Two Poset Polytopes

Slides available at: www-math.mit.edu/~rstan/transparencies/polytopes.pdf

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The order polytope

P: *p*-element poset, say
$$P = \{t_1, \ldots, t_p\}$$

Definition. The order polytope $\mathcal{O}(\mathbf{P}) \subset \mathbb{R}^p$ is defined by

$$\mathcal{O}(P) = \{ (x_1, \ldots, x_p) \in \mathbb{R}^p : 0 \le x_i \le 1, \ t_i \le_P \ t_j \Rightarrow x_i \le x_j \}.$$

The order polytope

P: *p*-element poset, say
$$P = \{t_1, \ldots, t_p\}$$

Definition. The order polytope $\mathcal{O}(P) \subset \mathbb{R}^p$ is defined by

$$\mathcal{O}(P) = \{ (x_1, \ldots, x_p) \in \mathbb{R}^p : 0 \le x_i \le 1, \ t_i \le p \ t_j \Rightarrow x_i \le x_j \}.$$

Example. (a) If P is an antichain, then $\mathcal{O}(P)$ is the p-dimensional unit cube $[0,1]^p$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

(b) If P is a chain $t_1 < \cdots < t_p$, then $\mathcal{O}(P)$ is the p-dimensional simplex $0 \le x_1 \le \cdots \le x_p \le 1$.

The order polytope

P: *p*-element poset, say
$$P = \{t_1, \ldots, t_p\}$$

Definition. The order polytope $\mathcal{O}(P) \subset \mathbb{R}^p$ is defined by

$$\mathcal{O}(P) = \{ (x_1, \ldots, x_p) \in \mathbb{R}^p : 0 \le x_i \le 1, \ t_i \le_P t_j \Rightarrow x_i \le x_j \}.$$

Example. (a) If P is an antichain, then $\mathcal{O}(P)$ is the p-dimensional unit cube $[0,1]^p$.

(b) If P is a chain $t_1 < \cdots < t_p$, then $\mathcal{O}(P)$ is the p-dimensional simplex $0 \le x_1 \le \cdots \le x_p \le 1$.

dim $\mathcal{O}(P) = p$, since if t_{i_1}, \ldots, t_{i_p} is a linear extension of P, then $\mathcal{O}(P)$ contains the p-dimensional simplex $0 \le x_{i_1} \le \cdots \le x_{i_p} \le 1$ (of volume 1/p!).

convex hull conv(X) of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

half-space in \mathbb{R}^p : a subset H of \mathbb{R}^p of the form $\{x \in \mathbb{R}^p : x \cdot v \leq \alpha\}$ for some fixed $0 \neq v \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}$.

convex hull conv(X) of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X

half-space in \mathbb{R}^p : a subset H of \mathbb{R}^p of the form $\{x \in \mathbb{R}^p : x \cdot v \leq \alpha\}$ for some fixed $0 \neq v \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

convex hull conv(X) of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X

half-space in \mathbb{R}^p : a subset H of \mathbb{R}^p of the form $\{x \in \mathbb{R}^p : x \cdot v \leq \alpha\}$ for some fixed $0 \neq v \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• \mathcal{P} is a bounded intersection of half-spaces.

convex hull conv(X) of a subset X of \mathbb{R}^p : intersection of all convex sets containing X

half-space in \mathbb{R}^p : a subset H of \mathbb{R}^p of the form $\{x \in \mathbb{R}^p : x \cdot v \leq \alpha\}$ for some fixed $0 \neq v \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- $\bullet \ \mathcal{P}$ is a bounded intersection of half-spaces.
- $\mathcal{P} = \operatorname{conv}(X)$ for some finite $X \subset \mathbb{R}^p$.

convex hull conv(X) of a subset X of \mathbb{R}^p : intersection of all convex sets containing X

half-space in \mathbb{R}^p : a subset H of \mathbb{R}^p of the form $\{x \in \mathbb{R}^p : x \cdot v \leq \alpha\}$ for some fixed $0 \neq v \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• \mathcal{P} is a bounded intersection of half-spaces.

• $\mathcal{P} = \operatorname{conv}(X)$ for some finite $X \subset \mathbb{R}^p$.

Such a set \mathcal{P} is a **convex polytope**.

Vertices

A vertex v of a convex polytope (or even convex set) $\mathcal P$ is a point in $\mathcal P$ such that

$$v = \lambda x + (1 - \lambda)y, x, y \in \mathcal{P}, 0 \le \lambda \le 1 \Rightarrow x = y.$$

Vertices

A vertex v of a convex polytope (or even convex set) \mathcal{P} is a point in \mathcal{P} such that

$$v = \lambda x + (1 - \lambda)y, x, y \in \mathcal{P}, 0 \le \lambda \le 1 \Rightarrow x = y.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Equivalently, let $V = \bigcap_{Y: \mathcal{P}=conv(Y)} Y$. Then V is the set of vertices of \mathcal{P} (necessarily finite).

Vertices

A vertex v of a convex polytope (or even convex set) \mathcal{P} is a point in \mathcal{P} such that

$$v = \lambda x + (1 - \lambda)y, x, y \in \mathcal{P}, 0 \le \lambda \le 1 \Rightarrow x = y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Equivalently, let $V = \bigcap_{Y: \mathcal{P}=conv(Y)} Y$. Then V is the set of vertices of \mathcal{P} (necessarily finite).

Equivalently, v is a vertex of \mathcal{P} if and only if there exists a half-space H such that $\{v\} = \mathcal{P} \cap H$.

Order ideals

An **order ideal** of a poset *P* is a set $I \subseteq P$ such that $t \in I$, $s < t \Rightarrow s \in I$.

Order ideals

An order ideal of a poset P is a set $I \subseteq P$ such that $t \in I$, $s < t \Rightarrow s \in I$.

Let $S \subseteq P = \{t_1, \ldots, t_p\}$. The characteristic vector χ_S of S is defined by $\chi_S = (x_1, x_2, \ldots, x_p)$ such that

$$x_i = \begin{cases} 0, & t_i \notin S \\ 1, & t_i \in S \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Write $\overline{\chi}_{S} = (1 - x_1, 1 - x_2, \dots, 1 - x_p).$

Order ideals

An order ideal of a poset P is a set $I \subseteq P$ such that $t \in I$, $s < t \Rightarrow s \in I$.

Let $S \subseteq P = \{t_1, \ldots, t_p\}$. The characteristic vector χ_S of S is defined by $\chi_S = (x_1, x_2, \ldots, x_p)$ such that

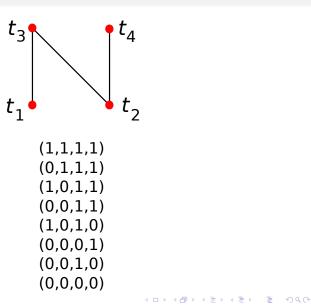
$$x_i = \begin{cases} 0, & t_i \notin S \\ 1, & t_i \in S. \end{cases}$$

Write $\overline{\chi}_{S} = (1 - x_1, 1 - x_2, \dots, 1 - x_p).$

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\overline{\chi}_I$, where I is an order ideal of P.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An example



Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\overline{\chi}_I$, where I is an order ideal of P.

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\overline{\chi}_I$, where I is an order ideal of P.

Proof. Clearly $\overline{\chi}_I \in \mathcal{O}(P)$, and $\overline{\chi}_I$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\overline{\chi}_I$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\overline{\chi}_I$, where I is an order ideal of P.

Proof. Clearly $\overline{\chi}_I \in \mathcal{O}(P)$, and $\overline{\chi}_I$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\overline{\chi}_I$.

Assume $v \in \mathcal{O}(P)$ is a vertex and $v \neq \overline{\chi}_I$ for some *I*.

Idea: show $v = \lambda x + (1 - \lambda)y$ for some $0 < \lambda < 1$ and $x, y \in \mathcal{O}(P)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\overline{\chi}_I$, where I is an order ideal of P.

Proof. Clearly $\overline{\chi}_I \in \mathcal{O}(P)$, and $\overline{\chi}_I$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\overline{\chi}_I$.

Assume $v \in \mathcal{O}(P)$ is a vertex and $v \neq \overline{\chi}_{I}$ for some *I*.

Idea: show $v = \lambda x + (1 - \lambda)y$ for some $0 < \lambda < 1$ and $x, y \in \mathcal{O}(P)$.

Let $v = (v_1, \ldots, v_p)$. Choose v_i so $0 < v_i < 1$ (exists since the only binary vectors in $\mathcal{O}(P)$ have the form $\overline{\chi}_I$). Choose $\epsilon > 0$ sufficiently small. Let v^- (respectively, v^+) be obtained from v by subtracting (respectively, adding) ϵ to each entry equal to v_i . Then $v^-, v^+ \in \mathcal{O}(P)$ and

$$v = \frac{1}{2}(v^{-} + v^{+}). \Box$$

Two remarks

Note. Can also prove the previous theorem by showing directly that every $v \in \mathcal{O}(P)$ is a convex combination of the $\overline{\chi}_I$'s (not difficult).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Two remarks

Note. Can also prove the previous theorem by showing directly that every $v \in \mathcal{O}(P)$ is a convex combination of the $\overline{\chi}_I$'s (not difficult).

Note. Entire facial structure of $\mathcal{O}(P)$ can be described, but omitted here.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

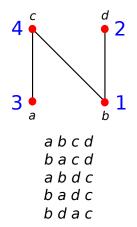
Linear extensions

 $\mathcal{L}(P)$: set of linear extensions $\sigma: P \to \{1, \dots, p\}$, i.e., σ is bijective and order-preserving.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 $e(P) \coloneqq #\mathcal{L}(P)$

An example (from before)



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let $\sigma \in \mathcal{L}(P)$, regarded as the permutation $t_{i_1}, t_{i_2}, \ldots, t_{i_p}$ of P (so $\sigma(t_{i_i}) = j$). Define

$$\mathcal{O}(\boldsymbol{\sigma}) = \{(x_1,\ldots,x_n) \in \mathbb{R}^p : 0 \leq x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_p} \leq 1\},\$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

a simplex of volume 1/p!.

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P) = \bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P) = \bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Corollary. The volume $vol(\mathcal{O}(P))$ of $\mathcal{O}(P)$ is equal to e(P)/p!.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P) = \bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Corollary. The volume $vol(\mathcal{O}(P))$ of $\mathcal{O}(P)$ is equal to e(P)/p!.

Proof of Corollary. $\mathcal{O}(P)$ is the union of e(p) simplices $\mathcal{O}(\sigma)$ with disjoint interiors and volume 1/p! each. \Box

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proof of decomposition theorem

The interior of the simplex $0 \le x_{i_1} \le x_{i_2} \le \cdots \le x_{i_p} \le 1$ is given by $0 < x_{i_1} < x_{i_2} < \cdots < x_{i_p} < 1$. Thus the interiors of the $\mathcal{O}(\sigma)$'s are disjoint, since a set of distinct real numbers has a unique ordering with respect to <. And clearly $\mathcal{O}(\sigma) \subseteq \mathcal{O}(P)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of decomposition theorem

The interior of the simplex $0 \le x_{i_1} \le x_{i_2} \le \cdots \le x_{i_p} \le 1$ is given by $0 < x_{i_1} < x_{i_2} < \cdots < x_{i_p} < 1$. Thus the interiors of the $\mathcal{O}(\sigma)$'s are disjoint, since a set of distinct real numbers has a unique ordering with respect to <. And clearly $\mathcal{O}(\sigma) \subseteq \mathcal{O}(P)$.

Now suppose that $(x_1, \ldots, x_p) \in \mathcal{O}(P)$. Define i_1, \ldots, i_p (not necessarily unique) by

$$x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_p}$$

and

$$t_{i_j} < t_{i_k} \text{ and } x_{i_j} = x_{i_k} \Longrightarrow j < k.$$

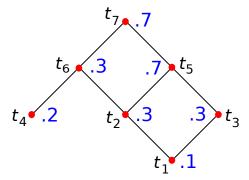
Then $t_{i_1}, t_{i_2}, \ldots, t_{i_p}$ is a linear extension σ of P, and $(x_1, \ldots, x_p) \in \mathcal{O}(P)$. \Box

An aside

Note. This decomposition of $\mathcal{O}(P)$ is actually a **triangulation**, i.e., the intersection of any two of the simplices is a common face (possibly empty) of both. (Easy to see.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

An example



Three "compatible" linear extensions:

Why volume 1/p!?

The simplices $0 \le x_{i_1} \le x_{i_2} \le \dots \le x_{i_p} \le 1$ all have the same volume (for any permutation i_1, \dots, i_p of $1, \dots, p$), since they differ only by a permutation of coordinates.

Why volume 1/p!?

The simplices $0 \le x_{i_1} \le x_{i_2} \le \dots \le x_{i_p} \le 1$ all have the same volume (for any permutation i_1, \dots, i_p of $1, \dots, p$), since they differ only by a permutation of coordinates.

Let *P* be a *p*-element **antichain**. Thus $\mathcal{L}(P) = \mathfrak{S}_p$ (all permutations of $1, \ldots, p$). Moreover, $\mathcal{O}(P)$ is a unit cube so has volume 1. By the decomposition theorem, it is a union of *p*! simplices $0 \le x_{i_1} \le \cdots \le x_{i_p} \le 1$, all with the same volume. Thus the volume of each simplex is 1/p!.

Ehrhart theory

 \mathcal{P} : a *d*-dimensional convex polytope in \mathbb{R}^p with integer vertices.

$$\mathbf{nP} = \{\mathbf{nx} : \mathbf{x} \in \mathcal{P}\}, \ \mathbf{n} \ge 1$$

 $int(\mathcal{P})$: interior of \mathcal{P}

Ehrhart theory

 \mathcal{P} : a *d*-dimensional convex polytope in \mathbb{R}^p with integer vertices.

$$\mathbf{nP} = \{\mathbf{nx} : \mathbf{x} \in \mathcal{P}\}, \ \mathbf{n} \ge 1$$

 $int(\mathcal{P})$: interior of \mathcal{P}

For $n \ge 1$, define

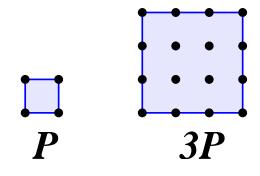
$$i(\mathcal{P}, n) = \#(n\mathcal{P} \bigcap \mathbb{Z}^p)$$

$$\overline{i}(\mathcal{P}, n) = \#(n \operatorname{int}(\mathcal{P}) \bigcap \mathbb{Z}^p).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $i(\mathcal{P}, n)$ is the **Ehrhart polynomial** of \mathcal{P} .

An example



$$i(\mathcal{P}, n) = (n+1)^2$$

 $\bar{i}(\mathcal{P}, n) = (n-1)^2 = i(\mathcal{P}, -n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

i(*P*, *n*) is a polynomial in *n* of degree *d* = dim *P* for *n* ≥ 1, and hence is defined for all *n* ∈ Z

i(*P*, *n*) is a polynomial in *n* of degree *d* = dim *P* for *n* ≥ 1, and hence is defined for all *n* ∈ Z

• $i(\mathcal{P},0) = 1$

i(*P*, *n*) is a polynomial in *n* of degree *d* = dim *P* for *n* ≥ 1, and hence is defined for all *n* ∈ Z

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- i(P, 0) = 1
- (Ehrhart's law of reciprocity) $\overline{i}(\mathcal{P}, n) = (-1)^d i(\mathcal{P}, -n)$

i(*P*, *n*) is a polynomial in *n* of degree *d* = dim *P* for *n* ≥ 1, and hence is defined for all *n* ∈ Z

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- i(P, 0) = 1
- (Ehrhart's law of reciprocity) $\overline{i}(\mathcal{P}, n) = (-1)^d i(\mathcal{P}, -n)$

Proofs: see e.g. EC1, §4.6.2, or Beck-Robins, *Computing the Continuous Discretely*.

The order polynomial

P: *p*-element poset

For $n \ge 1$, define the order polynomial $\Omega_P(n)$ of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The order polynomial

P: *p*-element poset

For $n \ge 1$, define the order polynomial $\Omega_P(n)$ of P by

$$\Omega_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s \leq_P t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t) \right\}.$$

$$\Omega_P(1) = 1$$

$$\Omega_P(2) = \# \text{ order ideals of } P$$

$$= \# \text{ vertices of } \mathcal{O}(P)$$

$$\Omega(p\text{-chain}, n) = \binom{n}{p} = \binom{n+p-1}{p}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\Omega(p-\text{antichain}, n) = n^p$

Strict order polynomial

For $n \ge 1$, define the **strict** order polynomial $\overline{\Omega_P(n)}$ of P by

$$\overline{\Omega}_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t) \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Strict order polynomial

For $n \ge 1$, define the strict order polynomial $\overline{\Omega}_{P}(n)$ of P by

$$\overline{\Omega}_P(n) = \# \left\{ f \colon P \to \{1, \ldots, n\} \mid s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t) \right\}.$$

 $\overline{\Omega}_P(1) = 0$ unless P is an antichain

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\Omega(p\text{-chain}, n) = \binom{n}{p}$$

 $\Omega(p-\text{antichain}, n) = n^p$

Theorem. $\Omega_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!. (Thus $\Omega_P(n)$ determines e(P).)

Theorem. $\Omega_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!. (Thus $\Omega_P(n)$ determines e(P).)

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proof. e_s : number of surjective order-preserving maps $P \rightarrow \{1, ..., s\}$ (so $e_s = 0$ if s > p).

Theorem. $\Omega_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!. (Thus $\Omega_P(n)$ determines e(P).)

Proof. e_s : number of surjective order-preserving maps $P \rightarrow \{1, ..., s\}$ (so $e_s = 0$ if s > p).

To obtain $f: P \to \{1, ..., n\}$ order-preserving, choose $1 \le s \le p$, then choose an *s*-element subset **S** of $\{1, ..., n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \to S$ in e_s ways.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $\Omega_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!. (Thus $\Omega_P(n)$ determines e(P).)

Proof. e_s : number of surjective order-preserving maps $P \rightarrow \{1, ..., s\}$ (so $e_s = 0$ if s > p).

To obtain $f: P \to \{1, ..., n\}$ order-preserving, choose $1 \le s \le p$, then choose an *s*-element subset **S** of $\{1, ..., n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \to S$ in e_s ways.

$$\Rightarrow \Omega_P(n) = \sum_{s=1}^p e_s\binom{n}{s}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $\Omega_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!. (Thus $\Omega_P(n)$ determines e(P).)

Proof. e_s : number of surjective order-preserving maps $P \rightarrow \{1, ..., s\}$ (so $e_s = 0$ if s > p).

To obtain $f: P \to \{1, ..., n\}$ order-preserving, choose $1 \le s \le p$, then choose an *s*-element subset **S** of $\{1, ..., n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \to S$ in e_s ways.

$$\Rightarrow \Omega_P(n) = \sum_{s=1}^p e_s\binom{n}{s}.$$

Now $\binom{n}{s}$ is a polynomial in *n* of degree *s* and leading coefficient 1/*s*!. Moreover, $e_p = e(P)$ (clear). The proof follows.

Polynomiality (cont.)

Similarly:

Theorem. $\overline{\Omega}_P(n)$ is a polynomial in n of degree p and leading coefficient e(P)/p!.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ehrhart polynomial of $\mathcal{O}(P)$

integer points in $n\mathcal{O}(P)$: integer solutions (a_1,\ldots,a_p) to

$$0 \le x_i \le n$$
, $t_i \le_P t_j \Rightarrow x_i \le_{\mathbb{R}} x_j$

Define $f(t_i) = a_i$. Thus

$$f: P \to \{0, 1, \ldots, n\}, \quad t_i \leq_P t_j \Rightarrow a_i \leq_{\mathbb{Z}} a_j,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

so $i(\mathcal{O}(P), n) = \Omega_P(n+1)$ (since $\#\{0, 1, ..., n\} = n+1$).

Order polynomial reciprocity

strict order-preserving map $f: P \to \mathbb{N}$: $s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t)$

Order polynomial reciprocity

strict order-preserving map $f: P \to \mathbb{N}$: $s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t)$

points (x_1, \ldots, x_p) in $int(\mathcal{O}(P))$:

$$0 < x_i < 1, \quad t_i <_P t_j \Rightarrow x_i < x_j$$

points (x_1, \ldots, x_p) in n int $(\mathcal{O}(P))$:

$$0 < x_i < n, \quad t_i <_P t_j \Rightarrow x_i < x_j \}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Order polynomial reciprocity

strict order-preserving map $f: P \to \mathbb{N}$: $s <_P t \Rightarrow f(s) <_{\mathbb{Z}} f(t)$

points (x_1, \ldots, x_p) in $int(\mathcal{O}(P))$:

 $0 < x_i < 1, \quad t_i <_P t_j \Rightarrow x_i < x_j$

points (x_1, \ldots, x_p) in n int $(\mathcal{O}(P))$:

$$0 < x_i < n, \quad t_i <_P t_j \Rightarrow x_i < x_j \}.$$

Thus $\overline{i}(\mathcal{O}(P), n)$ is the number of **strict** order-preserving maps $P \rightarrow \{1, \ldots, n-1\}$. Since $\Omega_P(n) = i(\mathcal{O}(P), n-1)$ and $\overline{i}(\mathcal{O}(P), n) = (-1)^p i(\mathcal{O}(P), -n)$, we get:

Corollary (reciprocity for order polynomials). $\overline{\Omega}_{P}(n) = (-1)^{p} \Omega(-n).$

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of *P*. Then

$$\Omega_P(0) = \Omega_P(-1) = \cdots = \Omega_P(-\ell) = 0.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of *P*. Then

$$\Omega_P(0) = \Omega_P(-1) = \cdots = \Omega_P(-\ell) = 0.$$

Proof. If $s_0 < s_1 < \cdots < s_m$ is a chain of length *m* and $f: P \rightarrow \{1, \dots, n\}$ is strictly order-preserving, then

$$f(s_0) < f(s_1) < \cdots < f(s_m).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thus n > m.

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of *P*. Then

$$\Omega_P(0) = \Omega_P(-1) = \cdots = \Omega_P(-\ell) = 0.$$

Proof. If $s_0 < s_1 < \cdots < s_m$ is a chain of length *m* and $f: P \rightarrow \{1, \dots, n\}$ is strictly order-preserving, then

$$f(s_0) < f(s_1) < \cdots < f(s_m).$$

Thus n > m. \Box

Many other interesting results on order polynomials, but no time here!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mixed volumes

convex body: a nonempty, compact, convex subset X of \mathbb{R}^p . (Given that X is convex, compact is the same as bounded.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Mixed volumes

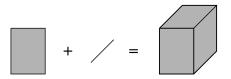
convex body: a nonempty, compact, convex subset X of \mathbb{R}^p . (Given that X is convex, compact is the same as bounded.)

Let $\alpha, \beta \ge 0$. The Minkowski sum $\alpha K + \beta L$ of two convex bodies K, L is given by

$$\alpha K + \beta L = \{ \alpha x + \beta y : x \in K, y \in L \}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An example



(up to translation)

Minkowski's theorem

K, L: convex bodies in \mathbb{R}^{p} $\alpha, \beta \geq 0$

Theorem (Minkowski). We have

$$\operatorname{vol}(\alpha K + \beta L) = \sum_{i=0}^{p} \binom{p}{i} V_{i}(K, L) \alpha^{p-i} \beta^{i},$$

for certain real numbers $V_i(K, L) \ge 0$, called the **mixed volumes** of K and L.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Minkowski's theorem

K, L: convex bodies in \mathbb{R}^p $\alpha, \beta \ge 0$

Theorem (Minkowski). We have

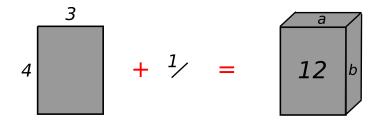
$$\operatorname{vol}(\alpha K + \beta L) = \sum_{i=0}^{p} \binom{p}{i} V_{i}(K, L) \alpha^{p-i} \beta^{i},$$

for certain real numbers $V_i(K, L) \ge 0$, called the **mixed volumes** of K and L.

Note. $V_0(K, L) = vol(K)$ (set $\alpha = 1, \beta = 0$) and $V_p(K, L) = vol(L)$ (set $\alpha = 0, \beta = 1$).

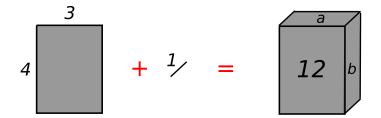
◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An example



$$a = 3/\sqrt{2}, \quad b = 4/\sqrt{2}$$

An example



$$a = 3/\sqrt{2}, \quad b = 4/\sqrt{2}$$

$$\operatorname{vol}(\alpha K + \beta L) = 12\alpha^{2} + 2\frac{\ell}{2\sqrt{2}}\alpha\beta$$
$$\Rightarrow V_{0}(K, L) = 12, \quad V_{1}(K, L) = \frac{7}{2\sqrt{2}}, \quad V_{2}(K, L) = 0$$

・ロト・日本・日本・日本・日本・日本

Unimodality and log-concavity

 a_0, a_1, \dots, a_n : sequence of **nonnegative** real numbers unimodal: $a_0 \le a_1 \le \dots \le a_j \ge a_{j+1} \ge \dots \ge a_n$ for some jlog-concave: $a_i^2 \ge a_{i-1}a_{i+1}, 1 \le i \le n-1$ no internal zeros: $i < j < k, a_i \ne 0, a_k \ne 0 \Rightarrow a_j \ne 0$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Unimodality and log-concavity

 a_0, a_1, \dots, a_n : sequence of **nonnegative** real numbers unimodal: $a_0 \le a_1 \le \dots \le a_j \ge a_{j+1} \ge \dots \ge a_n$ for some j**log-concave**: $a_i^2 \ge a_{i-1}a_{i+1}, \ 1 \le i \le n-1$ no internal zeros: $i < j < k, \ a_i \ne 0, a_k \ne 0 \Rightarrow a_j \ne 0$ Note. Log-concave and no internal zeros \Rightarrow unimodal.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Unimodality and log-concavity

 a_0, a_1, \dots, a_n : sequence of **nonnegative** real numbers unimodal: $a_0 \le a_1 \le \dots \le a_j \ge a_{j+1} \ge \dots \ge a_n$ for some j**log-concave**: $a_i^2 \ge a_{i-1}a_{i+1}, 1 \le i \le n-1$ no internal zeros: $i < j < k, a_i \ne 0, a_k \ne 0 \Rightarrow a_j \ne 0$ Note. Log-concave and no internal zeros \Rightarrow unimodal. **Proof.** Suppose a_0, a_1, \dots, a_n is not unimodal. Then for some i < j - 1, we have

$$a_i > a_{i+1} = a_{i+2} = \cdots = a_{j-1} < a_j.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If no internal zeros, then $0 = a_{i+1} > 0$. Then $a_{i+1}^2 < a_i a_{i+2}$, so the sequence is not log-concave. \Box

Height of an element in a linear extension

Let $t \in P$.

 $\sigma = s_1, \ldots, s_p$: linear extension of P

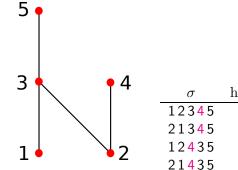
height of t in σ is k, if $s_k = t$. Denoted $ht_{\sigma}(t)$.

 $N_i = N_i(t)$: number of linear extensions σ of P for which $ht_{\sigma}(t) = i$. In other words

$$N_i = \#\{\sigma \in \mathcal{L}(P) : \sigma(t) = i\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

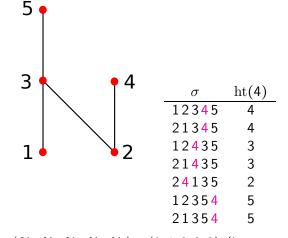
An example



 $\begin{array}{c|c} \sigma & \text{ht}(4) \\ \hline 12345 & 4 \\ 21345 & 4 \\ 12435 & 3 \\ 21435 & 3 \\ 24135 & 2 \\ 12354 & 5 \\ 21354 & 5 \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

An example



 \Rightarrow (N₁, N₂, N₃, N₄, N₅) = (0, 1, 2, 2, 2) (log-concave)

The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937–38, and **W. Fenchel**, 1936). *For any convex bodies* $K, L, \subset \mathbb{R}^p$, we have

 $V_i(K,L)^2 \ge V_{i-1}(K,L)V_{i+1}(K,L), \quad 1 \le i \le p-1.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

. Moreover, the sequence V_0, V_1, \ldots, V_p has no internal zeros.

The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937–38, and **W. Fenchel**, 1936). For any convex bodies $K, L, \subset \mathbb{R}^p$, we have

 $V_i(K,L)^2 \ge V_{i-1}(K,L)V_{i+1}(K,L), \quad 1 \le i \le p-1.$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

. Moreover, the sequence V_0, V_1, \ldots, V_p has no internal zeros.

Proof is difficult.

Chung-Fishburn-Graham conjecture

Theorem (conjecture of **Fan Chung**, **Peter Fishburn**, and **Ron Graham**, 1980) For any p-element poset P and $t \in P$, we have

$$N_i(t)^2 \ge N_{i-1}(t)N_{i+1}(t), \quad 2 \le i \le p-1.$$

Moreover, the sequence N_1, \ldots, N_p has no internal zeros (so it is unimodal).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Chung-Fishburn-Graham conjecture

Theorem (conjecture of **Fan Chung**, **Peter Fishburn**, and **Ron Graham**, 1980) For any p-element poset P and $t \in P$, we have

$$N_i(t)^2 \ge N_{i-1}(t)N_{i+1}(t), \quad 2 \le i \le p-1.$$

Moreover, the sequence N_1, \ldots, N_p has no internal zeros (so it is unimodal).

Plan of proof. No internal zeros: easy combinatorial argument.

Log-concavity: find convex bodies (actually, polytopes) in \mathbb{R}^{p-1} such that $N_i = V_i(K, L)$ (up to multiplication by a positive constant). (Proof by wishful thinking)

What are *K* and *L*?

Let
$$P = \{t, t_1, t_2, \dots, t_{p-1}\}.$$

 $K = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 0 \text{ if } t_i < t\}$
 $L = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 1 \text{ if } t_i > t\}$

What are *K* and *L*?

Let
$$P = \{t, t_1, t_2, \dots, t_{p-1}\}.$$

 $K = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 0 \text{ if } t_i < t\}$
 $L = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 1 \text{ if } t_i > t\}$
Note that $K, L \subset \mathcal{O}(P - t).$

What are *K* and *L*?

Let
$$P = \{t, t_1, t_2, \dots, t_{p-1}\}.$$

 $K = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 0 \text{ if } t_i < t\}$
 $L = \{(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} : 0 \le x_i \le 1, x_i \le x_j \text{ if } t_i \le t_j, x_i = 1 \text{ if } t_i > t\}$
Note that $K, L \subset \mathcal{O}(P - t).$

Claim.
$$V_i(K, L) = \frac{N_{i+1}(t)}{(p-1)!}$$

What is $\alpha K + \beta L$?

$$\alpha K + \beta L = \text{set of all } (x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1} \text{ such that}:$$

• $t_i >_P t \Rightarrow x_i \ge \beta$

Proof that $V_i(K, L) = N_{i+1}(t)$

Recall $P = \{t_1, \ldots, t_{p-1}, t\}$. For $\alpha, \beta \ge 0$ let $\mathcal{P} = \alpha K + \beta L$. For each linear extension $\sigma: P \to \{1, \ldots, p\}$, define

$$\Delta_{\boldsymbol{\sigma}} = \{(x_1,\ldots,x_{p-1}) \in \mathcal{P} :$$

$$\begin{aligned} x_i \leq x_j & \text{if } \sigma(t_i) \leq \sigma(t_j) \\ x_i \leq \beta & \text{if } \sigma(t_i) < \sigma(t) \\ \beta \leq x_i \leq \alpha + \beta & \text{if } \sigma(t_i) > \sigma(t). \end{aligned}$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Proof that $V_i(K, L) = N_{i+1}(t)$

Recall $P = \{t_1, \ldots, t_{p-1}, t\}$. For $\alpha, \beta \ge 0$ let $\mathcal{P} = \alpha K + \beta L$. For each linear extension $\sigma: P \to \{1, \ldots, p\}$, define

$$\Delta_{\boldsymbol{\sigma}} = \{(x_1,\ldots,x_{p-1}) \in \mathcal{P} :$$

$$\begin{aligned} x_i &\leq x_j \quad \text{if} \quad \sigma(t_i) \leq \sigma(t_j) \\ x_i &\leq \beta \quad \text{if} \quad \sigma(t_i) < \sigma(t) \\ \beta &\leq x_i \leq \alpha + \beta \quad \text{if} \quad \sigma(t_i) > \sigma(t). \end{aligned}$$

Easy to check (completely analogous the proof that $\mathcal{O}(P)$ is a union of simplices $\mathcal{O}(\sigma)$): Δ_{σ} 's, for $\sigma \in \mathcal{L}(P)$, have disjoint interiors and union \mathcal{P} .

Proof that $V_i(K, L) = N_{i+1}(t)$

Recall $P = \{t_1, \ldots, t_{p-1}, t\}$. For $\alpha, \beta \ge 0$ let $\mathcal{P} = \alpha K + \beta L$. For each linear extension $\sigma: P \to \{1, \ldots, p\}$, define

$$\Delta_{\boldsymbol{\sigma}} = \{(x_1,\ldots,x_{p-1}) \in \mathcal{P} :$$

$$\begin{aligned} x_i &\leq x_j \quad \text{if} \quad \sigma(t_i) \leq \sigma(t_j) \\ x_i &\leq \beta \quad \text{if} \quad \sigma(t_i) < \sigma(t) \\ \beta &\leq x_i \leq \alpha + \beta \quad \text{if} \quad \sigma(t_i) > \sigma(t). \end{aligned}$$

Easy to check (completely analogous the proof that $\mathcal{O}(P)$ is a union of simplices $\mathcal{O}(\sigma)$): Δ_{σ} 's, for $\sigma \in \mathcal{L}(P)$, have disjoint interiors and union \mathcal{P} .

Note. Δ_{σ} need not be a simplex because σ is a linear extension of P, not P - t.

Proof (cont.)

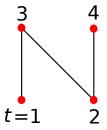
Let $\sigma(t) = i$, and define $\boldsymbol{w} \in \mathfrak{S}_{p-1}$ by $\sigma(t_{w(1)}) < \sigma(t_{w(2)}) < \cdots < \sigma(t_{w(p-1)}).$ Then Δ_{σ} consists of all $(x_1, \dots, x_{p-1}) \in \mathbb{R}^{p-1}$ satisfying $0 \le x_{w(1)} \le \cdots \le x_{w(i-1)} \le \beta \le x_{w(i)} \le \cdots \le x_{w(p-1)} \le \alpha + \beta.$

This is a product of two simplices with volume

$$\operatorname{vol}(\Delta_{\sigma}) = \frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An example



 $1234 \qquad \beta \le x_2 \le x_3 \le x_4 \le \alpha + \beta$ $2134 \qquad 0 \le x_2 \le \beta \le x_3 \le x_4 \le \alpha + \beta$ $1243 \qquad \beta \le x_2 \le x_4 \le x_3 \le \alpha + \beta$ $2143 \qquad 0 \le x_2 \le \beta \le x_4 \le x_3 \le \alpha + \beta$ $2413 \qquad 0 \le x_2 \le x_4 \le \beta \le x_3 \le \alpha + \beta$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Conclusion of proof

 Δ_σ is a product of two simplices with volume

$$\operatorname{vol}(\Delta_{\sigma}) = \frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}.$$

Conclusion of proof

 Δ_σ is a product of two simplices with volume

$$\operatorname{vol}(\Delta_{\sigma}) = \frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}.$$

$$\Rightarrow \operatorname{vol}(\mathcal{P}) = \sum_{\sigma \in \mathcal{L}(P)} \operatorname{vol}(\Delta_{\sigma})$$

$$= \sum_{i=1}^{p} N_{i}(t) \frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}$$

$$= \frac{1}{(p-1)!} \sum_{i=0}^{p-1} N_{i+1}(t) {p-1 \choose i} \alpha^{p-1-i} \beta^{i},$$

so
$$V_i(K,L) = \frac{N_{i+1}(t)}{(p-1)!}$$
. \Box

The chain polytope

 $\boldsymbol{P} = \{t_1, \ldots, t_p\}$ as before

Definition. The **chain polytope** $C(P) \subset \mathbb{R}^p$ is defined by

$$C(P) = \{ (x_1, \dots, x_p) \in \mathbb{R}^p : 0 \le x_i, \sum_{t_i \in C} x_i \le 1 \text{ for every chain} \\ (\text{or maximal chain}) C \text{ of } P \}.$$

The chain polytope

 $\mathbf{P} = \{t_1, \dots, t_p\}$ as before

Definition. The chain polytope $\mathcal{C}(P) \subset \mathbb{R}^{p}$ is defined by

$$C(P) = \{ (x_1, \dots, x_p) \in \mathbb{R}^p : 0 \le x_i, \sum_{t_i \in C} x_i \le 1 \text{ for every chain} \\ (\text{or maximal chain}) C \text{ of } P \}.$$

Example. (a) If P is an antichain, then C(P) = O(P), the p-dimensional unit cube $[0,1]^p$.

(b) If P is a chain $t_1 < \cdots < t_p$, then $\mathcal{C}(P)$ is the p-dimensional simplex $x_i \ge 0$, $x_1 + \cdots + x_p \le 1$.

Two notes

Note. If *P* is a chain $t_1 < \cdots < t_p$, then define $\phi: \mathcal{O}(P) \to \mathcal{C}(P)$ by $\phi(x_1, \ldots, x_p) = (x_1, x_2 - x_1, \ldots, x_p - x_{p-1})$. Then ϕ is a linear isomorphism from $\mathcal{O}(P)$ to $\mathcal{C}(P)$. It preserves volume since the linear transformation has determinant 1 (lower triangular with 1's on the diagonal).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two notes

Note. If *P* is a chain $t_1 < \cdots < t_p$, then define $\phi: \mathcal{O}(P) \to \mathcal{C}(P)$ by $\phi(x_1, \ldots, x_p) = (x_1, x_2 - x_1, \ldots, x_p - x_{p-1})$. Then ϕ is a linear isomorphism from $\mathcal{O}(P)$ to $\mathcal{C}(P)$. It preserves volume since the linear transformation has determinant 1 (lower triangular with 1's on the diagonal).

Note. dim C(P) = p, since the cube $[0, 1/p]^p$ is contained in C(P).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vertices of C(P)

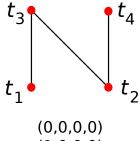
Recall that if $S \subseteq P$, then

$$\boldsymbol{\chi_S} = \left\{ (x_1, \ldots, x_p) : x_i = \left\{ \begin{array}{cc} 0, & t_i \notin S \\ 1, & t_i \in S. \end{array} \right\} \right.$$

Theorem. The vertices of C(P) are the sets χ_A , where A is an antichain of P.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

An example



(0,0,0,0)(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)(1,1,0,0)(1,0,0,1)(0,0,1,1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem. The vertices of C(P) are the sets χ_A , where A is an antichain of P.

Theorem. The vertices of C(P) are the sets χ_A , where A is an antichain of P.

Proof. Clearly $\chi_A \in \mathcal{O}(P)$, and χ_A is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_A .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theorem. The vertices of C(P) are the sets χ_A , where A is an antichain of P.

Proof. Clearly $\chi_A \in \mathcal{O}(P)$, and χ_A is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_A .

Assume $v \in C(P)$ is a vertex and $v \neq \chi_A$ for some A.

Idea: show $v = \lambda x + (1 - \lambda)y$ for some $0 < \lambda < 1$ and $x, y \in C(P)$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Theorem. The vertices of C(P) are the sets χ_A , where A is an antichain of P.

Proof. Clearly $\chi_A \in \mathcal{O}(P)$, and χ_A is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_A .

Assume $v \in C(P)$ is a vertex and $v \neq \chi_A$ for some A.

Idea: show $v = \lambda x + (1 - \lambda)y$ for some $0 < \lambda < 1$ and $x, y \in C(P)$.

Let $v = (v_1, ..., v_p)$, $v \neq \chi_A$. Let $Q = \{t_i \in P : 0 < v_i < 1\}$. Let Q_1 be the set of minimal elements of Q and Q_2 the set of minimal elements of $Q - Q_1$.

Easy: if v is a vertex then $Q_1, Q_2 \neq \emptyset$.

Proof (cont.)

Define

$$\varepsilon = \min\{v_i, 1 - v_i : t_i \in Q_1 \cup Q_2\}.$$

Define $y = (y_1, \dots, y_p), \ z = (z_1, \dots, z_p) \in \mathbb{R}^p$ by

$$y_i = \begin{cases} v_i, & t_i \notin Q_1 \cup Q_2 \\ v_i + \varepsilon, & t_i \in Q_1 \\ v_i - \varepsilon, & t_i \in Q_2, \end{cases}$$

$$z_i = \begin{cases} v_i, & t_i \notin Q_1 \cup Q_2 \\ v_i - \varepsilon, & t_i \in Q_1 \\ v_i + \varepsilon, & t_i \in Q_2, \end{cases}$$

Easy to see $y, z \in C(P)$. Since $y \neq z$ and $v = \frac{1}{2}(y + z)$, it follows that v is not a vertex of C(P). \Box

Recall: vertices of $\mathcal{O}(P)$: $\overline{\chi}_I$, where *I* is an order ideal vertices of $\mathcal{C}(P)$: χ_A , where *A* is an antichain

Recall: vertices of $\mathcal{O}(P)$: $\overline{\chi}_I$, where *I* is an order ideal vertices of $\mathcal{C}(P)$: χ_A , where *A* is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Recall: vertices of $\mathcal{O}(P)$: $\overline{\chi}_I$, where *I* is an order ideal vertices of $\mathcal{C}(P)$: χ_A , where *A* is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

$$f(I) = \{ \text{maximal elements of } I \}$$

$$f^{-1}(A) = \{ s \in P : s \le t \text{ for some } t \in A \}$$

$$= \bigcap_{\substack{\text{order ideals } J \\ A \subseteq J}} J.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Recall: vertices of $\mathcal{O}(P)$: $\overline{\chi}_I$, where *I* is an order ideal vertices of $\mathcal{C}(P)$: χ_A , where *A* is an antichain

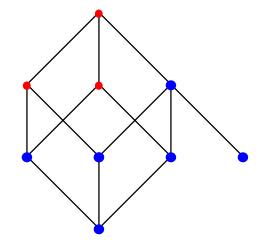
Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

$$\begin{split} f(I) &= \{ \text{maximal elements of } I \} \\ f^{-1}(A) &= \{ s \in P : s \leq t \text{ for some } t \in A \} \\ &= \bigcap_{\substack{\text{order ideals } J \\ A \subseteq J}} J. \end{split}$$

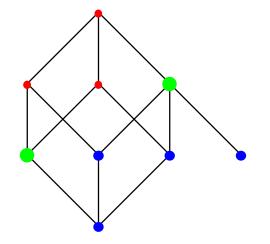
Thus there is a (canonical) bijection $V(\mathcal{O}(P)) \rightarrow V(\mathcal{C}(P))$. What about other faces?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

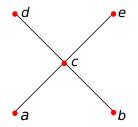
Example of order ideal ↔ antichain bijection



Example of order ideal ↔ antichain bijection



The X-poset

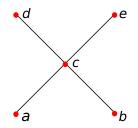


 $\mathcal{O}(P)$: $0 \le a, b$ (2 equations), $d, e \le 1$ (2 equations), $a \le c, b \le c, c \le d, c \le e, so 8$ facets (maximal faces)

 $C(P): 0 \le a, b, c, d, e$ (5 equations), $a + c + d \le 1$, $a + c + e \le 1$, $b + c + d \le 1$, $b + c + e \le 1$, so 9 facets

・ロット (雪) (日) (日) (日)

The X-poset



 $\mathcal{O}(P)$: $0 \le a, b$ (2 equations), $d, e \le 1$ (2 equations), $a \le c, b \le c, c \le d, c \le e, so 8$ facets (maximal faces)

 $C(P): 0 \le a, b, c, d, e$ (5 equations), $a + c + d \le 1$, $a + c + e \le 1$, $b + c + d \le 1$, $b + c + e \le 1$, so 9 facets

Hence $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are not **combinatorially equivalent** (i.e., they don't have isomorphic face posets)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Length two posets

Exercise. If *P* has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \to \mathcal{C}(P)$ of determinant 1. Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Length two posets

Exercise. If *P* has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \to \mathcal{C}(P)$ of determinant 1. Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

Would like something similar for **any** finite poset, but a linear transformation won't work since $\mathcal{O}(P)$ and $\mathcal{C}(P)$ need not be combinatorially equivalent.

Length two posets

Exercise. If *P* has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \to \mathcal{C}(P)$ of determinant 1. Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear transformation won't work since $\mathcal{O}(P)$ and $\mathcal{C}(P)$ need not be combinatorially equivalent.

Note. For the characterization of *P* for which there is a bijective linear transformation $\tau: \mathcal{O}(P) \to \mathcal{C}(P)$ of determinant 1, see Hibi and Li, arXiv:1208.4029.

The transfer map

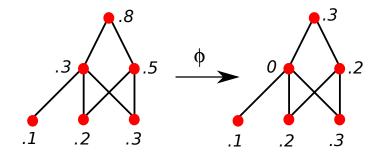
Definition. Define the **transfer map** $\phi: \mathcal{O}(P) \to \mathcal{C}(P)$ as follows: if $x = (x_1, \dots, x_p) \in \mathcal{O}(P)$ and $t_i \in P$, then $\phi(x) = (y_1, \dots, y_p)$, where

$$\mathbf{y}_i = \min\{x_i - x_j : t_i \text{ covers } t_j \text{ in } P\}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

(If t_i is a minimal element of P, then $y_i = x_i$.)

An example



・ロト・日本・日本・日本・日本・日本

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P) = X_1 \cup \cdots \cup X_k$ such that ϕ restricted to each X_i is linear.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P) = X_1 \cup \cdots \cup X_k$ such that ϕ restricted to each X_i is linear.

(b) Let $n \in \mathbb{P} = \{1, 2, ...\}$ and $x \in \mathcal{O}(P)$. Then $nx \in \mathbb{Z}^p$ if and only if $n\phi(x) \in \mathbb{Z}^p$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P) = X_1 \cup \cdots \cup X_k$ such that ϕ restricted to each X_i is linear.

(b) Let $n \in \mathbb{P} = \{1, 2, ...\}$ and $x \in \mathcal{O}(P)$. Then $nx \in \mathbb{Z}^p$ if and only if $n\phi(x) \in \mathbb{Z}^p$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary. $\operatorname{vol}(\mathcal{C}(P)) = \operatorname{vol}(\mathcal{O}(P)) = e(P)$ and $i(\mathcal{C}(P), n) = i(\mathcal{O}(P), n) = \Omega_P(n+1).$

Transfer theorem proof.

(a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Proof. Continuity is immediate from the definition. Recall the decomposition $\mathcal{O}(P) = \bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$, where $\sigma = (t_{i_1}, \ldots, t_{i_p})$ and

$$\mathcal{O}(\sigma) = \{(x_1,\ldots,x_n) \in \mathbb{R}^p : 0 \le x_{i_1} \le x_{i_2} \le \cdots \le x_{i_p} \le 1\}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Clearly ϕ is linear on each $\mathcal{O}(\sigma)$, so ϕ is piecewise-linear.

Transfer theorem proof.

(a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Proof. Continuity is immediate from the definition. Recall the decomposition $\mathcal{O}(P) = \bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$, where $\sigma = (t_{i_1}, \ldots, t_{i_p})$ and

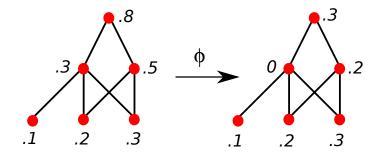
$$\mathcal{O}(\sigma) = \{(x_1,\ldots,x_n) \in \mathbb{R}^p : 0 \le x_{i_1} \le x_{i_2} \le \cdots \le x_{i_p} \le 1\}.$$

Clearly ϕ is linear on each $\mathcal{O}(\sigma)$, so ϕ is piecewise-linear.

Define ψ : $\mathcal{C}(P) \rightarrow \mathcal{O}(P)$ by $\psi(y_1, \dots, y_p) = (x_1, \dots, x_p)$, where $x_j = \max\{y_{i_1} + y_{i_2} + \dots + y_{i_k} : t_{i_1} < t_{i_2} < \dots < t_{i_k} = t_j\}.$

Easy to check: $\psi\phi(x) = x$ and $\phi\psi(y) = y$ for all $x \in \mathcal{O}(P)$ and $y \in \mathcal{C}(P)$. Hence ϕ is a bijection with inverse ψ .

An example (redux)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Conclusion of proof

Remains to show that $nx \in \mathbb{Z}^p$ if and only if $n\phi(x) \in \mathbb{Z}^p$. This is clear from the formulas for $\phi(x)$ and $\psi(y)$.

Conclusion of proof

Remains to show that $nx \in \mathbb{Z}^p$ if and only if $n\phi(x) \in \mathbb{Z}^p$. This is clear from the formulas for $\phi(x)$ and $\psi(y)$.

Alternatively, the restriction of ϕ to each $\mathcal{O}(\sigma)$ belongs to $SL(p,\mathbb{Z})$, i.e., the matrix of of ϕ with respect to the standard basis of \mathbb{R}^{p} is integral of determinant 1. (In fact, it's lower triangular with 1's on the diagonal.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interesting corollary

 $\Delta(P)$: set of chains of P (order complex)

Corollary. $\Omega_P(n)$ (and hence e(P)) depends only on $\Delta(P)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Interesting corollary

 $\Delta(P)$: set of chains of P (order complex)

Corollary. $\Omega_P(n)$ (and hence e(P)) depends only on $\Delta(P)$.

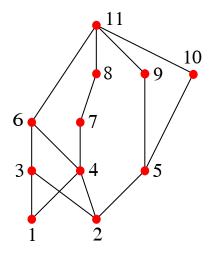
Proof. The set A of antichains of P depends only on $\Delta(P)$. Recall

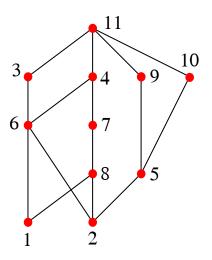
$$\mathcal{C}(P) = \operatorname{conv}\{\chi_A : A \in \mathcal{A}\}.$$

Thus $\mathcal{C}(P)$ depends only on $\Delta(P)$. Since $\Omega_P(n+1) = i(\mathcal{C}(P), n)$, the proof follows. \Box

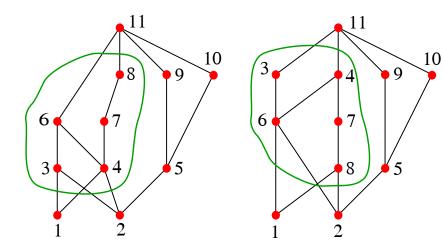
◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

An example where $\triangle(P) = \triangle(Q)$





An example where $\triangle(P) = \triangle(Q)$



P: finite poset

autonomous subset $Q \subseteq P$: if $t \in P - Q$, then either:

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• t > s for all $s \in Q$

P: finite poset

autonomous subset $Q \subseteq P$: if $t \in P - Q$, then either:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- t > s for all $s \in Q$
- t < s for all $s \in Q$

P: finite poset

autonomous subset $Q \subseteq P$: if $t \in P - Q$, then either:

- t > s for all $s \in Q$
- t < s for all $s \in Q$
- $t \parallel s$ (i.e., s and t are incomparable) for all $s \in Q$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

P: finite poset

autonomous subset $Q \subseteq P$: if $t \in P - Q$, then either:

- t > s for all $s \in Q$
- t < s for all $s \in Q$
- $t \parallel s$ (i.e., s and t are incomparable) for all $s \in Q$.

flip of an autonomous $Q \subseteq P$: keep all relations s < t unchanged unless both $s, t \in Q$. If s < t in Q, then change to s > t, and vice versa. (We are "dualizing" Q inside P.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

P: finite poset

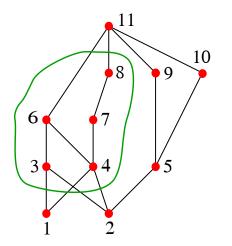
autonomous subset $Q \subseteq P$: if $t \in P - Q$, then either:

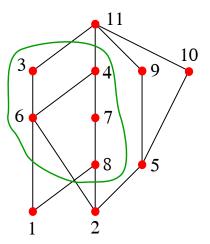
- t > s for all $s \in Q$
- t < s for all $s \in Q$
- $t \parallel s$ (i.e., s and t are incomparable) for all $s \in Q$.

flip of an autonomous $Q \subseteq P$: keep all relations s < t unchanged unless both $s, t \in Q$. If s < t in Q, then change to s > t, and vice versa. (We are "dualizing" Q inside P.)

Special case: if Q = P, then the flip of Q gives P^* , the **dual** of P

Flip example





Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier work of **Gallai** and others). Let *P* and *Q* be finite posets. Then $\Delta(P) = \Delta(Q)$ if and only if *Q* can be obtained from *P* by a sequence of flips.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier work of **Gallai** and others). Let *P* and *Q* be finite posets. Then $\Delta(P) = \Delta(Q)$ if and only if *Q* can be obtained from *P* by a sequence of flips.

Easy to see that flips preserve the order polynomial $\Omega_P(n)$. This gives another proof that if $\Delta(P) = \Delta(Q)$ then $\Omega_P(n) = \Omega_Q(n)$, so also e(P) = e(Q) (Golumbic, 1980).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Chain polytope analogue of $N_1(t), \ldots, N_p(t)$.

Recall: for $t \in P$,

$$N_i(t) = \#\{\sigma \in \mathcal{L}(P) : \sigma(t) = i\}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Then $N_i(t)^2 \ge N_{i-1}(t)N_{i+1}(t)$, and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes related to $\mathcal{O}(P)$.

Chain polytope analogue of $N_1(t), \ldots, N_p(t)$.

Recall: for $t \in P$,

$$N_i(t) = \#\{\sigma \in \mathcal{L}(P) : \sigma(t) = i\}.$$

Then $N_i(t)^2 \ge N_{i-1}(t)N_{i+1}(t)$, and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes related to $\mathcal{O}(P)$.

Would like to "transfer" this result to C(P). What is the analogue of $N_i(t)$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t) = j$, define spread_{σ}(t) = max{ $i : \sigma^{-1}(j-1), \sigma^{-1}(j-2), \dots, \sigma^{-1}(j-i)$ are all incomparable with t}.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t) = j$, define spread_{σ}(t) = max{ $i : \sigma^{-1}(j-1), \sigma^{-1}(j-2), \dots, \sigma^{-1}(j-i)$ are all incomparable with t}.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

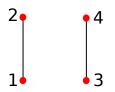
 $\boldsymbol{M}_{\boldsymbol{i}}(\boldsymbol{t}) = \#\{\sigma \in \mathcal{L}(P) : \operatorname{spread}_{\sigma}(\boldsymbol{t}) = \boldsymbol{i}\}.$

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t) = j$, define spread_{σ}(t) = max{ $i : \sigma^{-1}(j-1), \sigma^{-1}(j-2), \dots, \sigma^{-1}(j-i)$ are all incomparable with t}. $M_i(t) = \#\{\sigma \in \mathcal{L}(P) : \operatorname{spread}_{\sigma}(t) = i\}.$ Theorem. $M_i(t)^2 \ge M_{i-1}(t)M_{i+1}(t), \quad 1 \le i \le p-1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

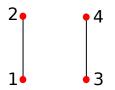
Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t) = j$, define spread_{σ}(t) = max{i : $\sigma^{-1}(i-1), \sigma^{-1}(i-2), \dots, \sigma^{-1}(i-i)$ are all incomparable with t }. $M_i(t) = \# \{ \sigma \in \mathcal{L}(P) : \operatorname{spread}_{\sigma}(t) = i \}.$ **Theorem.** $M_i(t)^2 \ge M_{i-1}(t)M_{i+1}(t), \quad 1 \le i \le p-1$ **Proof.** "Transfer" the proof that $N_i(t)^2 \ge N_{i-1}(t)N_{i+1}(t)$ (messy details omitted).

An example



σ	$\operatorname{spread}(2)$
1 <mark>2</mark> 34	0
1 <mark>3 2</mark> 4	1
1342	2
31 <mark>2</mark> 4	0
31 <mark>4</mark> 2	1
341 <mark>2</mark>	0

An example



σ	spread(2)
1234	0
1 <mark>3 2</mark> 4	1
1342	2
31 <mark>2</mark> 4	0
31 <mark>42</mark>	1
341 <mark>2</mark>	0

 $\Rightarrow (M_0, M_1, M_2, M_3) = (3, 2, 1, 0)$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Decreasing property

Theorem. We have $M_0(t) \ge M_1(t) \ge \cdots \ge M_{p-1}(t)$.

Decreasing property

Theorem. We have $M_0(t) \ge M_1(t) \ge \cdots \ge M_{p-1}(t)$.

Proof. Let

$$\mathcal{M}_i(t) = \{ \sigma \in \mathcal{L}(P) : \operatorname{spread}_t(\sigma) = i \}.$$

Suffices to give a injection (1-1 correspondence) $\mathcal{M}_i(t) \rightarrow \mathcal{M}_{i-1}(t), \quad 1 \le i \le p-1.$

Given a linear extension

$$\sigma = (t_{k_1}, \dots, t_{k_{j-1}}, t_{k_j} = t, t_{k_{j+1}}, \dots, t_{k_p})$$

of spread at least 1, map it to

$$(t_{k_1},...,t_{k_{j-2}},t,t_{k_{j-1}},t_{j+1},\ldots,t_{k_p})$$
.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Decreasing property

Theorem. We have $M_0(t) \ge M_1(t) \ge \cdots \ge M_{p-1}(t)$.

Proof. Let

$$\mathcal{M}_i(t) = \{ \sigma \in \mathcal{L}(P) : \operatorname{spread}_t(\sigma) = i \}.$$

Suffices to give a injection (1-1 correspondence) $\mathcal{M}_i(t) \rightarrow \mathcal{M}_{i-1}(t), \quad 1 \le i \le p-1.$

Given a linear extension

$$\sigma = (t_{k_1}, \dots, t_{k_{j-1}}, t_{k_j} = t, t_{k_{j+1}}, \dots, t_{k_p})$$

of spread at least 1, map it to

$$(t_{k_1},...,t_{k_{j-2}},t,t_{k_{j-1}},t_{j+1},\ldots,t_{k_p}).$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

END OF TOPIC 2