POLYNOMIALS WITH
 REAL ZEROS

Richard P. Stanley
Department of Mathematics
M.I.T. 2-375
Cambridge, MA 02139
rstan@math.mit.edu
http://www-math.mit.edu/~rstan

Transparencies available at:

http://www-math.mit.edu/~rstan/trans.html

Rolle's theorem. If f is continuous on $[a, b]$ and differentiable on (a, b), and $f(a)=f(b)=0$, then there exists $a<c<b$ such that $f^{\prime}(c)=0$.

Corollary. If $P(x) \in \mathbb{R}[x]$ and every zero of $P(x)$ is real, then every zero of $P^{\prime}(x)$ is real.

Let $P(x)=$
$a_{n} x^{n}+\cdots+\binom{n}{2} a_{2} x^{2}+\binom{n}{1} a_{1} x+a_{0} \in \mathbb{R}[x]$.
Theorem (Newton). If all zeros of $P(x)$ are real, then

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}, \quad 1 \leq i \leq n-1 .
$$

Proof. $P^{(n-i-1)}(x)$ has real zeros

$$
\begin{aligned}
& \Rightarrow Q(x):=x^{i+1} P^{(n-i-1)}(1 / x) \text { has real zeros } \\
& \quad \Rightarrow Q^{(i-1)}(x) \text { has real zeros. }
\end{aligned}
$$

$$
\operatorname{But} Q^{(i-1)}(x)=\frac{n!}{2}\left(a_{i+1}+2 a_{i} x+a_{i-1} x^{2}\right)
$$

$$
\Rightarrow a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

Let $P(x)=\sum a_{i} x^{i}$ have only nonpositive real zeros. Let

$$
i=\operatorname{mode}(\mathbb{P}) \text { if } a_{i}=\max a_{j}
$$

(If $a_{i}=a_{i+1}=\max a_{j}$, let $\operatorname{mode}(P)=$ $i+\frac{1}{2}$.)

Theorem (J. N. Darroch, 1964):

$$
\left|\frac{P^{\prime}(1)}{P(1)}-\operatorname{mode}(P)\right|<1
$$

Example.

Hermite polynomials:

$$
\begin{aligned}
H_{n}(x) & =\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{(-1)^{k} n!(2 x)^{n-2 k}}{k!(n-2 k)!} \\
H_{n}(x) & =-e^{x^{2}} \frac{d}{d x}\left(e^{-x^{2}} H_{n-1}(x)\right)
\end{aligned}
$$

By induction, $H_{n-1}(x)$ has $n-1$ real zeros. Since

$$
e^{-x^{2}} H_{n-1}(x) \rightarrow 0 \text { as } x \rightarrow \pm \infty
$$

it follow that $H_{n}(x)$ has n real zeros interlaced by the zeros of $H_{n-1}(x)$.

Example (Heilmann-Lieb, 1972). Let G be a graph with $t_{i} i$-sets of edges with no vertex in common (matching of size i). Then $\sum_{i} t_{i} x^{i}$ has only real zeros.

$$
3 x^{3}+11 x^{2}+7 x+1
$$

Let
$T(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{R}[x]$.
Set $a_{k}=0$ for $k<0$ or $k>n$. Define

$$
\boldsymbol{A}_{\boldsymbol{T}}=\left[a_{j-i}\right]_{i, j \geq 1}
$$

an infinite Toeplitz matrix.
Theorem (Aissen-Schoenberg-Whitney, 1952) TFAE:

- Every minor of A_{T} is ≥ 0, i.e., A_{T} is totally nonnegative.
- Every zero of $T(x)$ is real and ≤ 0.

Gives infinitely many conditions, even for $a x^{2}+b x+c$.

Culture: Edrei-Thoma generalization (conjectured by Schoenberg). Let $T(x)=1+a_{1} x+\cdots \in \mathbb{R}[[x]]$. As before, let

$$
\boldsymbol{A}_{\boldsymbol{T}}=\left[a_{j-i}\right]_{i, j \geq 1}
$$

TFAE:

- Every minor of A_{T} is nonnegative.
- $T(x)=e^{\gamma x} \frac{\prod_{i}\left(1+r_{i} x\right)}{\prod_{j}\left(1-s_{j} x\right)}$, where
$\gamma, r_{i}, s_{j} \geq 0, \sum r_{i}+\sum s_{j}<\infty$.

$$
T(x)=e^{\gamma x} \frac{\prod_{i}\left(1+r_{i} x\right)}{\prod_{j}\left(1-s_{j} x\right)}
$$

Note:

- A_{T} easily seen to be t.n. for

$$
\begin{aligned}
& T(x)=1+a x, a \geq 0, \text { or } T(x)=\frac{1}{1-b x}, b \geq 0 . \\
& \text { - } A, B \text { t.n. } \Rightarrow A B \text { t.n. (by Binet-Cauchy) } \\
& \text { - } A_{T U}=A_{T} A_{U} \\
& \text { - } e^{\gamma x}=\lim _{n \rightarrow \infty}\left(1+\frac{\gamma x}{n}\right)^{n}
\end{aligned}
$$

Connection with S_{∞} (Thoma, Vershik, Kerov, et al). Let $\lambda^{n} \vdash n$ and $\tilde{\chi}^{\lambda^{n}}=$ normalized irred. character of \mathfrak{S}_{n} Then $\lim _{n \rightarrow \infty} \tilde{\chi}^{\lambda^{n}}$ exists if and only if

$$
\begin{aligned}
r_{i} & =\lim _{n \rightarrow \infty} \lambda_{i}^{n} / n \\
s_{j} & =\lim _{n \rightarrow \infty}\left(\lambda^{n}\right)_{j}^{\prime} / n
\end{aligned}
$$

exist.

An application of A-S-W:

Let P be a finite poset. Let $\boldsymbol{c}_{\boldsymbol{i}}$ be the number of i-element chains of P.

$$
\begin{aligned}
& \mathrm{c}_{0}=1 \\
& \mathrm{c}_{1}=5 \\
& \mathrm{c}_{2}=5 \\
& \mathrm{c}_{3}=1
\end{aligned}
$$

Chain polynomial: $\boldsymbol{C}_{\boldsymbol{P}}(\boldsymbol{x})=\sum c_{i} x^{i}$

Theorem (Gasharov (essentially), Skandera) Let P have no induced $\mathbf{3 + 1}$. Then $C_{P}(x)$ has only real zeros.

bad

good
Proof of Gasharov based on combinatorial interpretation of minors of A_{C}.

Special case: P is a unit interval order or semiorder, i.e., a set of real numbers with

$$
u \stackrel{P}{<} v \Leftrightarrow \stackrel{\mathbb{R}}{<} v-1
$$

Same as no induced $\mathbf{3 + 1}$ or $\mathbf{2 + 2}$.

For any poset, define the antiadjacency matrix N_{P} by
$\left(\boldsymbol{N}_{\boldsymbol{P}}\right)_{s t}=\left\{\begin{array}{l}0, \text { if } s<t \\ 1, \text { otherwise } .\end{array}\right.$

Facts.

- $\operatorname{det}\left(I+x N_{P}\right)=C_{P}(x)$
- P can be ordered so that N_{P} is totally nonnegative $\Leftrightarrow P$ is a semiorder.
- (Gantmacher-Krein) Eigenvalues of t.n. matrices are real.

Corollary. If P is a semiorder, then
$C_{P}(x)$ has only real zeros.

Conjecture (S.-Stembridge) (implies

 Gasharov-Skandera theorem) Let P be a $(\mathbf{3}+\mathbf{1})$-avoiding poset. Define$$
X_{P}=\sum_{\substack{f: P \rightarrow \mathbb{P} \\ s \| t \Rightarrow f(s) \neq f(t)}}\left(\prod_{t \in P} x_{f(t)}\right)
$$

the "chromatic symmetric function" of the incomparability graph of P. Then X_{P} is an e-positive symmetric function.

Above conjecture, in the special case of semiorders, follows from:

Conjecture (Stembridge) Monomial immanants of Jacobi-Trudi matrices are s-positive.

Rephrasing of A-S-W theorem.
Let $P(x) \in \mathbb{R}[x], P(0)=1$. Define

$$
F_{P}(\boldsymbol{x})=P\left(x_{1}\right) P\left(x_{2}\right) \cdots,
$$

a symmetric formal series in $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots\right)$. TFAE:

- Every zero of $P(x)$ is real and <0.
- $F_{P}(\boldsymbol{x})$ is s-positive, i.e., a nonnegative linear combination of Schur functions s_{λ}.
- $F_{P}(\boldsymbol{x})$ is e-positive, i.e., a nonnegative linear combination of elementary symmetric functions e_{λ}.

Eulerian polynomial:

$$
\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{x})=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)+1}
$$

where
$\operatorname{des}(\mathbf{w})=\#\{i: w(i)>w(i+1)\}$.
E.g., $\operatorname{des}(\mathbf{4 1 7 5 2 3 6})=3$.

Euler: $\sum_{j \geq 0} j^{n} x^{j}=\frac{A_{n}(x)}{(1-x)^{n+1}}$.
Theorem (Harper). $A_{n}(x)$ has only real zeros.

Example.

$$
\begin{aligned}
P(x)= & \frac{A_{5}(x)}{x}=1+26 x+66 x^{2}+26 x^{3}+x^{4} \\
F_{P}= & 1+26 s_{1}+\left(66 s_{2}+610 s_{11}\right) \\
& +\left(26 s_{3}+1690 s_{21}+14170 s_{111}\right)+\cdots \\
= & 1+26 e_{1}+\left(544 e_{2}+66 e_{11}\right) \\
& +\left(12506 e_{3}+1638 e_{21}+26 e_{111}\right)+\cdots
\end{aligned}
$$

Problem. (a) Let $P(x)=A_{n}(x) / x$. Find a combinatorial interpretation for the coefficients of the expansion of $F_{P}(\boldsymbol{x})$ in terms of s_{λ} 's or e_{λ} 's, thereby showing they are nonnegative.
(b) Generalize to other polynomials $P(x)$.

Let P be a partial ordering of $1, \ldots, n$. Let

$$
\begin{gathered}
\mathcal{L}_{P}=\left\{w=w_{1} \cdots w_{n} \in \mathfrak{S}_{n}:\right. \\
i<j \Rightarrow w^{-1}(i)<w^{-1}(j) \\
\text { (i.e., } i \text { precedes } j \text { in } w)\} . \\
W_{P}(x)=\sum_{w \in \mathcal{L}_{P}} x^{\operatorname{des}(w)} .
\end{gathered}
$$

Note. $P=n$-element antichain \Rightarrow $\mathcal{L}_{P}=\mathfrak{S}_{n}$ and $W_{P}(x)=A_{n}(x) / x$.

w	$\operatorname{des}(w)$
1423	1
4123	1
1432	2
4132	2
1243	1

$W_{P}(x)=3 x+2 x^{2}: \quad$ all zeros real!

Poset Conjecture (Neggers-S, c. 1970)

For any poset P on $1, \ldots, n$, all zeros of $W_{P}(x)$ are real. (True for $|P| \leq 7$ and naturally labelled P with $|P|=8$.)

Let Q be a finite poset.

chain polynomial: $C_{Q}(x)=\sum_{\sigma} x^{\# \sigma}$, where σ ranges over all chains of Q.

Special case (open). Let L be a finite distributive lattice (a collection of sets closed under \cup and \cap, ordered by inclusion). Then all zeros of $C_{L}(x)$ are real.

$$
C_{L}(x)=\left(1+6 x+10 x^{2}+5 x^{3}\right)(1+x)^{2}
$$

Also open: All zeros of $C_{L}(x)$ are real if L is a finite modular lattice.

Example. If A is a (real) symmetric matrix, then every zero of $\operatorname{det}(I+x A)$ is real.

Corollary. Let G be a graph. Let $a_{i}(G)$ be the number of rooted spanning forests with i edges. Then $\sum a_{i}(G) x^{i}$ has only real zeros.

Proof. Define the Laplacian ma-

 trix $L(G)$, rows and columns indexed by vertex set $V(G)$, by:$L(G)_{u v}=-\#($ edges between u and $v), u \neq v$ $L(G)_{u u}=\operatorname{deg}(u)$.

$$
L(G)=\left[\begin{array}{rrr}
3 & -3 & 0 \\
-3 & 4 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

$$
\operatorname{det}(I+x L(G))=1+8 x+9 x^{2}
$$

Matrix-Tree Theorem \Rightarrow

$$
\operatorname{det}(I+x L(G))=\sum a_{i}(G) x^{i}
$$

Note. For unrooted spanning forests, corresponding result is false. I.e, if f_{i} is the number of i-edge spanning forests of G, then $\sum f_{i} x^{i}$ need not have only real zeros. E.g., $G=K_{3}, \sum f_{i} x^{i}=$ $3 x^{2}+3 x+1$.

A-S-W gives infinitely many inequalities for real zeros. Are there finitely many inequalities?

Example. $x^{2}+b x+c$: all zeros real $\Leftrightarrow b^{2} \geq 4$.

Storm chains. Let $f(x) \in \mathbb{R}[x]$ have positive leading coefficient. Apply Euclidean algorithm to $f(x)$ and $f^{\prime}(x)$:

$$
\begin{aligned}
f(x) & =q_{1}(x) f^{\prime}(x)+r_{1}(x) \\
f^{\prime}(x) & =q_{2}(x) r_{1}(x)+r_{2}(x) \\
& \cdots \\
r_{k-2}(x) & =q_{k}(x) r_{k-1}(x)+r_{k}(x) \\
r_{k-1}(x) & =q_{k+1}(x) r_{k}(x)
\end{aligned}
$$

Theorem. $f(x)$ has only real zeros
$\Leftrightarrow \operatorname{deg}\left(r_{i}\right)=\operatorname{deg}(f)-i-1$ and the leading coefficients of $r_{1}(x), \ldots, r_{k}(x)$ have sign sequence $--++--++\cdots$.

Theorem (source?). Let

$$
\boldsymbol{V}\left(\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}\right)=\prod_{1 \leq i<j \leq k}\left(y_{i}-y_{j}\right)
$$

the Vandermonde product. Let

$$
f(x)=\prod_{i=1}^{n}\left(x-\theta_{i}\right)
$$

All zeros of $f(x)$ are real if and only if
$D_{k}(f):=\sum_{i_{1}<\cdots<i_{k}} V\left(\theta_{i_{1}}, \ldots, \theta_{i_{k}}\right)^{2} \geq 0$,
$2 \leq k \leq n$.

$$
D_{k}(f)=\sum_{i_{1}<\cdots<i_{k}} V\left(\theta_{i_{1}}, \ldots, \theta_{i_{k}}\right)^{2}
$$

- $D_{k}(f)$ is a polynomial in the coefficients of f
- $n-1$ polynomial inequalities
- $D_{n}(f)=\operatorname{disc}(f)$
- Condition clearly necessary

Example. $f(x)=x^{3}+b x^{2}+c x+d$ has real zeros \Leftrightarrow

$$
\begin{aligned}
\operatorname{disc}(f) & \geq 0 \\
b^{2} & \geq 3 c
\end{aligned}
$$

Distribution of real zeros (M.

 Kac, A. Edelman, et al.). Let the coefficients of $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be independent standard normals.- Density of expected number of real zeros at $t \in \mathbb{R}$:

$$
\rho_{n}(t)=\frac{1}{\pi} \sqrt{\frac{1}{\left(t^{2}-1\right)^{2}}-\frac{(n+1) t^{2 n}}{\left(t^{2 n+2}-1\right)^{2}}}
$$

Hence zeros are concentrated near ± 1.

- Expected number of real zeros as $n \rightarrow$ ∞ :

$$
E_{n}=\frac{2}{\pi} \log (n)+C+\frac{2}{n \pi}+O\left(1 / n^{2}\right)
$$

where

$$
C=0.6257358072 \cdots .
$$

- $\operatorname{Prob}($ all zeros real $)=$ complicated integral

Suppose the coefficients a_{i} are independent normals with mean 0 and variance $\binom{n}{i}$. Now

$$
E_{n}=\sqrt{n}
$$

