POLYNOMIALS WITH REAL ZEROS

Richard P. Stanley Department of Mathematics M.I.T. 2-375 Cambridge, MA 02139 rstan@math.mit.edu http://www-math.mit.edu/~rstan

Transparencies available at: http://www-math.mit.edu/~rstan/trans.html **Rolle's theorem.** If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b) = 0, then there exists a < c < b such that f'(c) = 0.

Corollary. If $P(x) \in \mathbb{R}[x]$ and every zero of P(x) is real, then every zero of P'(x) is real.

Let
$$P(x) =$$

 $a_n x^n + \dots + {n \choose 2} a_2 x^2 + {n \choose 1} a_1 x + a_0 \in \mathbb{R}[x].$

Theorem (Newton). If all zeros of P(x) are real, then

$$a_i^2 \ge a_{i-1}a_{i+1}, \ 1 \le i \le n-1.$$

Proof. $P^{(n-i-1)}(x)$ has real zeros $\Rightarrow Q(x) := x^{i+1}P^{(n-i-1)}(1/x)$ has real zeros $\Rightarrow Q^{(i-1)}(x)$ has real zeros. But $Q^{(i-1)}(x) = \frac{n!}{2} (a_{i+1} + 2a_ix + a_{i-1}x^2)$ $\Rightarrow a_i^2 \ge a_{i-1}a_{i+1}$. \Box Let $P(x) = \sum a_i x^i$ have only nonpositive real zeros. Let

 $i = \mathbf{mode}(\mathbf{P})$ if $a_i = \max a_j$.

 $(\text{If } a_i = a_{i+1} = \max a_j, \text{ let mode}(P) = i + \frac{1}{2}.)$

Theorem (J. N. Darroch, 1964):

$$\left|\frac{P'(1)}{P(1)} - \operatorname{mode}(P)\right| < 1.$$

Example. Hermite polynomials:

$$H_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k n! (2x)^{n-2k}}{k! (n-2k)!}$$

$$H_n(x) = -e^{x^2} \frac{d}{dx} \left(e^{-x^2} H_{n-1}(x) \right)$$

By induction, $H_{n-1}(x)$ has n-1 real zeros. Since

$$e^{-x^2}H_{n-1}(x) \to 0 \text{ as } x \to \pm \infty,$$

it follow that $H_n(x)$ has n real zeros interlaced by the zeros of $H_{n-1}(x)$.

Example (Heilmann-Lieb, 1972). Let G be a graph with t_i *i*-sets of edges with no vertex in common (**matching** of size *i*). Then $\sum_i t_i x^i$ has only real zeros.

 $3x^3 + 11x^2 + 7x + 1$

Let

 $T(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{R}[x].$ Set $a_k = 0$ for k < 0 or k > n. Define $A_T = [a_{j-i}]_{i,j \ge 1},$

an infinite **Toeplitz matrix**.

Theorem (Aissen-Schoenberg-Whitney, 1952) *TFAE:*

- Every minor of A_T is ≥ 0 , i.e., A_T is totally nonnegative.
- Every zero of T(x) is real and ≤ 0 .

Gives **infinitely** many conditions, even for $ax^2 + bx + c$. **Culture:** Edrei-Thoma generalization (conjectured by Schoenberg). Let $T(x) = 1 + a_1x + \cdots \in \mathbb{R}[[x]]$. As before, let

$$\mathbf{A}_{\mathbf{T}} = \left[a_{j-i}\right]_{i,j\geq 1}.$$

TFAE:

• Every minor of A_T is nonnegative.

•
$$T(x) = e^{\gamma x} \frac{\prod_i (1 + r_i x)}{\prod_j (1 - s_j x)}$$
, where
 $\gamma, r_i, s_j \ge 0, \quad \sum r_i + \sum s_j < \infty$

$$T(x) = e^{\gamma x} \frac{\prod_i (1 + r_i x)}{\prod_j (1 - s_j x)}$$
 Note:

• A_T easily seen to be t.n. for $T(x) = 1 + ax, \ a \ge 0, \ \text{or } T(x) = \frac{1}{1 - bx}, \ b \ge 0.$ • $A, B \text{ t.n.} \Rightarrow AB \text{ t.n.}$ (by Binet-Cauchy) • $A_{TU} = A_T A_U$ • $e^{\gamma x} = \lim_{n \to \infty} \left(1 + \frac{\gamma x}{n}\right)^n$ **Connection with** S_{∞} (Thoma, Vershik, Kerov, et al). Let $\lambda^n \vdash n$ and $\tilde{\chi}^{\lambda^n}$ = normalized irred. character of \mathfrak{S}_n Then $\lim_{n\to\infty} \tilde{\chi}^{\lambda^n}$ exists if and only if $r_i = \lim_{n\to\infty} \lambda_i^n/n$ $s_j = \lim_{n\to\infty} (\lambda^n)'_j/n$

exist.

An application of A-S-W:

Let P be a finite poset. Let c_i be the number of *i*-element chains of P.

Chain polynomial: $C_P(x) = \sum c_i x^i$

Theorem (Gasharov (essentially), Skandera) Let P have no induced $\mathbf{3} + \mathbf{1}$. Then $C_P(x)$ has only real zeros.

Proof of Gasharov based on combinatorial interpretation of minors of A_C . **Special case:** *P* is a **unit interval order** or **semiorder**, i.e., a set of real numbers with

Same as no induced 3 + 1 or 2 + 2.

For any poset, define the **antiadjacency matrix** N_P by

$$(N_P)_{st} = \begin{cases} 0, \text{ if } s < t \\ 1, \text{ otherwise.} \end{cases}$$

Facts.

- $\det(I + xN_P) = C_P(x)$
- P can be ordered so that N_P is totally nonnegative $\Leftrightarrow P$ is a semiorder.
- (Gantmacher-Krein) Eigenvalues of t.n. matrices are real.

Corollary. If P is a semiorder, then $C_P(x)$ has only real zeros.

Conjecture (S.-Stembridge) (implies Gasharov-Skandera theorem) Let P be a (3 + 1)-avoiding poset. Define

$$X_P = \sum_{\substack{f: P \to \mathbb{P} \\ s \parallel t \Rightarrow f(s) \neq f(t)}} \left(\prod_{t \in P} x_{f(t)} \right),$$

the "chromatic symmetric function" of the incomparability graph of P. Then X_P is an *e*-positive symmetric function.

Above conjecture, in the special case of semiorders, follows from:

Conjecture (Stembridge) Monomial immanants of Jacobi-Trudi matrices are *s*-positive. **Rephrasing of A-S-W theorem.** Let $P(x) \in \mathbb{R}[x], P(0) = 1$. Define

$$F_P(\boldsymbol{x}) = P(x_1)P(x_2)\cdots,$$

a symmetric formal series in $\boldsymbol{x} = (x_1, x_2, \ldots)$. TFAE:

- Every zero of P(x) is real and < 0.
- $F_P(\boldsymbol{x})$ is **s-positive**, i.e., a nonnegative linear combination of Schur functions s_{λ} .
- $F_P(\boldsymbol{x})$ is **e-positive**, i.e., a nonnegative linear combination of elementary symmetric functions e_{λ} .

Eulerian polynomial:

$$\boldsymbol{A_n(\boldsymbol{x})} = \sum_{w \in \mathfrak{S}_n} x^{\operatorname{des}(w)+1},$$

where

 $des(w) = \#\{i : w(i) > w(i+1)\}.$ E.g., des(4175236) = 3.

Euler:
$$\sum_{j\geq 0} j^n x^j = \frac{A_n(x)}{(1-x)^{n+1}}.$$

Theorem (Harper). $A_n(x)$ has only real zeros.

Example.

$$P(x) = \frac{A_5(x)}{x} = 1 + 26x + 66x^2 + 26x^3 + x^4$$

$$F_P = 1 + 26s_1 + (66s_2 + 610s_{11}) + (26s_3 + 1690s_{21} + 14170s_{111}) + \cdots$$

$$= 1 + 26e_1 + (544e_2 + 66e_{11}) + (12506e_3 + 1638e_{21} + 26e_{111}) + \cdots$$

Problem. (a) Let $P(x) = A_n(x)/x$. Find a combinatorial interpretation for the coefficients of the expansion of $F_P(x)$ in terms of s_{λ} 's or e_{λ} 's, thereby showing they are nonnegative.

(b) Generalize to other polynomials P(x).

Let P be a partial ordering of $1, \ldots, n$. Let

$$\mathcal{L}_{P} = \{ w = w_{1} \cdots w_{n} \in \mathfrak{S}_{n} :$$

$$i \stackrel{P}{<} j \Rightarrow w^{-1}(i) < w^{-1}(j)$$
(i.e., *i* precedes *j* in *w*) \}.

$$W_P(x) = \sum_{w \in \mathcal{L}_P} x^{\operatorname{des}(w)}.$$

Note. P = n-element antichain \Rightarrow $\mathcal{L}_P = \mathfrak{S}_n$ and $W_P(x) = A_n(x)/x$.

w	$\operatorname{des}(w)$
1423	1
4123	1
1432	2
4132	2
1243	1

 $W_P(x) = 3x + 2x^2$: all zeros real!

Poset Conjecture (Neggers-S, c. 1970) For any poset P on $1, \ldots, n$, all zeros of $W_P(x)$ are real. (True for $|P| \leq 7$ and naturally labelled P with |P| = 8.)

Let Q be a finite poset.

chain polynomial:
$$C_Q(x) = \sum_{\sigma} x^{\#\sigma}$$
,

where σ ranges over all chains of Q.

Special case (open). Let L be a finite distributive lattice (a collection of sets closed under \cup and \cap , ordered by inclusion). Then all zeros of $C_L(x)$ are real.

$$C_L(x) = (1 + 6x + 10x^2 + 5x^3)(1 + x)^2$$

Also open: All zeros of $C_L(x)$ are real if L is a finite **modular** lattice.

Example. If A is a (real) symmetric matrix, then every zero of det(I + xA) is real.

Corollary. Let G be a graph. Let $a_i(G)$ be the number of **rooted** spanning forests with i edges. Then $\sum a_i(G)x^i$ has only real zeros.

Proof. Define the Laplacian matrix L(G), rows and columns indexed by vertex set V(G), by:

 $L(G)_{uv} = -\#(\text{edges between } u \text{ and } v), u \neq v$ $L(G)_{uu} = \deg(u).$

$$L(G) = \begin{bmatrix} 3 & -3 & 0 \\ -3 & 4 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

 $\det(I + xL(G)) = 1 + 8x + 9x^2$

Matrix-Tree Theorem \Rightarrow $\det(I + xL(G)) = \sum a_i(G)x^i. \square$

Note. For **unrooted** spanning forests, corresponding result is **false**. I.e, if f_i is the number of *i*-edge spanning forests of *G*, then $\sum f_i x^i$ need not have only real zeros. E.g., $G = K_3$, $\sum f_i x^i =$ $3x^2 + 3x + 1$. A-S-W gives **infinitely** many inequalities for real zeros. Are there finitely many inequalities?

Example. $x^2 + bx + c$: all zeros real $\Leftrightarrow b^2 \ge 4c$.

Sturm chains. Let $f(x) \in \mathbb{R}[x]$ have positive leading coefficient. Apply Euclidean algorithm to f(x) and f'(x):

$$f(x) = q_1(x)f'(x) + r_1(x) f'(x) = q_2(x)r_1(x) + r_2(x) \dots$$

$$\begin{aligned} r_{k-2}(x) &= q_k(x)r_{k-1}(x) + r_k(x) \\ r_{k-1}(x) &= q_{k+1}(x)r_k(x) \end{aligned}$$

Theorem. f(x) has only real zeros $\Leftrightarrow deg(r_i) = deg(f) - i - 1$ and the leading coefficients of $r_1(x), \ldots, r_k(x)$ have sign sequence $-++--++\cdots$. **Theorem** (source?). Let

$$\mathbf{V}(\mathbf{y_1},\ldots,\mathbf{y_k}) = \prod_{1 \le i < j \le k} (y_i - y_j),$$

the Vandermonde product. Let

$$f(x) = \prod_{i=1}^{n} (x - \theta_i).$$

All zeros of f(x) are real if and only if

$$D_k(f) := \sum_{i_1 < \dots < i_k} V(\theta_{i_1}, \dots, \theta_{i_k})^2 \ge 0,$$

 $2 \le k \le n.$

$$D_k(f) = \sum_{i_1 < \dots < i_k} V(\theta_{i_1}, \dots, \theta_{i_k})^2$$

- $D_k(f)$ is a polynomial in the coefficients of f
- n-1 polynomial inequalities
- $D_n(f) = \operatorname{disc}(f)$
- Condition clearly necessary

Example. $f(x) = x^3 + bx^2 + cx + d$ has real zeros \Leftrightarrow

$$\operatorname{disc}(f) \ge 0$$
$$b^2 \ge 3c.$$

Distribution of real zeros (M. Kac, A. Edelman, *et al.*). Let the coefficients of $a_n x^n + \cdots + a_1 x + a_0$ be independent standard normals.

• Density of expected number of real zeros at $t \in \mathbb{R}$:

$$\rho_n(t) = \frac{1}{\pi} \sqrt{\frac{1}{(t^2 - 1)^2} - \frac{(n+1)t^{2n}}{(t^{2n+2} - 1)^2}}.$$

Hence zeros are concentrated near ± 1 .

• Expected number of real zeros as $n \to \infty$:

$$E_n = \frac{2}{\pi} \log(n) + C + \frac{2}{n\pi} + O(1/n^2),$$

where

$$C = 0.6257358072\cdots$$
.

• Prob(all zeros real) = complicated integral

Suppose the coefficients a_i are independent normals with mean 0 and variance $\binom{n}{i}$. Now

$$E_n = \sqrt{n}.$$