2}}
$$

Sketch of solution. Calculus exercise: let

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}
$$

Then $y=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}$.

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}
$$

Note that:

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}
$$

Note that:

$$
\frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{n\binom{2 n}{n}}
$$

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}} .
$$

Note that:

$$
x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n}}{n\binom{2 n}{n}}
$$

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}
$$

Note that:

$$
\frac{d}{d x} x \frac{d}{d x} y=\sum_{n \geq 1} \frac{x^{n-1}}{\binom{2 n}{n}}
$$

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}
$$

Note that:

$$
x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{x^{n+1}}{\binom{2 n}{n}}
$$

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}} .
$$

Note that:

$$
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y=\sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}}
$$

Completion of proof

Recall

$$
y=2\left(\sin ^{-1} \frac{1}{2} \sqrt{x}\right)^{2}=\sum_{n \geq 1} \frac{x^{n}}{n^{2}\binom{2 n}{n}}
$$

Note that:

$$
\begin{aligned}
\frac{d}{d x} x^{2} \frac{d}{d x} x \frac{d x}{x} y & =\sum_{n \geq 1} \frac{(n+1) x^{n}}{\binom{2 n}{n}} \\
& =-1+\sum_{n \geq 0} \frac{x^{n}}{C_{n}}
\end{aligned}
$$

etc.

The last slide

The last slide

The last slide $\quad \because$

