TORIC SCHUR FUNCTIONS

Grp,,: Grassmann variety of k-sub-
spaces of C"

dimp Gry,, = k(n — k)
H*(Gry,,) = H*(Gry,,; Z): cohomol-
ogy ring (fundamental object for Schu-
bert calculus)

basis for H*(Gry,,): Schubert classes
o), where A = (A, ..., \z) and

)\Qkx(n—k),
1.c.
n—k>MN2>-2>2A.2>0.

Let Py, be the set of all such partitions
A, SO

#Pr., = rank H*(Gry,,) = (Z)
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(2, C Grg,: Schubert variety,
defined by bounds on dim X NV}, for

X € Gry.,,, where

{0} =VwCViC---CV,=0C"
is a fixed flag.

Multiplication in H*(Grp,,):

A
O-Iu()-y — Z C/,LI/O->\7
)\Epkn

where cﬁy 1s a Littlewood-Richardson

coefficient.

iCQV:#(Q#mQme)\\/),
where Q,, is a generic translate of €2,
and AV is the complementary par-
tition

AN =mn—k—X,...,n—k—X\).
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QH*(Grgy,): quantum deforma-
tion of H*(Grp,,)

A ring of symmetric polynomials over
Zin xq,...,T.

Ak = Z[el, c e ,ek],

where e; is the 1th elementary sym-
metric function in xq,...,x.

h;: sum of all monomials of degree 7
(complete symmetric function)

H*(Grlm) = Ak/(hn—k+17 cee hn)

QH*(Gry,,) =
Ak®Z[Q]/(hn—]€—l—17 RIS hn—17 hn—i_(_l)kQ)

classical case: ¢ =0



H*(Grkn) = Ak/<hn—k+1a R hn)
Bkn for Ak/(hn—k+17 e ooy hn)
Let A be a partition.

semistandard Young tableau (SSYT)

of shape A:
<
111,34
N [ 2]4]4]6
41619
6
A= (4,4,3,1)

T :1:% T9 T3 :1:2L :1:% xq
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Schur function sy of shape A:
S\ = Z CE‘T,
T

summed over all SSY'T' T" of shape .

={sy : ACkx(n—k)},

H* (Grkn) — A /(hn—kJrla Ce hn)
O)\ F> S)

A
S/LSV — Z CNVS)\
A



1(1 112 111 1|3
2 2 3 3
2|2 2|3 1|2 1{3
3 3 3 2

so1(a, b, c) = a’b + ab’ + a’c + ac’
+b%c + be? + 2abe

S91 = Z:I:ZZ:I:]-JrQ Z LT T,

it i<ji<k

S51 = 849 1+ 833 + S411 + 25321 + $9292
+S53111 T $2211

— 849 + s33 in H™(Grog).



basis for QH*(Gry,,) remains
{oy : ACkx(n—Fk)}

quantum multiplication:

OM*OV:Z Z dC,UJ/ TN\

d>0 M| p|+|v|—dn
)\kan

where Cfb\,’/d c 7.

C /i"yd: number of rational curves of de-
gree d in Gry,, meeting £2,, N2, Ny,
a 3-point Gromov-Witten invari-
ant



Naively, a rational curve of de-
gree r in Gry,, is a set

C = {(fils,), fals,t)s- o, fro(s,)

k
c P-HQ) : st € <c},

where f1(x,y), ..., f(Z) (x,y) are homo-

geneous polynomials of degree d such
that C' C Gry,,.

Rational curve of degree d = 0 is a
point.



Let A\/u be a skew partition, ie.,
A

semistandard Young tableau (SSYT)
of shape \/pu:

w

/\ 1

o lalo]

ANp = (4,4,3,1)/(2,1,1)

!l = 2 x% x% CE‘Z TG



skew Schur function sy m of shape

A .
SN Zx )
T

summed over all SSYT T of shape A /.

S>\ m— S)\/@
A
Y D G, (D)
1%
where ¢ is a Littlewood-Richardson

%
coeflicient, 1.e.,

A
S,LLSI/ — Z C/,LVS)\'
A

Want to generalize (1) to Ci)’yd.
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toric shape 7 in a 6 x 10 rectangle:
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semistandard toric tableau (SSTT):

A
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the toric shape

T=A/d/u
— <97776727270>/2/<97977’3’3’ 1> :

SE S
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toric Schur function:
T
Sh/dfu= DT
T

summed over all SSTT of shape \/d/u

Theorem. Let \/d/u be a toric
shape contained in a kx (n—k) torus.
Then

s)\/d/u(:cl,... Z CMV sp(xy,...,x8).
VEPkn

Compare the case d = 0: If
)‘/:ugkx <n_k>7
then

s)\/u(:cl,,...,:z:k): Z cﬁysy(afl,...,a:k).

VEPkn
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TORIC A-VECTORS AND
INTERSECTION
COHOMOLOGY

convex polytope: convex hull P of
a finite set in R"

d = dim P

face: intersection of P with a support-
ing hyperplane

f;: number of ¢-dimensional faces

(fo1=1)
f-vector: f(P) = (fo. f1.---, fa—1)
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(5,9)
(8,12,6)

f (pentagon)
f(3-cube)
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simplicial polytope: every proper
face is a simplex (e.g., tetrahedron, oc-
tahedron, icosahedron)

h-vector: h(P) = (hg,...,hy) de-
fined by:

Zfz 1x—1 thazd :
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g-theorem: (hyg,...,hy) € Z% is
h(P) for some simplicial P if and only
if:

(G1) ho =1
(G2) h; = hy_; (Dehn-Sommerville
equations)

(Gg) ho <h <..-< htd/% (GLBC)

(G4) Non-polynomial inequalities (g-inequal-
ities) on rate of growth of g; =
hi — hi—1
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Proof of necessity. (G1) trivial

(Gg) “classical” (not difficult)

(Gg) Perturb P to have rational vertices.
Let Xp be the toric variety cor-
responding to the normal fan 3p

of P.
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Cohomology ring:
H*(Xp;R) = H(Xp; R)&H*(Xp; R)
®--- & H(Xp;R),
where
dim H*(Xp;R) = hi(P).

Hard Lefschetz theorem for Xp:
if w € H?is the class of a hyperplane
section, then

=i 20 pp2(d—i)
is a bijection, 0 <1 < d/2. Hence
BE H’L . Hi+1
is injective for 0 <4 < d/2, so
hi < hjtq.

(G4) Use that H*(Xp; R) is generated by
H? as an R-algebra.
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If P is nonsimplicial and rational, can
still define Xp, but H*(Xp;R) is “bad.”
Instead use intersection cohomol-
ogy (Goresky-MacPherson):

TH(Xp;R) = [HY(Xp: R)BIHA (X p; R)&
@ THY(Xp: R).

Let h; = hj(P) = dim IH%(XP; R)
(independent of embedding of P).

toric h-vector:

h(P) = (ho, h1,...,hy)
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Computation of h(P). Define f(P, x)
and g(P,x) by

o f(0,2)=g(0,z) =1
QIfP#@then

Zg d1m77 dim Q— 1

where Q ranges over all faces of P
(including () except P.

o [fdimP =d >0, m=|d/2], and
f(P,z) = ho+ hjz + ---, then

g(P.x) = ho+(hi—ho)z+(ho—h) )z’ +
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Example. Let oj = j-simplex,
C;j = j-cube. Say we know
g9(00,z) = gloy,z) =1
g(Co,x) =1+ .
Then
f(C3,x) = 6(x+1)+12(x — 1)
+8(x —1)% + (. —1)°
— 29 4 52 + 5z + 1
g(Cs,x) = 1+ 4.

Note. f(Cp,1) = 2(27@ B 2)

n—1

1 2n
g<cn’1)_n+1(n>

(Catalan number)
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For any P, define the toric h-vector
h(P) — <h07 R hd>7

where f(P,z) = hy+--- + hgz?
(easy: deg f = d).

Trivial: hg =1 (Gq)
Not difficult: h; = hy_; (G2)
If P is rational, then
dim IH*(Xp:R) = h; = h; > 0.

Moreover, [H(Xp;R) is a module over
H*(Xp;R), and hard Lefschetz holds.

Thus
ho <hy < -+ < hygp- (Gs)

[H(Xp;R) is not a ring, so (Gy4) re-
mains open even for P rational.

)
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Extend to nonrational P:

“Nice” generalization of Xp not known.

Nice generalization of [H(Xp; R) defined

by Barthel-Brasslet-Fiesler-Kaup and
Bressler-Lunts. Connection with h; and
hard Letschetz proved by Karu, with
improvements by Bressler-Lunts and Barthel
et al.

>: complete fan in R
As: structure sheaf of Y. For each
cone o € Y define the stalk

As 5 = Sym(spano)”,

the space of polynomial functions on o.
Restriction map

AZ,J — AZ (60)

defined by restriction of functions.
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As is a sheaf of algebras. Multiplica-
tion with elements of A = Sym(R%)*
(all polynomial functions on Rd) gives
As the structure of a sheaf of A-modules.

Ly: equivariant intersection co-
homology sheaf, asheaf of Ay-modules
(technical definition)

ITH(X) = Ly, (A-module of global sec-
tions of Ly modulo the ideal I of A
generated by homogeneous linear func-
tions): intersection homology of ¥
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AXIOMS FOR. L

(E1) (normalization) Ly o = R

(E2) (local freeness) Ly , is a free Ay, -
module for any o € .

(E3) (minimal flabbiness) Let I be the ideal
of A generated by homogeneous lin-
ear functions, and for any A-module
M write M = M/IM. Then mod-
ulo the ideal I the restriction map
induces an isomorphism

Ls , — Ly(0o).

)
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Bressler-Lunts:

e IHX)=IH' @ IH?*® --- @ IH*
e Poincaré duality so
[H%(x) = [H2d-) (%)

e Conjecture. If ¥ = ¥p (normal
fan of the polytope P), then TH(P)
satisfies hard Lefschetz: for strictly

convex [ € “4227; and 7 < d/2,

(4=t T2 (p) = TrAd—),
e Above conjecture = dim IH%(P) =
hi(P), proving (G3):
ho < i< < hygs,
Karu: proved conjecture of Bressler-

Lunts.
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Stronger result: Hodge-Riemann-
Minkowski bilinear relations. Poincaré
duality =

[H(P) x IH(P) — R,

denoted (x,y). If | € A% is strictly
convex, define a quadratic form )7 on

[HI=(P) by
Ql(w) — <l7’x,x>

Primitive intersection cohomol-
ogy:
IPL—%(P) = ker(I'T!, IH 4 (P))
[+ A (P) = THEH(P),
H-R-M: (—1)\4=0/2Q), is positive def-
inite on IPY~*(P) for all i > 0.

(proved by McMullen for simplicial P)
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Extremely rough sketch of proof: find

a suitable triangulation of the fan >p
and “lift” H-R-M from A to ..

Bressler-Lunts: canonical pairing (-, ),
independent of choice of A.

Barthel-Brasselet-Fiesler-Kaup: “direct”
approach to proot of Bressler-Lunts, re-
placing derived categories with elemen-
tary sheaf theory and commutative al-
oebra.
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