TORIC SCHUR FUNCTIONS

 \mathbf{Gr}_{kn} : $\mathbf{Grassmann}$ variety of k-subspaces of \mathbb{C}^n

$$\dim_{\mathbb{C}} \operatorname{Gr}_{kn} = k(n-k)$$

 $H^*(Gr_{kn}) = H^*(Gr_{kn}; \mathbb{Z})$: cohomology ring (fundamental object for **Schubert calculus**)

basis for $H^*(Gr_{kn})$: Schubert classes σ_{λ} , where $\lambda = (\lambda_1, \dots, \lambda_k)$ and

$$\lambda \subseteq \mathbf{k} \times (\mathbf{n} - \mathbf{k}),$$

i.e.,

$$n-k \ge \lambda_1 \ge \cdots \ge \lambda_k \ge 0.$$

Let P_{kn} be the set of all such partitions λ , so

$$\#P_{kn} = \operatorname{rank} H^*(\operatorname{Gr}_{kn}) = \binom{n}{k}.$$

 $\Omega_{\lambda} \subset \operatorname{Gr}_{kn}$: Schubert variety, defined by bounds on dim $X \cap V_i$, for $X \in \operatorname{Gr}_{kn}$, where

$$\{0\} = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n$$

is a fixed flag.

Multiplication in $H^*(Gr_{kn})$:

$$\sigma_{\mu}\sigma_{\nu} = \sum_{\lambda \in P_{kn}} c_{\mu\nu}^{\lambda} \sigma_{\lambda},$$

where $c_{\mu\nu}^{\lambda}$ is a **Littlewood-Richardson** coefficient.

$$\Rightarrow c_{\mu\nu}^{\lambda} = \# \left(\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda} \vee \right),$$

where $\tilde{\Omega}_{\nu}$ is a generic translate of Ω_{ν} and λ^{\vee} is the **complementary partition**

$$\lambda^{\vee} = (n - k - \lambda_k, \dots, n - k - \lambda_1).$$

$\mathbf{QH^*(Gr_{kn})}$: quantum deformation of $H^*(Gr_{kn})$

 Λ_k : ring of symmetric polynomials over \mathbb{Z} in x_1, \ldots, x_k .

$$\Lambda_k = \mathbb{Z}[e_1, \dots, e_k],$$

where e_i is the *i*th elementary symmetric function in x_1, \ldots, x_k .

 h_i : sum of all monomials of degree i (complete symmetric function)

$$H^*(Gr_{kn}) \cong \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

QH*(Gr_{kn})
$$\cong$$

 $\Lambda_k \otimes \mathbb{Z}[q]/(h_{n-k+1}, \dots, h_{n-1}, h_n + (-1)^k q)$

classical case: q = 0

$$H^*(\operatorname{Gr}_{kn}) \cong \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

Basis $\boldsymbol{B_{kn}}$ for $\Lambda_k/(h_{n-k+1}, \dots, h_n)$:

Let λ be a partition.

semistandard Young tableau (SSYT) of shape λ :

$$\lambda = (4, 4, 3, 1)$$
$$x^{T} = x_{1}^{2} x_{2} x_{3} x_{4}^{4} x_{6}^{3} x_{9}$$

Schur function s_{λ} of shape λ :

$$s_{\lambda} = \sum_{T} x^{T},$$

summed over all SSYT T of shape λ .

$$B_{kn} = \{s_{\lambda} : \lambda \subseteq k \times (n-k)\},\$$

$$H^*(Gr_{kn}) \xrightarrow{\cong} \Lambda_k/(h_{n-k+1}, \dots, h_n)$$

 $\sigma_{\lambda} \mapsto s_{\lambda}$

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}$$

$$s_{21}(a, b, c) = a^{2}b + ab^{2} + a^{2}c + ac^{2} + b^{2}c + bc^{2} + 2abc$$

$$s_{21} = \sum_{i \neq j} x_{i}^{2}x_{j} + 2 \sum_{i < j < k} x_{i}x_{j}x_{k}$$

$$s_{21}^{2} = s_{42} + s_{33} + s_{411} + 2s_{321} + s_{222} + s_{3111} + s_{2211}$$

$$\rightarrow s_{42} + s_{33} \text{ in } H^{*}(Gr_{26}).$$

basis for $QH^*(Gr_{kn})$ remains

$$\{\sigma_{\lambda} \,:\, \lambda \subseteq k \times (n-k)\}$$

quantum multiplication:

$$\sigma_{\mu} * \sigma_{\nu} = \sum_{\substack{d \geq 0 \ \lambda \vdash |\mu| + |\nu| - dn \\ \lambda \in P_{kn}}} q^{d} C_{\mu\nu}^{\lambda,d} \sigma_{\lambda},$$

where $C_{\mu\nu}^{\lambda,d} \in \mathbb{Z}$.

 $C_{\mu\nu}^{\lambda,d}$: number of rational curves of degree d in Gr_{kn} meeting $\tilde{\Omega}_{\mu} \cap \tilde{\Omega}_{\nu} \cap \tilde{\Omega}_{\lambda} \vee$, a **3-point Gromov-Witten invariant**

Naively, a rational curve of degree r in Gr_{kn} is a set

$$C = \left\{ (f_1(s,t), f_2(s,t), \dots, f_{\binom{n}{k}}(s,t)) \right\}$$
$$\in P^{\binom{n}{k}-1}(\mathbb{C}) : s, t \in \mathbb{C} \right\},$$

where $f_1(x, y), \ldots, f_{\binom{n}{k}}(x, y)$ are homogeneous polynomials of degree d such that $C \subset \operatorname{Gr}_{kn}$.

Rational curve of degree d = 0 is a point.

Let λ/μ be a **skew partition**, i.e., $\mu \subseteq \lambda$.

semistandard Young tableau (SSYT) of shape λ/μ :

$$\lambda/\mu = (4, 4, 3, 1)/(2, 1, 1)$$
$$x^T = x_1 x_2^2 x_3^2 x_4^2 x_6$$

skew Schur function $s_{\lambda/\mu}$ of shape λ/μ :

$$s_{\lambda/\mu} = \sum_{T} x^{T},$$

summed over all SSYT T of shape λ/μ .

$$s_{\lambda} = s_{\lambda/\emptyset}$$

$$s_{\lambda/\mu} = \sum_{\nu} c_{\mu\nu}^{\lambda} s_{\nu}, \qquad (1)$$

where $c_{\mu\nu}^{\lambda}$ is a Littlewood-Richardson coefficient, i.e.,

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\lambda}.$$

Want to generalize (1) to $C_{\mu\nu}^{\lambda,d}$.

toric shape τ in a 6×10 rectangle:

$\mathbf{semistandard\ toric\ tableau\ (SSTT)}:$

	2	2	4	6						
	3	5								
	4							1	2	4
				1	2	2	2	2	5	
				3	3	4	4	4		
		1	2	4						

the toric shape

$$\tau = \lambda/d/\mu$$

= $(9,7,6,2,2,0)/2/(9,9,7,3,3,1)$:

toric Schur function:

$$\mathbf{s}_{\lambda/d/\mu} = \sum_{T} x^{T},$$

summed over all SSTT of shape $\lambda/d/\mu$

Theorem. Let $\lambda/d/\mu$ be a toric shape contained in a $k \times (n-k)$ torus. Then

$$s_{\lambda/d/\mu}(x_1, \dots, x_k) = \sum_{\nu \in P_{kn}} C_{\mu\nu}^{\lambda, d} s_{\nu}(x_1, \dots, x_k).$$

Compare the case d = 0: If

$$\lambda/\mu \subseteq k \times (n-k),$$

then

$$s_{\lambda/\mu}(x_1, \dots, x_k) = \sum_{\nu \in P_{kn}} c_{\mu\nu}^{\lambda} s_{\nu}(x_1, \dots, x_k).$$

TORIC h-VECTORS AND INTERSECTION COHOMOLOGY

convex polytope: convex hull \mathcal{P} of a finite set in \mathbb{R}^n

$$d = \dim \mathcal{P}$$

face: intersection of \mathcal{P} with a supporting hyperplane

 f_i : number of *i*-dimensional faces $(f_{-1} = 1)$

f-vector:
$$f(P) = (f_0, f_1, \dots, f_{d-1})$$

$$f(\text{pentagon}) = (5, 5)$$

 $f(3\text{-cube}) = (8, 12, 6)$

simplicial polytope: every proper face is a simplex (e.g., tetrahedron, octahedron, icosahedron)

h-vector: $h(\mathcal{P}) = (h_0, \dots, h_d)$ defined by:

$$\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} = \sum_{i=0}^{d} \mathbf{h}_{i} x^{d-i}.$$

g-theorem: $(h_0, \ldots, h_d) \in \mathbb{Z}^{d+1}$ is $h(\mathcal{P})$ for some simplicial \mathcal{P} if and only if:

- $(G_1) h_0 = 1$
- (G₂) $h_i = h_{d-i}$ (Dehn-Sommerville equations)
- (G₃) $h_0 \le h_1 \le \dots \le h_{|d/2|}$ (GLBC)
- (G₄) Non-polynomial inequalities (*g***-inequalities**) on rate of growth of $g_i := h_i h_{i-1}$

Proof of necessity. (G₁) trivial

- (G₂) "classical" (not difficult)
- (G₃) Perturb \mathcal{P} to have rational vertices. Let $X_{\mathcal{P}}$ be the **toric variety** corresponding to the **normal fan** $\Sigma_{\mathcal{P}}$ of \mathcal{P} .

Cohomology ring:

$$H^*(X_{\mathcal{P}}; \mathbb{R}) = H^0(X_{\mathcal{P}}; \mathbb{R}) \oplus H^2(X_{\mathcal{P}}; \mathbb{R})$$
$$\oplus \cdots \oplus H^{2d}(X_{\mathcal{P}}; \mathbb{R}),$$

where

$$\dim H^{2i}(X_{\mathcal{P}}; \mathbb{R}) = h_i(\mathcal{P}).$$

Hard Lefschetz theorem for $X_{\mathcal{P}}$:

if $\omega \in H^2$ is the class of a hyperplane section, then

$$\omega^{d-i}: H^{2i} \to H^{2(d-i)}$$

is a bijection, $0 \le i < d/2$. Hence

$$\omega: H^i \to H^{i+1}$$

is injective for $0 \le i < d/2$, so

$$h_i \leq h_{i+1}$$
.

(G₄) Use that $H^*(X_{\mathcal{P}}; \mathbb{R})$ is generated by H^2 as an \mathbb{R} -algebra.

If \mathcal{P} is nonsimplicial and rational, can still define $X_{\mathcal{P}}$, but $H^*(X_{\mathcal{P}}; \mathbb{R})$ is "bad." Instead use **intersection cohomology** (Goresky-MacPherson):

$$\mathbf{IH}(X_{\mathcal{P}}; \mathbb{R}) = \mathrm{IH}^{0}(X_{\mathcal{P}}; \mathbb{R}) \oplus \mathrm{IH}^{2}(X_{\mathcal{P}}; \mathbb{R}) \oplus \cdots \oplus \mathrm{IH}^{2d}(X_{\mathcal{P}}; \mathbb{R}).$$

Let $\mathbf{h}_i = h_i(\mathcal{P}) = \dim \mathrm{IH}^{2i}(X_{\mathcal{P}}; \mathbb{R})$ (independent of embedding of \mathcal{P}).

toric *h*-vector:

$$\mathbf{h}(\mathbf{\mathcal{P}}) = (h_0, h_1, \dots, h_d)$$

Computation of $h(\mathcal{P})$. Define $f(\mathcal{P}, x)$ and $g(\mathcal{P}, x)$ by

- $\bullet \ f(\emptyset, x) = g(\emptyset, x) = 1$
- If $\mathcal{P} \neq \emptyset$ then

$$f(\mathcal{P}, x) = \sum_{\mathcal{Q}} g(\mathcal{Q}, x)(x-1)^{\dim \mathcal{P} - \dim \mathcal{Q} - 1},$$

where \mathcal{Q} ranges over all faces of \mathcal{P} (including \emptyset) except \mathcal{P} .

• If dim
$$\mathcal{P} = d \ge 0$$
, $\mathbf{m} = \lfloor d/2 \rfloor$, and $f(\mathcal{P}, x) = h_0 + h_1 x + \cdots$, then $g(\mathcal{P}, x) = h_0 + (h_1 - h_0) x + (h_2 - h_1) x^2 + \cdots + (h_m - h_{m-1}) x^m$.

Example. Let $\sigma_j = j$ -simplex, $C_j = j$ -cube. Say we know

$$g(\sigma_0, x) = g(\sigma_1, x) = 1$$
$$g(\mathcal{C}_2, x) = 1 + x.$$

Then

$$f(C_3, x) = 6(x+1) + 12(x-1) + 8(x-1)^2 + (x-1)^3$$
$$= x^3 + 5x^2 + 5x + 1$$
$$g(C_3, x) = 1 + 4x.$$

Note.
$$f(\mathcal{C}_n, 1) = 2 \binom{2n-2}{n-1}$$

 $g(\mathcal{C}_n, 1) = \frac{1}{n+1} \binom{2n}{n}$
(Catalan number)

For any \mathcal{P} , define the toric h-vector

$$h(\mathcal{P}) = (h_0, \cdots, h_d),$$

where $f(\mathcal{P}, x) = h_0 + \dots + h_d x^d$ (easy: deg f = d).

Trivial: $h_0 = 1$ (**G**₁)

Not difficult: $h_i = h_{d-i}$ (G₂)

If \mathcal{P} is rational, then

$$\dim \operatorname{IH}^{2i}(X_{\mathcal{P}}; \mathbb{R}) = h_i \Rightarrow h_i \geq 0.$$

Moreover, $\mathrm{IH}(X_{\mathcal{P}};\mathbb{R})$ is a module over $H^*(X_{\mathcal{P}};\mathbb{R})$, and hard Lefschetz holds. Thus

$$h_0 \le h_1 \le \dots \le h_{\lfloor d/2 \rfloor}$$
. (G₃)

 $\mathrm{IH}(X_{\mathcal{P}};\mathbb{R})$ is not a ring, so $(\mathbf{G_4})$ remains open even for \mathcal{P} rational.

Extend to nonrational \mathcal{P} :

"Nice" generalization of $X_{\mathcal{P}}$ not known.

Nice generalization of $IH(X_{\mathcal{P}}; \mathbb{R})$ defined by Barthel-Brasslet-Fiesler-Kaup and Bressler-Lunts. Connection with h_i and hard Lefschetz proved by Karu, with improvements by Bressler-Lunts and Barthel et al.

 Σ : complete fan in \mathbb{R}^d

 \mathcal{A}_{Σ} : structure sheaf of Σ . For each cone $\sigma \in \Sigma$ define the stalk

$$\mathcal{A}_{\Sigma,\sigma} = \operatorname{Sym}(\operatorname{span} \sigma)^*,$$

the space of polynomial functions on σ . Restriction map

$$\mathcal{A}_{\Sigma,\sigma} \to A_{\Sigma}(\partial \sigma)$$

defined by restriction of functions.

 \mathcal{A}_{Σ} is a sheaf of algebras. Multiplication with elements of $A = \operatorname{Sym}(\mathbb{R}^d)^*$ (all polynomial functions on \mathbb{R}^d) gives \mathcal{A}_{Σ} the structure of a sheaf of A-modules.

 \mathcal{L}_{Σ} : equivariant intersection cohomology sheaf, a sheaf of \mathcal{A}_{Σ} -modules (technical definition)

 $\operatorname{IH}(\Sigma) = \bar{\mathcal{L}}_{\Sigma}$ (\mathcal{A} -module of global sections of \mathcal{L}_{Σ} modulo the ideal I of A generated by homogeneous linear functions): **intersection homology** of Σ

AXIOMS FOR \mathcal{L}_{Σ}

- (E₁) (normalization) $\mathcal{L}_{\Sigma,0} = \mathbb{R}$
- (E₂) (local freeness) $\mathcal{L}_{\Sigma,\sigma}$ is a free $\mathcal{A}_{\Sigma,\sigma}$ module for any $\sigma \in \Sigma$.
- (E₃) (minimal flabbiness) Let I be the ideal of A generated by homogeneous linear functions, and for any A-module M write $\overline{M} = M/IM$. Then modulo the ideal I the restriction map induces an isomorphism

$$\overline{\mathcal{L}}_{\Sigma,\sigma} \to \overline{\mathcal{L}_{\Sigma}(\partial \sigma)}.$$

Bressler-Lunts:

- $IH(\Sigma) = IH^0 \oplus IH^2 \oplus \cdots \oplus IH^{2d}$
- Poincaré duality so

$$IH^{2i}(\Sigma) \equiv IH^{2(d-i)}(\Sigma)$$

• Conjecture. If $\Sigma = \Sigma_{\mathcal{P}}$ (normal fan of the polytope \mathcal{P}), then IH(\mathcal{P}) satisfies hard Lefschetz: for strictly convex $l \in \mathcal{A}^2_{\Sigma_{\mathcal{P}}}$ and i < d/2,

$$l^{d-i}: \operatorname{IH}^{2i}(\mathcal{P}) \xrightarrow{\cong} \operatorname{IH}^{2(d-i)}.$$

• Above conjecture \Rightarrow dim IH²ⁱ(\mathcal{P}) = $h_i(\mathcal{P})$, proving (G₃):

$$h_0 \le h_1 \le \cdots \le h_{\lfloor d/2 \rfloor}$$

Karu: proved conjecture of Bressler-Lunts. Stronger result: **Hodge-Riemann- Minkowski bilinear relations.** Poincaré duality \Rightarrow

$$\mathrm{IH}^{d-i}(\mathcal{P}) \times \mathrm{IH}^{d+i}(\mathcal{P}) \to \mathbb{R},$$

denoted $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$. If $l \in A_{\Sigma}^2$ is strictly convex, define a quadratic form $\boldsymbol{Q_l}$ on $IH^{d-i}(\mathcal{P})$ by

$$Q_l(x) = \langle l^i x, x \rangle.$$

Primitive intersection cohomology:

$$\mathbf{IP}^{d-i}(\mathcal{P}) = \ker(l^{i+1}, \mathbf{IH}^{d-i}(\mathcal{P}))$$
$$l^{i+1} : \mathbf{IH}^{d-i}(\mathcal{P}) \to \mathbf{IH}^{d+i+2}(\mathcal{P}).$$

H-R-M: $(-1)^{(d-i)/2}Q_l$ is positive definite on $IP^{d-i}(\mathcal{P})$ for all $i \geq 0$.

(proved by McMullen for simplicial \mathcal{P})

Extremely rough sketch of proof: find a suitable triangulation of the fan $\Sigma_{\mathcal{P}}$ and "lift" H-R-M from Δ to Σ .

Bressler-Lunts: **canonical** pairing $\langle \cdot, \cdot \rangle$, independent of choice of Δ .

Barthel-Brasselet-Fiesler-Kaup: "direct" approach to proof of Bressler-Lunts, replacing derived categories with elementary sheaf theory and commutative algebra.