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Definitions

Adjacent transposition:

si = (i, i + 1) ∈ Sn, 1 ≤ i ≤ n − 1

reduced decomposition (a1, . . . , ap) of w ∈ Sn:

w = sa1
· · · sap

,

where p is minimal, i.e.,

p = `(w) = #{(i, j) : i < j, w(i) > w(j)}.

p is the number of inversions inv(w) or length
`(w) of w.
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An example

1234
s2−→ 1324

s3−→ 1342
s2−→ 1432

s1−→ 4132

R(w): set of reduced decompositions of w

(2, 3, 2, 1) ∈ R(4132)
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Tits’ theorem

Theorem. If a = (a1, a2, . . . , ap) ∈ R(w) then all
reduced decompositions of w can be obtained
from a by applying

sisj = sjsi, |i − j| ≥ 2

sisi+1si = si+1sisi+1.

(We don’t need s2
i = 1.)

E.g., (2, 3, 2, 1) ∈ R(4132) ⇒

R(4132) = {(2, 3, 2, 1), (3, 2, 3, 1), (3, 2, 1, 3)}.
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r(w)

r(w) = #R(w), the number of reduced
decompositions of w

Main question (this lecture): what is r(w)?

R(4132) = {(2, 3, 2, 1), (3, 2, 3, 1), (3, 2, 1, 3)}
⇒ r(4132) = 3.
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The main tool

Let w ∈ Sn and p = `(w). Define

Gw =
∑

(a1,...,ap)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if aj<aj+1

xi1 · · · xip,

a power series in x1, x2, . . . , homogeneous of
degree p.

Example. w = 321 ∈ S3, so R(w) = {121, 212}.

G321 =
∑

1≤i<j≤k

xixjxk +
∑

1≤i≤j<k

xixjxk.
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Symmetry of Gw

Theorem (Billey-Jockusch-S, Fomin-S,
Jia-Miller, . . . ). Gw is a symmetric function of
x1, x2, . . . .

G321 =
∑

1≤i<j≤k

xixjxk +
∑

1≤i≤j<k

xixjxk.
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Schur functions

Let λ = (λ1, λ2, . . . ) be a partition of p (denoted
λ`p), i.e.,

λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = p.

sλ: the Schur function indexed by λ.

Fact: the Schur functions sλ for λ ` p form a
Z-basis for all symmetric functions in x1, x2, . . .
over Z that are homogeneous of degree p.
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The case p = 3

Example. s3 =
∑

i≤j≤k

xixjxk

s21 =
∑

1≤i<j≤k

xixjxk +
∑

1≤i≤j<k

xixjxk

s111 =
∑

i<j<k

xixjxk

Thus every Gw can be uniquely written

Gw =
∑

λ`p

αwλsλ.
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The case w = 321

Recall that

G321 =
∑

1≤i<j≤k

xixjxk +
∑

1≤i≤j<k

xixjxk

s21 =
∑

1≤i<j≤k

xixjxk +
∑

1≤i≤j<k

xixjxk,

so
G321 = s21.
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Coefficient of x1 · · · xp

Recall:

Gw =
∑

(a1,...,ap)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if aj<aj+1

xi1 · · · xip.

Note. The monomial x1 · · ·xp occurs once in the
inner sum for each (a1, . . . , ap) ∈ R(w).

[x1 · · · xp]F : coefficient of x1 · · · xp in F

⇒ r(w) = [x1 · · · xp]Gw,
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A “formula” for r(w)

Recall:
Gw =

∑

λ`p

αwλsλ.

⇒ r(w) = [x1 · · · xp]Gw

=
∑

λ`p

αwλ[x1 · · ·xp]sλ

What is [x1 · · ·xp]sλ?
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Standard Young tableaux

standard Young tableau (SYT) of shape 4421:

1 3 5 6

2 7 9 11

4 10

8

fλ: number of SYT of shape λ

E.g., f 32 = 5: 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5
4 5 3 5 3 4 2 5 2 4
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What is [x1 · · · xp]sλ?

Facts:

∃ simple formula for fλ (hook length
formula)

If λ ` p then [x1 · · · xp]sλ = fλ.

Recall:

r(w) =
∑

λ`p

αwλ[x1 · · · xp]sλ

Thus
r(w) =

∑

λ`p

αwλf
λ.
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Vexillary permutations

Nicest situation: Gw = sλ for some λ ` p. Then
r(w) = fλ.

Definition. A permutation w = a1a2 · · · an ∈ Sn is
vexillary or 2143-avoiding if @

a < b < c < d, wb < wa < wd < wc.

Named by Lascoux and Schützenberger from
vexillum, Latin for “flag,” because of a
connection with flag Schur functions.
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Vexillary asymptotics

v(n) = number of vexillary w ∈ Sn

Theorem (A. Regev, J. West).

v(n) ∼ 81

16

√
3π

9n

n4

= 2.791102533 · · · 9n

n4
.
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λ(w)

w = a1 · · · an ∈ Sn

ci = #{j : i < j ≤ n, ai > aj}, 1 ≤ i ≤ n − 1

λ(w): partition whose parts are the ci’s (sorted
into decreasing order).

Example. w = 5361472 ∈ S7,

(c1, . . . , c6) = (4, 2, 3, 0, 1, 1, 0)

⇒ λ(w) = 43211

Clearly λ(w) ` p = `(w).
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Vexillary theorem

Theorem. We have Gw = sλ for some λ if and
only if w is vexillary. In this case λ = λ(w), so
r(w) = fλ(w).

Example. w = 5361472 ∈ S7 is vexillary, and
λ(w) = 43211. Hence

Gw = s43211, r(w) = f 43211 = 2310.
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w0

Example. w0 = n, n − 1, . . . , 1 ∈ Sn is vexillary,
and λ(w0) = (n − 1, n − 2, . . . , 1). Hence

r(w0) = f (n−1,n−2,...,1) =

(

n
2

)

!

1n−13n−25n−3 · · · (2n − 1)1
.

n 3 4 5 6 7
r(w0) 2 16 768 292864 1100742656
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Combinatorial interpretation of αwλ

Recall:

Gw =
∑

λ`p

αwλsλ

⇒ r(w) =
∑

λ`p

αwλf
λ

What can we say about αwλ?
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Semistandard tableaux

A semistandard (Young) tableau (SSYT) T of
shape λ = (4, 3, 3, 1, 1):

2 3

<

<

1 1 2

3

4

4

4 6

5

7

Reading word of T : 421133264457
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Fomin-Greene theorem

Theorem (S. Fomin and C. Greene). Let
w ∈ Sn, `(w) = p, and λ ` p. The coefficient αwλ

is equal to the number of SSYT of shape λ
whose row reading word is a reduced
decomposition of w.
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Example of Fomin-Greene theorem

Example. w = 4152736 ∈ S7

1 2 3 1 2 3 1 2 3 6

3 4 3 4 6 3 4

5 6 5 5

3214365, 3216435, 6321435 ∈ R(w)

⇒ r(w) = f 322 + f 331 + f 421 = 21 + 21 + 35 = 77.
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w0

Recall: w0 = n, n − 1, . . . , 1 ∈ Sn,

r(w0) = fn−1,n−2,...,1.

Is there a bijective proof?
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Edelman-Greene bijection

4
4

4

5
3
1 2

6
1

s2 s3
4

14 42
31

5
2

3
3

2

1
3

2

3
2 4

1

3
2

1
2

3

1
2

1
1 4

32

1

4
3

1
2

s1

s2 s1 s3
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Inverse bijection

The inverse to the previous bijection is given by a
version of RSK algorithm (discussed in first
lecture).
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Representation theory of Sn

Irreducible representations ϕλ : Sn → GL(N, C)
are indexed by partitions λ ` n.

N = dim ϕλ = fλ

Specht module Mλ: an Sn-module constructed
from the (Young) diagram of λ (using
row-symmetrizers and column
anti-symmetrizers) that affords the
representation ϕλ.
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Arbitrary diagrams

For any diagram D (finite subset of a square
grid) we can carry out the Specht module
construction, obtaining an Sn-module MD (in
general reducible).

In general, MD is not well-understood.
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Diagram Dw of a permutation w

Example. w = 361524; diagram Dw:

Number of squares of Dw = `(w).
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The Specht module MDw

Theorem (Kraśkiewicz-Pragacz, 1986, 2004).
Let w = Sn, p = `(w). For λ ` p, the multiplicity
of ϕλ in MDw

is αwλ.

Since r(w) =
∑

λ`p αwλf
λ and dim ϕλ = fλ, we

get:

Corollary. dim MDw
= r(w)
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Flag varieties

Fln: set of complete flags

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn

of subspaces in Cn (so dim Vi = i)

Fln ∼= GL(n, C)/B,

where B is the Borel subgroup of invertible
upper triangular matrices.
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Cohomology of Fln

For each w ∈ Sn there is a projective subvariety
Ωw of (complex) dimension `(w), the Schubert
variety corresponding to w, defined by simple
geometric conditions.

σw (Schubert cycle): cohomology class
Poincaré dual to the fundamental cycle of Ωw

⇒ σw ∈ H2((n

2)−`(w)) (Fln; C)

Standard result from Schubert calculus: the
Schubert cycles σw, w ∈ Sn, form a basis of
H∗(Fln; C)
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⇒ σw ∈ H2((n

2)−`(w)) (Fln; C)

Standard result from Schubert calculus: the
Schubert cycles σw, w ∈ Sn, form a basis of
H∗(Fln; C)
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Schubert polynomials

Schubert polynomial Sw = Sw(x1, . . . , xn−1),
w ∈ Sn:

Sw =
∑

(a1,...,ap)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if aj<aj+1

ij≤j

xi1 · · · xip.

Compare

Gw =
∑

(a1,...,ap)∈R(w)

∑

1≤i1≤···≤ip
ij<ij+1 if aj<aj+1

xi1 · · · xip.
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Stable Schubert polynomials

Gw is sometimes called a stable Schubert
polynomial (a certain limit of Schubert
polynomials).

Example. S4213,S15324,S126435, ... → G4213
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Ring structure of H∗(Fln; C)

Rn = C[x1, x2, . . . , xn]/In, where In is generated
by the elementary symmetric functions e1, . . . , en.

Theorem. There is an algebra isomorphism

ϕ : Rn → H∗(Fln; C),

such that for w ∈ Sn we have

ϕ(Sw0w) = σw,

where w0 = n, n − 1, . . . , 1.
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A curious identity

Theorem (Macdonald 1991, Fomin-S. 1994)
Let w ∈ Sn and `(w) = p. Then

∑

(a1,a2,...,ap)∈R(w)

a1a2 · · · ap = p! Sw(1, 1, . . . , 1).

Theorem. Sw(1, 1, . . . , 1) = 1 if and only if w is
132-avoiding, i.e., there does not exist i < j < k
such that ai < ak < aj.

Number of 132-avoiding w ∈ Sn: the Catalan
number Cn = 1

n+1

(

2n
n

)
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The special case w0

For w0 = n, n − 1, . . . , 1 ∈ Sn we have

∑

(a1,a2,...,ap)∈R(w0)

a1a2 · · · ap =

(

n

2

)

!.

Example. For n = 3 we have

R(w0) = {(1, 2, 1), (2, 1, 2)}.

Thus

1 · 2 · 1 + 2 · 1 · 2 = 6 =

(

3

2

)

!.
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An analogue for any transpositions

(i, j) ∈ Sn: transposition interchanging i and j

For w ∈ Sn, `(w) = p, define

T (w) = {((i1, j1), (i2, j2), . . . , (ip, jp)) :

w = (i1, j1)(i2, j2) · · · (ip, jp)

and `((i1, j1) · · · (ik, jk)) = k for all 1 ≤ k ≤ p}.
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An example

Let w = w0 = 321 ∈ S3.

321 = (1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3)

= (1, 2)(1, 3)(2, 3) = (2, 3)(1, 3)(1, 2),

so (abbreviating (i, j) as ij)

T321 = {(12, 23, 12), (23, 12, 23),

(12, 13, 23), (23, 13, 12)}.
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Theorem of Chevalley–Stembridge

Theorem (Chevalley ∼1958, Stembridge
2002). For w = w0 ∈ Sn (so p =

(

n

2

)

) we have
∑

((i1,j1),(i2,j2),...,(ip,jp))∈T (w0)

(j1−i1)(j2−i2) · · · (jp−ip) = p!.
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An example (cont.)

Example. Recall

T (321) = {(12, 23, 12), (23, 12, 23),

(12, 13, 23), (23, 13, 12)}.
Hence

1 · 1 · 1 + 1 · 1 · 1 + 1 · 2 · 1 + 1 · 2 · 1 =

(

3

2

)

!.
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An open problem

∑

(a1,a2,...,ap)∈R(w0)

a1a2 · · · ap = p!.

∑

((i1,j1),(i2,j2),...,(ip,jp))∈T (w0)

(j1−i1)(j2−i2) · · · (jp−ip) = p!.

Is this similarity just a “coincidence”?

Is there a common generalization?
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