

## **Reduced Decompositions**

**Richard P. Stanley** 

**M.I.T.** 

Reduced Decompositions - p

### Definitions

#### **Adjacent transposition:**

$$s_i = (i, i+1) \in S_n, \ 1 \le i \le n-1$$

#### **Adjacent transposition:**

$$s_i = (i, i+1) \in S_n, \ 1 \le i \le n-1$$

reduced decomposition  $(a_1, \ldots, a_p)$  of  $w \in S_n$ :

$$w = s_{a_1} \cdots s_{a_p},$$

where p is minimal, i.e.,

 $p = \ell(w) = \#\{(i,j) : i < j, w(i) > w(j)\}.$ 

#### **Adjacent transposition:**

$$s_i = (i, i+1) \in S_n, \ 1 \le i \le n-1$$

reduced decomposition  $(a_1, \ldots, a_p)$  of  $w \in S_n$ :

$$w = s_{a_1} \cdots s_{a_p},$$

where p is minimal, i.e.,

 $p = \ell(w) = \#\{(i,j) : i < j, w(i) > w(j)\}.$ 

*p* is the number of inversions inv(w) or length  $\ell(w)$  of *w*.



### $1\mathbf{234} \xrightarrow{\boldsymbol{s_2}} 13\mathbf{24} \xrightarrow{\boldsymbol{s_3}} 1\mathbf{342} \xrightarrow{\boldsymbol{s_2}} \mathbf{1432} \xrightarrow{\boldsymbol{s_1}} 4132$

## An example

# $1234 \xrightarrow{s_2} 1324 \xrightarrow{s_3} 1342 \xrightarrow{s_2} 1432 \xrightarrow{s_1} 4132$ R(w): set of reduced decompositions of w

## An example

## $1234 \xrightarrow{s_2} 1324 \xrightarrow{s_3} 1342 \xrightarrow{s_2} 1432 \xrightarrow{s_1} 4132$ R(w): set of reduced decompositions of w

 $(2,3,2,1) \in R(4132)$ 

Reduced Decompositions – p

Theorem. If  $a = (a_1, a_2, ..., a_p) \in R(w)$  then all reduced decompositions of w can be obtained from a by applying

$$s_i s_j = s_j s_i, |i - j| \ge 2$$
  
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$ 

(We don't need  $s_i^2 = 1$ .)

**Theorem.** If  $a = (a_1, a_2, ..., a_p) \in R(w)$  then all reduced decompositions of w can be obtained from a by applying

$$s_i s_j = s_j s_i, |i - j| \ge 2$$
  
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$ 

(We don't need  $s_i^2 = 1$ .) E.g.,  $(2, 3, 2, 1) \in R(4132) \Rightarrow$  $R(4132) = \{(2, 3, 2, 1), (3, 2, 3, 1), (3, 2, 1, 3)\}.$ 

r(w) = #R(w), the number of reduced decompositions of w

Main question (this lecture): what is r(w)?



r(w) = #R(w), the number of reduced decompositions of w

Main question (this lecture): what is r(w)?

$$R(4132) = \{(2,3,2,1), (3,2,3,1), (3,2,1,3)\}$$
  
$$\Rightarrow r(4132) = 3.$$

Let  $\boldsymbol{w} \in S_n$  and  $\boldsymbol{p} = \ell(w)$ . Define

$$\boldsymbol{G}_{\boldsymbol{w}} = \sum_{\substack{(a_1,...,a_p) \in R(w) \\ i_j < i_{j+1} \text{ if } a_j < a_{j+1}}} \sum_{\substack{x_{i_1} \cdots x_{i_p}, \\ x_{i_1} \cdots x_{i_p}, \\ x_{i_1$$

a power series in  $x_1, x_2, \ldots$ , homogeneous of degree p.

Let  $\boldsymbol{w} \in S_n$  and  $\boldsymbol{p} = \ell(w)$ . Define

$$\boldsymbol{G}_{\boldsymbol{w}} = \sum_{\substack{(a_1,...,a_p) \in R(w) \\ i_j < i_{j+1} \text{ if } a_j < a_{j+1}}} \sum_{\substack{x_{i_1} \cdots x_{i_p}, \\ x_{i_1} \cdots x_{i_p}, \\ x_{i_1$$

a power series in  $x_1, x_2, \ldots$ , homogeneous of degree p.

**Example.**  $w = 321 \in S_3$ , so  $R(w) = \{121, 212\}$ .

$$G_{321} = \sum_{1 \le i < j \le k} x_i x_j x_k + \sum_{1 \le i \le j < k} x_i x_j x_k.$$

Symmetry of  $G_w$ 

## **Theorem (Billey-Jockusch-S, Fomin-S**, **Jia-Miller**, ...). $G_w$ is a symmetric function of

 $x_1, x_2, \ldots$ 

Symmetry of G<sub>m</sub>

## **Theorem (Billey-Jockusch-S, Fomin-S, Jia-Miller**, ...). $G_w$ is a symmetric function of $x_1, x_2, \ldots$ .

 $G_{321} = \sum x_i x_j x_k + \sum x_i x_j x_k.$  $1 \le i \le j \le k$   $1 \le i \le j \le k$ 

Let  $\lambda = (\lambda_1, \lambda_2, ...)$  be a partition of p (denoted  $\lambda \vdash p$ ), i.e.,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \quad \sum \lambda_i = p.$$

Let  $\lambda = (\lambda_1, \lambda_2, ...)$  be a partition of p (denoted  $\lambda \vdash p$ ), i.e.,

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge 0, \quad \sum \lambda_i = p.$$

 $s_{\lambda}$ : the Schur function indexed by  $\lambda$ .

**Fact:** the Schur functions  $s_{\lambda}$  for  $\lambda \vdash p$  form a  $\mathbb{Z}$ -basis for all symmetric functions in  $x_1, x_2, \ldots$  over  $\mathbb{Z}$  that are homogeneous of degree p.

The case p = 3

Example. 
$$s_3 = \sum_{i \le j \le k} x_i x_j x_k$$
  
 $s_{21} = \sum_{1 \le i < j \le k} x_i x_j x_k + \sum_{1 \le i \le j < k} x_i x_j x_k$   
 $s_{111} = \sum x_i x_j x_k$ 

i < j < k

Reduced Decompositions - p.

The case p = 3

Example. 
$$s_3 = \sum_{i \le j \le k} x_i x_j x_k$$
  
 $s_{21} = \sum_{1 \le i < j \le k} x_i x_j x_k + \sum_{1 \le i \le j < k} x_i x_j x_k$   
 $s_{111} = \sum_{i < j < k} x_i x_j x_k$ 

Thus every  $G_w$  can be uniquely written

$$G_w = \sum_{\lambda \vdash p} \alpha_{w\lambda} s_{\lambda}.$$

The case w = 321

#### Recall that

$$G_{321} = \sum_{1 \le i < j \le k} x_i x_j x_k + \sum_{1 \le i \le j < k} x_i x_j x_k$$
$$s_{21} = \sum_{1 \le i < j \le k} x_i x_j x_k + \sum_{1 \le i \le j < k} x_i x_j x_k,$$

SO

 $G_{321} = s_{21}.$ 

Reduced Decompositions - p. 1



 $G_w = \sum$  $\sum \quad x_{i_1}\cdots x_{i_p}.$  $(a_1, \dots, a_p) \in R(w) \qquad 1 \le i_1 \le \dots \le i_p$  $i_j < i_{j+1} \text{ if } a_j < a_{j+1}$ 



$$G_w = \sum_{(a_1,...,a_p)\in R(w)} \sum_{\substack{1 \le i_1 \le \cdots \le i_p \\ i_j < i_{j+1} \text{ if } a_j < a_{j+1}}} x_{i_1} \cdots x_{i_p}.$$

Note. The monomial  $x_1 \cdots x_p$  occurs once in the inner sum for each  $(a_1, \ldots, a_p) \in R(w)$ .



$$G_w = \sum_{(a_1,...,a_p)\in R(w)} \sum_{\substack{1 \le i_1 \le \cdots \le i_p \\ i_j < i_{j+1} \text{ if } a_j < a_{j+1}}} x_{i_1} \cdots x_{i_p}.$$

Note. The monomial  $x_1 \cdots x_p$  occurs once in the inner sum for each  $(a_1, \ldots, a_p) \in R(w)$ .

 $[\boldsymbol{x_1} \cdots \boldsymbol{x_p}] F: \text{ coefficient of } x_1 \cdots x_p \text{ in } F$  $\Rightarrow r(w) = [x_1 \cdots x_p] G_w,$ 

A "formula" for r(w)

 $G_w = \sum \boldsymbol{\alpha_{w\lambda}} s_{\lambda}.$  $\lambda \vdash p$ 

A "formula" for r(w)

$$G_w = \sum_{\lambda \vdash p} \alpha_{w\lambda} s_{\lambda}.$$

$$\Rightarrow r(w) = [x_1 \cdots x_p] G_w$$
$$= \sum_{\lambda \vdash p} \alpha_{w\lambda} [x_1 \cdots x_p] s_\lambda$$

A "formula" for r(w)

$$G_w = \sum_{\lambda \vdash p} \alpha_{w\lambda} s_{\lambda}.$$

$$\Rightarrow r(w) = [x_1 \cdots x_p] G_w$$
$$= \sum_{\lambda \vdash p} \alpha_{w\lambda} [x_1 \cdots x_p] s_\lambda$$

What is  $[x_1 \cdots x_p] s_{\lambda}$ ?

## **Standard Young tableaux**

#### standard Young tableau (SYT) of shape 4421:

- 4 10
- 8

## **Standard Young tableaux**

#### standard Young tableau (SYT) of shape 4421:

- 135627911410--8---

What is  $[x_1 \cdots x_p] s_{\lambda}$ ?

#### Facts:

- $\exists$  simple formula for  $f^{\lambda}$  (hook length formula)
- If  $\lambda \vdash p$  then  $[x_1 \cdots x_p] s_{\lambda} = f^{\lambda}$ .

What is  $[x_1 \cdots x_p] s_{\lambda}$ ?

#### Facts:

- $\exists$  simple formula for  $f^{\lambda}$  (hook length formula)
- If  $\lambda \vdash p$  then  $[x_1 \cdots x_p] s_{\lambda} = f^{\lambda}$ .

**Recall:** 

$$r(w) = \sum_{\lambda \vdash p} \alpha_{w\lambda} [x_1 \cdots x_p] s_{\lambda}$$

Thus

$$r(w) = \sum_{\lambda \vdash p} \alpha_{w\lambda} f^{\lambda}.$$

Nicest situation:  $G_w = s_\lambda$  for some  $\lambda \vdash p$ . Then  $r(w) = f^{\lambda}$ .

Nicest situation:  $G_w = s_\lambda$  for some  $\lambda \vdash p$ . Then  $r(w) = f^{\lambda}$ .

**Definition.** A permutation  $w = a_1 a_2 \cdots a_n \in S_n$  is **vexillary** or **2143-avoiding** if  $\nexists$ 

 $a < b < c < d, \ w_b < w_a < w_d < w_c.$ 

Nicest situation:  $G_w = s_\lambda$  for some  $\lambda \vdash p$ . Then  $r(w) = f^{\lambda}$ .

**Definition.** A permutation  $w = a_1 a_2 \cdots a_n \in S_n$  is vexillary or 2143-avoiding if  $\nexists$ 

 $a < b < c < d, \ w_b < w_a < w_d < w_c.$ 

Named by Lascoux and Schützenberger from vexillum, Latin for "flag," because of a connection with flag Schur functions.

Nicest situation:  $G_w = s_\lambda$  for some  $\lambda \vdash p$ . Then  $r(w) = f^{\lambda}$ .

**Definition.** A permutation  $w = a_1 a_2 \cdots a_n \in S_n$  is vexillary or 2143-avoiding if  $\nexists$ 

 $a < b < c < d, \ w_b < w_a < w_d < w_c.$ 

Named by Lascoux and Schützenberger from vexillum, Latin for "flag," because of a connection with flag Schur functions.

957281463 not vexillary

Nicest situation:  $G_w = s_\lambda$  for some  $\lambda \vdash p$ . Then  $r(w) = f^{\lambda}$ .

**Definition.** A permutation  $w = a_1 a_2 \cdots a_n \in S_n$  is vexillary or 2143-avoiding if  $\nexists$ 

 $a < b < c < d, \ w_b < w_a < w_d < w_c.$ 

Named by Lascoux and Schützenberger from vexillum, Latin for "flag," because of a connection with flag Schur functions.

957281463 not vexillary

## **Vexillary asymptotics**

$$\boldsymbol{v(n)} =$$
number of vexillary  $w \in S_n$ 

Theorem (A. Regev, J. West).

$$v(n) \sim \frac{81}{16}\sqrt{3\pi}\frac{9^n}{n^4}$$
  
= 2.791102533... $\frac{9^n}{n^4}$ .


$$w = a_1 \cdots a_n \in S_n$$
  
 $c_i = \#\{j : i < j \le n, a_i > a_j\}, \ 1 \le i \le n - j$ 

 $\sim$ 

 $\lambda(w)$ : partition whose parts are the  $c_i$ 's (sorted into decreasing order).



$$w = a_1 \cdots a_n \in S_n$$
$$c_i = \#\{j : i < j \le n, \ a_i > a_j\}, \ 1 \le i \le n-1$$

 $\lambda(w)$ : partition whose parts are the  $c_i$ 's (sorted into decreasing order).

**Example.**  $w = 5361472 \in S_7$ ,

$$(c_1, \dots, c_6) = (4, 2, 3, 0, 1, 1, 0)$$
  
 $\Rightarrow \lambda(w) = 43211$ 



$$w = a_1 \cdots a_n \in S_n$$
  
 $c_i = \#\{j : i < j \le n, a_i > a_j\}, \ 1 \le i \le n-1$ 

 $\lambda(w)$ : partition whose parts are the  $c_i$ 's (sorted into decreasing order).

**Example.**  $w = 5361472 \in S_7$ ,

$$(c_1, \dots, c_6) = (4, 2, 3, 0, 1, 1, 0)$$
  
 $\Rightarrow \lambda(w) = 43211$ 

Clearly  $\lambda(w) \vdash p = \ell(w)$ .

Theorem. We have  $G_w = s_\lambda$  for some  $\lambda$  if and only if w is vexillary. In this case  $\lambda = \lambda(w)$ , so  $r(w) = f^{\lambda(w)}$ .

Theorem. We have  $G_w = s_\lambda$  for some  $\lambda$  if and only if w is vexillary. In this case  $\lambda = \lambda(w)$ , so  $r(w) = f^{\lambda(w)}$ .

**Example.**  $w = 5361472 \in S_7$  is vexillary, and  $\lambda(w) = 43211$ . Hence

 $G_w = s_{43211}, \ r(w) = f^{43211} = 2310.$ 

**Example.**  $w_0 = n, n - 1, \dots, 1 \in S_n$  is vexillary, and  $\lambda(w_0) = (n - 1, n - 2, \dots, 1)$ . Hence

$$r(w_0) = f^{(n-1,n-2,\dots,1)} = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-1)^1}.$$

**Example.**  $w_0 = n, n - 1, \dots, 1 \in S_n$  is vexillary, and  $\lambda(w_0) = (n - 1, n - 2, \dots, 1)$ . Hence

$$r(w_0) = f^{(n-1,n-2,\dots,1)} = \frac{\binom{n}{2}!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-1)^1}.$$

| n        | 3 | 4  | 5   | 6      | 7          |
|----------|---|----|-----|--------|------------|
| $r(w_0)$ | 2 | 16 | 768 | 292864 | 1100742656 |

## **Combinatorial interpretation of** $\alpha_w$

#### **Recall:**

$$G_w = \sum_{\lambda \vdash p} \alpha_{w\lambda} s_\lambda$$
$$\Rightarrow r(w) = \sum_{\lambda \vdash p} \alpha_{w\lambda} f^\lambda$$

What can we say about  $\alpha_{w\lambda}$ ?

## **Semistandard** tableaux

# A semistandard (Young) tableau (SSYT) T of shape $\lambda = (4, 3, 3, 1, 1)$ :



## **Semistandard tableaux**

# A semistandard (Young) tableau (SSYT) T of shape $\lambda = (4, 3, 3, 1, 1)$ :



**Reading word** of *T*: 421133264457

## **Fomin-Greene theorem**

# **Theorem (S. Fomin and C. Greene)**. Let $w \in S_n$ , $\ell(w) = p$ , and $\lambda \vdash p$ . The coefficient $\alpha_{w\lambda}$ is equal to the number of SSYT of shape $\lambda$ whose row reading word is a reduced decomposition of w.

## **Example of Fomin-Greene theorem**

#### **Example.** $w = 4152736 \in S_7$

#### $3214365, 3216435, 6321435 \in R(w)$

## **Example of Fomin-Greene theorem**

#### **Example.** $w = 4152736 \in S_7$

123123123634346345655

#### $3214365, 3216435, 6321435 \in R(w)$

 $\Rightarrow r(w) = f^{322} + f^{331} + f^{421} = 21 + 21 + 35 = 77.$ 

W

**Recall:** 
$$w_0 = n, n - 1, \dots, 1 \in S_n$$
,  
 $r(w_0) = f^{n-1, n-2, \dots, 1}$ .

#### Is there a bijective proof?

## **Edelman-Greene** bijection





The inverse to the previous bijection is given by a version of RSK algorithm (discussed in first lecture).

## **Representation theory of** $S_n$

Irreducible representations  $\varphi^{\lambda} \colon S_n \to \operatorname{GL}(N, \mathbb{C})$ are indexed by partitions  $\lambda \vdash n$ .

 $N = \dim \varphi^{\lambda} = f^{\lambda}$ 

## **Representation theory of** $S_n$

Irreducible representations  $\varphi^{\lambda} \colon S_n \to \operatorname{GL}(N, \mathbb{C})$ are indexed by partitions  $\lambda \vdash n$ .

 $N = \dim \varphi^{\lambda} = f^{\lambda}$ 

Specht module  $M_{\lambda}$ : an  $S_n$ -module constructed from the (Young) diagram of  $\lambda$  (using row-symmetrizers and column anti-symmetrizers) that affords the representation  $\varphi^{\lambda}$ . For **any** diagram D (finite subset of a square grid) we can carry out the Specht module construction, obtaining an  $S_n$ -module  $M_D$  (in general reducible).

For **any** diagram D (finite subset of a square grid) we can carry out the Specht module construction, obtaining an  $S_n$ -module  $M_D$  (in general reducible).



For **any** diagram D (finite subset of a square grid) we can carry out the Specht module construction, obtaining an  $S_n$ -module  $M_D$  (in general reducible).



In general,  $M_D$  is not well-understood.













#### **Example.** w = 361524; diagram $D_w$ :



Number of squares of  $D_w = \ell(w)$ .

## The Specht module $M_{D_w}$

#### Theorem (Kraśkiewicz-Pragacz, 1986, 2004). Let $w = S_n$ , $p = \ell(w)$ . For $\lambda \vdash p$ , the multiplicity of $\varphi^{\lambda}$ in $M_{D_w}$ is $\alpha_{w\lambda}$ .

## The Specht module $M_{D_w}$

Theorem (Kraśkiewicz-Pragacz, 1986, 2004). Let  $w = S_n$ ,  $p = \ell(w)$ . For  $\lambda \vdash p$ , the multiplicity of  $\varphi^{\lambda}$  in  $M_{D_w}$  is  $\alpha_{w\lambda}$ .

Since  $r(w) = \sum_{\lambda \vdash p} \alpha_{w\lambda} f^{\lambda}$  and  $\dim \varphi^{\lambda} = f^{\lambda}$ , we get:

**Corollary.** dim  $M_{D_w} = r(w)$ 

## **Flag varieties**

#### **Fl**<sub>n</sub>: set of **complete flags**

$$0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n$$

of subspaces in  $\mathbb{C}^n$  (so dim  $V_i = i$ )

#### **Fl**<sub>n</sub>: set of **complete flags**

$$0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n$$

of subspaces in  $\mathbb{C}^n$  (so dim  $V_i = i$ )

$$\operatorname{Fl}_n \cong \operatorname{GL}(n, \mathbb{C})/B,$$

where  $\boldsymbol{B}$  is the Borel subgroup of invertible upper triangular matrices.

For each  $w \in S_n$  there is a projective subvariety  $\Omega_w$  of (complex) dimension  $\ell(w)$ , the Schubert variety corresponding to w, defined by simple geometric conditions.

For each  $w \in S_n$  there is a projective subvariety  $\Omega_w$  of (complex) dimension  $\ell(w)$ , the Schubert variety corresponding to w, defined by simple geometric conditions.

 $\sigma_w$  (Schubert cycle): cohomology class Poincaré dual to the fundamental cycle of  $\Omega_w$  For each  $w \in S_n$  there is a projective subvariety  $\Omega_w$  of (complex) dimension  $\ell(w)$ , the Schubert variety corresponding to w, defined by simple geometric conditions.

 $\sigma_w$  (Schubert cycle): cohomology class Poincaré dual to the fundamental cycle of  $\Omega_w$ 

 $\Rightarrow \sigma_w \in H^{2\left(\binom{n}{2} - \ell(w)\right)} \left( \mathrm{Fl}_n; \mathbb{C} \right)$
For each  $w \in S_n$  there is a projective subvariety  $\Omega_w$  of (complex) dimension  $\ell(w)$ , the Schubert variety corresponding to w, defined by simple geometric conditions.

 $\sigma_w$  (Schubert cycle): cohomology class Poincaré dual to the fundamental cycle of  $\Omega_w$ 

$$\Rightarrow \sigma_w \in H^{2\left(\binom{n}{2} - \ell(w)\right)} \left( \mathrm{Fl}_n; \mathbb{C} \right)$$

Standard result from Schubert calculus: the Schubert cycles  $\sigma_w$ ,  $w \in S_n$ , form a basis of  $H^*(\operatorname{Fl}_n; \mathbb{C})$ 

### **Schubert** polynomials

Schubert polynomial  $\mathfrak{S}_{w} = \mathfrak{S}_{w}(x_{1}, \dots, x_{n-1}), w \in S_{n}$ :

 $\mathfrak{S}_w = \sum \qquad \sum \qquad x_{i_1} \cdots x_{i_p}.$  $(a_1, \dots, a_p) \in R(w) \qquad 1 \leq i_1 \leq \dots \leq i_p$  $i_j < i_{j+1} \text{ if } a_j < a_{j+1}$  $i_i < j$ 

### **Schubert polynomials**

Schubert polynomial  $\mathfrak{S}_{w} = \mathfrak{S}_{w}(x_{1}, \dots, x_{n-1}), w \in S_{n}$ :



Compare



### **Stable Schubert polynomials**

 $G_w$  is sometimes called a stable Schubert polynomial (a certain limit of Schubert polynomials).

### **Stable Schubert polynomials**

 $G_w$  is sometimes called a stable Schubert polynomial (a certain limit of Schubert polynomials).

**Example.**  $\mathfrak{S}_{4213}, \mathfrak{S}_{15324}, \mathfrak{S}_{126435}, \ldots \rightarrow G_{4213}$ 

## **Ring structure of** $H^*(\operatorname{Fl}_n; \mathbb{C})$

#### $\mathbf{R}_{\mathbf{n}} = \mathbb{C}[x_1, x_2, \dots, x_n]/I_n$ , where $\mathbf{I}_{\mathbf{n}}$ is generated by the elementary symmetric functions $e_1, \dots, e_n$ .

# **Ring structure of** $H^*(\operatorname{Fl}_n; \mathbb{C})$

 $\mathbf{R}_{\mathbf{n}} = \mathbb{C}[x_1, x_2, \dots, x_n]/I_n$ , where  $\mathbf{I}_{\mathbf{n}}$  is generated by the elementary symmetric functions  $e_1, \dots, e_n$ .

Theorem. There is an algebra isomorphism

$$\varphi \colon R_n \to H^*(\mathrm{Fl}_n; \mathbb{C}),$$

such that for  $w \in S_n$  we have

$$\varphi(\mathfrak{S}_{w_0w})=\sigma_w,$$

where  $w_0 = n, n - 1, ..., 1$ .

#### Theorem (Macdonald 1991, Fomin-S. 1994) Let $w \in S_n$ and $\ell(w) = p$ . Then

 $\sum_{(a_1, a_2, \dots, a_p) \in R(w)} a_1 a_2 \cdots a_p = p! \mathfrak{S}_w(1, 1, \dots, 1).$ 

#### Theorem (Macdonald 1991, Fomin-S. 1994) Let $w \in S_n$ and $\ell(w) = p$ . Then

 $\sum_{(a_1, a_2, \dots, a_p) \in R(w)} a_1 a_2 \cdots a_p = p! \mathfrak{S}_w(1, 1, \dots, 1).$ 

Theorem.  $\mathfrak{S}_w(1, 1, \dots, 1) = 1$  if and only if w is 132-avoiding, i.e., there does not exist i < j < ksuch that  $a_i < a_k < a_j$ . Theorem (Macdonald 1991, Fomin-S. 1994) Let  $w \in S_n$  and  $\ell(w) = p$ . Then

 $\sum_{(a_1, a_2, \dots, a_p) \in R(w)} a_1 a_2 \cdots a_p = p! \mathfrak{S}_w(1, 1, \dots, 1).$ 

Theorem.  $\mathfrak{S}_w(1, 1, \dots, 1) = 1$  if and only if w is 132-avoiding, i.e., there does not exist i < j < ksuch that  $a_i < a_k < a_j$ .

Number of 132-avoiding  $w \in S_n$ : the Catalan number  $C_n = \frac{1}{n+1} {2n \choose n}$ 

### The special case $w_0$

For 
$$w_0 = n, n - 1, \ldots, 1 \in S_n$$
 we have

$$\sum_{(a_1,a_2,\ldots,a_p)\in R(w_0)} a_1a_2\cdots a_p = \binom{n}{2}!.$$

### The special case $w_0$

For 
$$w_0 = n, n - 1, \ldots, 1 \in S_n$$
 we have

$$\sum_{(a_1,a_2,\ldots,a_p)\in R(w_0)} a_1 a_2 \cdots a_p = \binom{n}{2}!.$$

#### **Example.** For n = 3 we have

$$R(w_0) = \{(1, 2, 1), (2, 1, 2)\}.$$

#### Thus

$$1 \cdot 2 \cdot 1 + 2 \cdot 1 \cdot 2 = 6 = \binom{3}{2}!$$





### An analogue for any transpositions

 $(i, j) \in S_n$ : transposition interchanging i and jFor  $w \in S_n$ ,  $\ell(w) = p$ , define  $T(w) = \{((i_1, j_1), (i_2, j_2), \dots, (i_p, j_p)) :$  $w = (i_1, j_1)(i_2, j_2) \cdots (i_p, j_p)$ and  $\ell((i_1, j_1) \cdots (i_k, j_k)) = k$  for all  $1 \le k \le p\}$ .

Let 
$$w = w_0 = 321 \in S_3$$
.

$$321 = (1,2)(2,3)(1,2) = (2,3)(1,2)(2,3) = (1,2)(1,3)(2,3) = (2,3)(1,3)(1,2),$$

so (abbreviating (i, j) as ij)

$$T_{321} = \{(12, 23, 12), (23, 12, 23),$$

 $(12, 13, 23), (23, 13, 12)\}.$ 

Reduced Decompositions - p. 4

### **Theorem of Chevalley–Stembridge**

Theorem (Chevalley ~1958, Stembridge 2002). For  $w = w_0 \in S_n$  (so  $p = \binom{n}{2}$ ) we have  $\sum_{((i_1, j_1), (i_2, j_2), ..., (i_p, j_p)) \in T(w_0)} (j_1 - i_1)(j_2 - i_2) \cdots (j_p - i_p) = p!.$ 

### An example (cont.)

#### Example. Recall

$$T(321) = \{(12, 23, 12), (23, 12, 23), (12, 13, 23), (23, 13, 12)\}.$$

#### Hence

$$1 \cdot 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 1 = \binom{3}{2}!.$$

### An open problem

$$\sum_{(a_1, a_2, \dots, a_p) \in R(w_0)} a_1 a_2 \cdots a_p = p!.$$

# $\sum_{((i_1,j_1),(i_2,j_2),\dots,(i_p,j_p))\in T(w_0)} (j_1-i_1)(j_2-i_2)\cdots(j_p-i_p) = p!.$

### An open problem

$$\sum_{(a_1, a_2, \dots, a_p) \in R(w_0)} a_1 a_2 \cdots a_p = p!.$$

$$\sum_{((i_1,j_1),(i_2,j_2),\dots,(i_p,j_p))\in T(w_0)} (j_1-i_1)(j_2-i_2)\cdots(j_p-i_p) = p!.$$

- Is this similarity just a "coincidence"?
- Is there a common generalization?





ed Decompositions – p. 4