Two Poset Polytopes

Slides available at:
www-math.mit.edu/~rstan/transparencies/polytopes.pdf

The order polytope

P : p-element poset, say $P=\left\{t_{1}, \ldots, t_{p}\right\}$
Definition. The order polytope $\mathcal{O}(P) \subset \mathbb{R}^{p}$ is defined by

$$
\mathcal{O}(P)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}: 0 \leq x_{i} \leq 1, t_{i} \leq P t_{j} \Rightarrow x_{i} \leq x_{j}\right\} .
$$

The order polytope

$P: p$-element poset, say $P=\left\{t_{1}, \ldots, t_{p}\right\}$
Definition. The order polytope $\mathcal{O}(P) \subset \mathbb{R}^{p}$ is defined by

$$
\mathcal{O}(P)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}: 0 \leq x_{i} \leq 1, t_{i} \leq P t_{j} \Rightarrow x_{i} \leq x_{j}\right\}
$$

Example. (a) If P is an antichain, then $\mathcal{O}(P)$ is the p-dimensional unit cube $[0,1]^{p}$.
(b) If P is a chain $t_{1}<\cdots<t_{p}$, then $\mathcal{O}(P)$ is the p-dimensional simplex $0 \leq x_{1} \leq \cdots \leq x_{p} \leq 1$.

The order polytope

$P: p$-element poset, say $P=\left\{t_{1}, \ldots, t_{p}\right\}$
Definition. The order polytope $\mathcal{O}(P) \subset \mathbb{R}^{p}$ is defined by

$$
\mathcal{O}(P)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}: 0 \leq x_{i} \leq 1, t_{i} \leq P t_{j} \Rightarrow x_{i} \leq x_{j}\right\}
$$

Example. (a) If P is an antichain, then $\mathcal{O}(P)$ is the p-dimensional unit cube $[0,1]^{p}$.
(b) If P is a chain $t_{1}<\cdots<t_{p}$, then $\mathcal{O}(P)$ is the p-dimensional simplex $0 \leq x_{1} \leq \cdots \leq x_{p} \leq 1$.
$\operatorname{dim} \mathcal{O}(P)=p$, since if $t_{i_{1}}, \ldots, t_{i_{p}}$ is a linear extension of P, then $\mathcal{O}(P)$ contains the p-dimensional simplex $0 \leq x_{i_{1}} \leq \cdots \leq x_{i_{p}} \leq 1$ (of volume 1/p!).

Convex polytope

convex hull $\operatorname{conv}(X)$ of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X
half-space in \mathbb{R}^{p} : a subset H of \mathbb{R}^{p} of the form $\left\{x \in \mathbb{R}^{p}: x \cdot v \leq \alpha\right\}$ for some fixed $0 \neq v \in \mathbb{R}^{p}$ and $\alpha \in \mathbb{R}$.

Convex polytope

convex hull $\operatorname{conv}(X)$ of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X
half-space in \mathbb{R}^{p} : a subset H of \mathbb{R}^{p} of the form $\left\{x \in \mathbb{R}^{p}: x \cdot v \leq \alpha\right\}$ for some fixed $0 \neq v \in \mathbb{R}^{p}$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

Convex polytope

convex hull $\operatorname{conv}(X)$ of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X
half-space in \mathbb{R}^{p} : a subset H of \mathbb{R}^{p} of the form $\left\{x \in \mathbb{R}^{p}: x \cdot v \leq \alpha\right\}$ for some fixed $0 \neq v \in \mathbb{R}^{p}$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

- \mathcal{P} is a bounded intersection of half-spaces.

Convex polytope

convex hull $\operatorname{conv}(X)$ of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X
half-space in \mathbb{R}^{p} : a subset H of \mathbb{R}^{p} of the form $\left\{x \in \mathbb{R}^{p}: x \cdot v \leq \alpha\right\}$ for some fixed $0 \neq v \in \mathbb{R}^{p}$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

- \mathcal{P} is a bounded intersection of half-spaces.
- $\mathcal{P}=\operatorname{conv}(X)$ for some finite $X \subset \mathbb{R}^{p}$.

Convex polytope

convex hull $\operatorname{conv}(X)$ of a subset X of \mathbb{R}^{p} : intersection of all convex sets containing X
half-space in \mathbb{R}^{p} : a subset H of \mathbb{R}^{p} of the form $\left\{x \in \mathbb{R}^{p}: x \cdot v \leq \alpha\right\}$ for some fixed $0 \neq v \in \mathbb{R}^{p}$ and $\alpha \in \mathbb{R}$.

Classical theorem. Let $\mathcal{P} \subseteq \mathbb{R}$. The following two conditions are equivalent.

- \mathcal{P} is a bounded intersection of half-spaces.
- $\mathcal{P}=\operatorname{conv}(X)$ for some finite $X \subset \mathbb{R}^{p}$.

Such a set \mathcal{P} is a convex polytope.

Vertices

A vertex v of a convex polytope (or even convex set) \mathcal{P} is a point in \mathcal{P} such that

$$
v=\lambda x+(1-\lambda) y, x, y \in \mathcal{P}, 0 \leq \lambda \leq 1 \Rightarrow x=y .
$$

Vertices

A vertex v of a convex polytope (or even convex set) \mathcal{P} is a point in \mathcal{P} such that

$$
v=\lambda x+(1-\lambda) y, x, y \in \mathcal{P}, 0 \leq \lambda \leq 1 \Rightarrow x=y .
$$

Equivalently, let $V=\bigcap_{Y: \mathcal{P}=\operatorname{conv}(Y)} Y$. Then V is the set of vertices of \mathcal{P} (necessarily finite).

Vertices

A vertex v of a convex polytope (or even convex set) \mathcal{P} is a point in \mathcal{P} such that

$$
v=\lambda x+(1-\lambda) y, x, y \in \mathcal{P}, 0 \leq \lambda \leq 1 \Rightarrow x=y .
$$

Equivalently, let $V=\cap_{Y: \mathcal{P}=\operatorname{conv}(Y)} Y$. Then V is the set of vertices of \mathcal{P} (necessarily finite).

Equivalently, v is a vertex of \mathcal{P} if and only if there exists a half-space H such that $\{v\}=\mathcal{P} \cap H$.

Order ideals

An order ideal of a poset P is a set $I \subseteq P$ such that $t \in I, s<t \Rightarrow s \in I$.

Order ideals

An order ideal of a poset P is a set $I \subseteq P$ such that $t \in I, s<t \Rightarrow s \in I$.

Let $S \subseteq P=\left\{t_{1}, \ldots, t_{p}\right\}$. The characteristic vector χ_{s} of S is defined by $\chi_{s}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ such that

$$
x_{i}= \begin{cases}0, & t_{i} \notin S \\ 1, & t_{i} \in S\end{cases}
$$

Write $\bar{\chi}_{S}=\left(1-x_{1}, 1-x_{2}, \ldots, 1-x_{p}\right)$.

Order ideals

An order ideal of a poset P is a set $I \subseteq P$ such that $t \in I, s<t \Rightarrow s \in I$.

Let $S \subseteq P=\left\{t_{1}, \ldots, t_{p}\right\}$. The characteristic vector χ_{s} of S is defined by $\chi_{s}=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ such that

$$
x_{i}= \begin{cases}0, & t_{i} \notin S \\ 1, & t_{i} \in S\end{cases}
$$

Write $\bar{\chi}_{S}=\left(1-x_{1}, 1-x_{2}, \ldots, 1-x_{p}\right)$.
Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\bar{\chi}_{l}$, where I is an order ideal of P.

An example

(1,1,1,1)
(0,1,1,1)
(1,0,1,1)
(0,0,1,1)
(1,0,1,0)
(0,0,0,1)
$(0,0,1,0)$
$(0,0,0,0)$

Proof

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\bar{\chi}_{l}$, where I is an order ideal of P.

Proof

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\bar{\chi}_{l}$, where I is an order ideal of P.

Proof. Clearly $\bar{\chi}_{I} \in \mathcal{O}(P)$, and $\bar{\chi}_{I}$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\bar{\chi}_{I}$.

Proof

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\bar{\chi}_{l}$, where I is an order ideal of P.

Proof. Clearly $\bar{\chi}_{I} \in \mathcal{O}(P)$, and $\bar{\chi}_{I}$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\bar{\chi}_{I}$.
Assume $v \in \mathcal{O}(P)$ is a vertex and $v \neq \bar{\chi}_{I}$ for some I.
Idea: show $v=\lambda x+(1-\lambda) y$ for some $0<\lambda<1$ and $x, y \in \mathcal{O}(P)$.

Proof

Theorem. The vertices of $\mathcal{O}(P)$ are the sets $\bar{\chi}_{1}$, where I is an order ideal of P.

Proof. Clearly $\bar{\chi}_{I} \in \mathcal{O}(P)$, and $\bar{\chi}_{I}$ is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{O}(P)$). Also, any binary vector in $\mathcal{O}(P)$ has the form $\bar{\chi}_{I}$.
Assume $v \in \mathcal{O}(P)$ is a vertex and $v \neq \bar{\chi}_{I}$ for some I.
Idea: show $v=\lambda x+(1-\lambda) y$ for some $0<\lambda<1$ and $x, y \in \mathcal{O}(P)$.
Let $v=\left(v_{1}, \ldots, v_{p}\right)$. Choose v_{i} so $0<v_{i}<1$ (exists since the only binary vectors in $\mathcal{O}(P)$ have the form $\bar{\chi}_{I}$). Choose $\epsilon>0$ sufficiently small. Let v^{-}(respectively, v^{+}) be obtained from v by subtracting (respectively, adding) ϵ to each entry equal to v_{i}. Then $v^{-}, v^{+} \in \mathcal{O}(P)$ and

$$
v=\frac{1}{2}\left(v^{-}+v^{+}\right)
$$

Two remarks

Note. Can also prove the previous theorem by showing directly that every $v \in \mathcal{O}(P)$ is a convex combination of the $\bar{\chi}_{\text {}}$'s (not difficult).

Two remarks

Note. Can also prove the previous theorem by showing directly that every $v \in \mathcal{O}(P)$ is a convex combination of the $\bar{\chi}$,'s (not difficult).

Note. Entire facial structure of $\mathcal{O}(P)$ can be described, but omitted here.

Linear extensions

$\mathcal{L}(P)$: set of linear extensions $\sigma: P \rightarrow\{1, \ldots, p\}$, i.e., σ is bijective and order-preserving.
$e(P):=\# \mathcal{L}(P)$

An example (from before)

$a b c d$
$b a c d$
abdc
$b a d c$
bdac

Decomposition of $\mathcal{O}(P)$

Let $\sigma \in \mathcal{L}(P)$, regarded as the permutation $t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{p}}$ of P (so $\left.\sigma\left(t_{i_{j}}\right)=j\right)$. Define

$$
\mathcal{O}(\sigma)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{p}: 0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1\right\},
$$

a simplex of volume $1 / p!$.

Decomposition of $\mathcal{O}(P)$

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P)=\bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Decomposition of $\mathcal{O}(P)$

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P)=\bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Corollary. The volume $\operatorname{vol}(\mathcal{O}(P))$ of $\mathcal{O}(P)$ is equal to $e(P) / p$!.

Decomposition of $\mathcal{O}(P)$

Theorem. The simplices $\mathcal{O}(\sigma)$ have disjoint interiors, and $\mathcal{O}(P)=\bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$.

Corollary. The volume $\operatorname{vol}(\mathcal{O}(P))$ of $\mathcal{O}(P)$ is equal to $e(P) / p!$.
Proof of Corollary. $\mathcal{O}(P)$ is the union of $e(p)$ simplices $\mathcal{O}(\sigma)$ with disjoint interiors and volume $1 / p$! each. $\quad \square$

Proof of decomposition theorem

The interior of the simplex $0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1$ is given by $0<x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{p}}<1$. Thus the interiors of the $\mathcal{O}(\sigma)$'s are disjoint, since a set of distinct real numbers has a unique ordering with respect to <. And clearly $\mathcal{O}(\sigma) \subseteq \mathcal{O}(P)$.

Proof of decomposition theorem

The interior of the simplex $0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1$ is given by $0<x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{p}}<1$. Thus the interiors of the $\mathcal{O}(\sigma)$'s are disjoint, since a set of distinct real numbers has a unique ordering with respect to <. And clearly $\mathcal{O}(\sigma) \subseteq \mathcal{O}(P)$.

Now suppose that $\left(x_{1}, \ldots, x_{p}\right) \in \mathcal{O}(P)$. Define i_{1}, \ldots, i_{p} (not necessarily unique) by

$$
x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}}
$$

and

$$
t_{i j}<t_{i_{k}} \text { and } x_{i_{j}}=x_{i_{k}} \Rightarrow j<k .
$$

Then $t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{p}}$ is a linear extension σ of P, and $\left(x_{1}, \ldots, x_{p}\right) \in \mathcal{O}(P)$.

An aside

Note. This decomposition of $\mathcal{O}(P)$ is actually a triangulation, i.e., the intersection of any two of the simplices is a common face (possibly empty) of both. (Easy to see.)

An example

Three "compatible" linear extensions:

$$
\begin{aligned}
& t_{1}, t_{4}, t_{2}, t_{3}, t_{6}, t_{5}, t_{7} \\
& t_{1}, t_{4}, t_{3}, t_{2}, t_{6}, t_{5}, t_{7} \\
& t_{1}, t_{4}, t_{2}, t_{6}, \\
& t_{3}, \\
& t_{5}, \\
& t_{7}
\end{aligned}
$$

Why volume $1 / p$! ?

The simplices $0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1$ all have the same volume (for any permutation i_{1}, \ldots, i_{p} of $1, \ldots, p$), since they differ only by a permutation of coordinates.

Why volume $1 / p$! ?

The simplices $0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1$ all have the same volume (for any permutation i_{1}, \ldots, i_{p} of $1, \ldots, p$), since they differ only by a permutation of coordinates.

Let P be a p-element antichain. Thus $\mathcal{L}(P)=\mathfrak{S}_{p}$ (all permutations of $1, \ldots, p)$. Moreover, $\mathcal{O}(P)$ is a unit cube so has volume 1. By the decomposition theorem, it is a union of p ! simplices $0 \leq x_{i_{1}} \leq \cdots \leq x_{i_{p}} \leq 1$, all with the same volume. Thus the volume of each simplex is $1 / p!$.

Ehrhart theory

\mathcal{P} : a d-dimensional convex polytope in \mathbb{R}^{p} with integer vertices.

$$
\boldsymbol{n P}=\{n x: x \in \mathcal{P}\}, n \geq 1
$$

$\operatorname{int}(\mathcal{P})$: interior of \mathcal{P}

Ehrhart theory

\mathcal{P} : a d-dimensional convex polytope in \mathbb{R}^{p} with integer vertices.

$$
\boldsymbol{n P}=\{n x: x \in \mathcal{P}\}, n \geq 1
$$

$\operatorname{int}(\mathcal{P})$: interior of \mathcal{P}
For $n \geq 1$, define

$$
\begin{aligned}
& i(\mathcal{P}, n)=\#\left(n \mathcal{P} \bigcap \mathbb{Z}^{p}\right) \\
& \bar{i}(\mathcal{P}, n)=\#\left(n \operatorname{int}(\mathcal{P}) \bigcap \mathbb{Z}^{p}\right)
\end{aligned}
$$

$i(\mathcal{P}, n)$ is the Ehrhart polynomial of \mathcal{P}.

An example

$$
\begin{aligned}
& i(\mathcal{P}, n)=(n+1)^{2} \\
& \bar{i}(\mathcal{P}, n)=(n-1)^{2}=i(\mathcal{P},-n)
\end{aligned}
$$

Main results of Ehrhart theory

- $i(\mathcal{P}, n)$ is a polynomial in n of $\operatorname{degree} d=\operatorname{dim} \mathcal{P}$ for $n \geq 1$, and hence is defined for all $n \in \mathbb{Z}$

Main results of Ehrhart theory

- $i(\mathcal{P}, n)$ is a polynomial in n of $\operatorname{degree} d=\operatorname{dim} \mathcal{P}$ for $n \geq 1$, and hence is defined for all $n \in \mathbb{Z}$
- $i(\mathcal{P}, 0)=1$

Main results of Ehrhart theory

- $i(\mathcal{P}, n)$ is a polynomial in n of degree $d=\operatorname{dim} \mathcal{P}$ for $n \geq 1$, and hence is defined for all $n \in \mathbb{Z}$
- $i(\mathcal{P}, 0)=1$
- (Ehrhart's law of reciprocity) $\bar{i}(\mathcal{P}, n)=(-1)^{d} i(\mathcal{P},-n)$

Main results of Ehrhart theory

- $i(\mathcal{P}, n)$ is a polynomial in n of degree $d=\operatorname{dim} \mathcal{P}$ for $n \geq 1$, and hence is defined for all $n \in \mathbb{Z}$
- $i(\mathcal{P}, 0)=1$
- (Ehrhart's law of reciprocity) $\bar{i}(\mathcal{P}, n)=(-1)^{d} i(\mathcal{P},-n)$

Proofs: see e.g. EC1, §4.6.2, or Beck-Robins, Computing the Continuous Discretely.

The order polynomial

\boldsymbol{P} : p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

The order polynomial

P: p-element poset
For $n \geq 1$, define the order polynomial $\Omega_{P}(n)$ of P by

$$
\Omega_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s \leq_{P} t \Rightarrow f(s) \leq_{\mathbb{Z}} f(t)\right\} .
$$

$$
\Omega_{P}(1)=1
$$

$$
\Omega_{P}(2)=\# \text { order ideals of } P
$$

$$
=\# \text { vertices of } \mathcal{O}(P)
$$

$$
\Omega(p \text {-chain, } n)=\left(\binom{n}{p}\right)=\binom{n+p-1}{p}
$$

$\Omega(p$-antichain, $n)=n^{p}$

Strict order polynomial

For $n \geq 1$, define the strict order polynomial $\bar{\Omega}_{P}(n)$ of P by

$$
\bar{\Omega}_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s<p t \Rightarrow f(s)<_{\mathbb{Z}} f(t)\right\} .
$$

Strict order polynomial

For $n \geq 1$, define the strict order polynomial $\bar{\Omega}_{P}(n)$ of P by

$$
\bar{\Omega}_{P}(n)=\#\left\{f: P \rightarrow\{1, \ldots, n\} \mid s<p t \Rightarrow f(s)<_{\mathbb{Z}} f(t)\right\} .
$$

$$
\begin{aligned}
\bar{\Omega}_{P}(1) & =0 \text { unless } P \text { is an antichain } \\
\Omega(p \text {-chain, } n) & =\binom{n}{p} \\
\Omega(p \text {-antichain, } n) & =n^{p}
\end{aligned}
$$

Polynomiality

Theorem. $\Omega_{P}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$. (Thus $\Omega_{P}(n)$ determines $e(P)$.)

Polynomiality

Theorem. $\Omega_{P}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$. (Thus $\Omega_{P}(n)$ determines $e(P)$.)

Proof. e_{s} : number of surjective order-preserving maps $P \rightarrow\{1, \ldots, s\}$ (so $e_{s}=0$ if $s>p$).

Polynomiality

Theorem. $\Omega_{P}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$. (Thus $\Omega_{P}(n)$ determines $e(P)$.)

Proof. e_{s} : number of surjective order-preserving maps $P \rightarrow\{1, \ldots, s\}\left(\right.$ so $e_{s}=0$ if $\left.s>p\right)$.

To obtain $f: P \rightarrow\{1, \ldots, n\}$ order-preserving, choose $1 \leq s \leq p$, then choose an s-element subset S of $\{1, \ldots, n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \rightarrow S$ in e_{s} ways.

Polynomiality

Theorem. $\Omega_{P}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$. (Thus $\Omega_{P}(n)$ determines $e(P)$.)

Proof. e_{s} : number of surjective order-preserving maps $P \rightarrow\{1, \ldots, s\}\left(\right.$ so $e_{s}=0$ if $\left.s>p\right)$.

To obtain $f: P \rightarrow\{1, \ldots, n\}$ order-preserving, choose $1 \leq s \leq p$, then choose an s-element subset S of $\{1, \ldots, n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \rightarrow S$ in e_{s} ways.

$$
\Rightarrow \Omega_{P}(n)=\sum_{s=1}^{p} e_{s}\binom{n}{s} .
$$

Polynomiality

Theorem. $\Omega_{p}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$. (Thus $\Omega_{P}(n)$ determines $e(P)$.)

Proof. e_{s} : number of surjective order-preserving maps $P \rightarrow\{1, \ldots, s\}\left(\right.$ so $e_{s}=0$ if $\left.s>p\right)$.

To obtain $f: P \rightarrow\{1, \ldots, n\}$ order-preserving, choose $1 \leq s \leq p$, then choose an s-element subset S of $\{1, \ldots, n\}$ is $\binom{n}{s}$ ways, and finally choose a surjective order-preserving map $P \rightarrow S$ in e_{s} ways.

$$
\Rightarrow \Omega_{P}(n)=\sum_{s=1}^{p} e_{s}\binom{n}{s} .
$$

Now $\binom{n}{s}$ is a polynomial in n of degree s and leading coefficient $1 / s!$. Moreover, $e_{p}=e(P)$ (clear). The proof follows.

Polynomiality (cont.)

Similarly:
Theorem. $\bar{\Omega}_{P}(n)$ is a polynomial in n of degree p and leading coefficient $e(P) / p!$.

Ehrhart polynomial of $\mathcal{O}(P)$

integer points in $n \mathcal{O}(P)$: integer solutions $\left(a_{1}, \ldots, a_{p}\right)$ to

$$
0 \leq x_{i} \leq n, \quad t_{i} \leq p t_{j} \Rightarrow x_{i} \leq \mathbb{R} x_{j}
$$

Define $f\left(t_{i}\right)=a_{i}$. Thus

$$
f: P \rightarrow\{0,1, \ldots, n\}, \quad t_{i} \leq P t_{j} \Rightarrow a_{i} \leq_{\mathbb{Z}} a_{j},
$$

$$
\text { so } i(\mathcal{O}(P), n)=\Omega_{p}(n+1) \quad(\text { since } \#\{0,1, \ldots, n\}=n+1) \text {. }
$$

Order polynomial reciprocity

strict order-preserving map $f: P \rightarrow \mathbb{N}: s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)$

Order polynomial reciprocity

strict order-preserving map $f: P \rightarrow \mathbb{N}: s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)$
points $\left(x_{1}, \ldots, x_{p}\right) \operatorname{in} \operatorname{int}(\mathcal{O}(P))$:

$$
0<x_{i}<1, \quad t_{i}<p \quad t_{j} \Rightarrow x_{i}<x_{j}
$$

points $\left(x_{1}, \ldots, x_{p}\right)$ in $n \operatorname{int}(\mathcal{O}(P))$:

$$
\left.0<x_{i}<n, \quad t_{i}<p \quad t_{j} \Rightarrow x_{i}<x_{j}\right\} .
$$

Order polynomial reciprocity

strict order-preserving map $f: P \rightarrow \mathbb{N}: s<_{P} t \Rightarrow f(s)<_{\mathbb{Z}} f(t)$
points $\left(x_{1}, \ldots, x_{p}\right) \operatorname{in} \operatorname{int}(\mathcal{O}(P))$:

$$
0<x_{i}<1, \quad t_{i}<p \quad t_{j} \Rightarrow x_{i}<x_{j}
$$

points $\left(x_{1}, \ldots, x_{p}\right)$ in $n \operatorname{int}(\mathcal{O}(P))$:

$$
\left.0<x_{i}<n, \quad t_{i}<p \quad t_{j} \Rightarrow x_{i}<x_{j}\right\} .
$$

Thus $\bar{i}(\mathcal{O}(P), n)$ is the number of strict order-preserving maps $P \rightarrow\{1, \ldots, n-1\}$. Since $\Omega_{P}(n)=i(\mathcal{O}(P), n-1)$ and $\bar{i}(\mathcal{O}(P), n)=(-1)^{p} i(\mathcal{O}(P),-n)$, we get:

Corollary (reciprocity for order polynomials). $\bar{\Omega}_{P}(n)=(-1)^{p} \Omega(-n)$.

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of P. Then

$$
\Omega_{P}(0)=\Omega_{P}(-1)=\cdots=\Omega_{P}(-\ell)=0 .
$$

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of P. Then

$$
\Omega_{P}(0)=\Omega_{P}(-1)=\cdots=\Omega_{P}(-\ell)=0 .
$$

Proof. If $s_{0}<s_{1}<\cdots<s_{m}$ is a chain of length m and $f: P \rightarrow\{1, \ldots, n\}$ is strictly order-preserving, then

$$
f\left(s_{0}\right)<f\left(s_{1}\right)<\cdots<f\left(s_{m}\right) .
$$

Thus $n>m$.

Simple application

Corollary. Let ℓ be the length (one less than the number of elements) of the longest chain of P. Then

$$
\Omega_{P}(0)=\Omega_{P}(-1)=\cdots=\Omega_{P}(-\ell)=0 .
$$

Proof. If $s_{0}<s_{1}<\cdots<s_{m}$ is a chain of length m and $f: P \rightarrow\{1, \ldots, n\}$ is strictly order-preserving, then

$$
f\left(s_{0}\right)<f\left(s_{1}\right)<\cdots<f\left(s_{m}\right) .
$$

Thus $n>m$.
Many other interesting results on order polynomials, but no time here!

Mixed volumes

convex body: a nonempty, compact, convex subset X of \mathbb{R}^{p}. (Given that X is convex, compact is the same as bounded.)

Mixed volumes

convex body: a nonempty, compact, convex subset X of \mathbb{R}^{p}. (Given that X is convex, compact is the same as bounded.)

Let $\alpha, \beta \geq 0$. The Minkowski sum $\alpha K+\beta L$ of two convex bodies K, L is given by

$$
\alpha K+\beta L=\{\alpha x+\beta y: x \in K, y \in L\} .
$$

An example

(up to translation)

Minkowski's theorem

K, L : convex bodies in \mathbb{R}^{p}
$\alpha, \beta \geq 0$
Theorem (Minkowski). We have

$$
\operatorname{vol}(\alpha K+\beta L)=\sum_{i=0}^{p}\binom{p}{i} V_{i}(K, L) \alpha^{p-i} \beta^{i}
$$

for certain real numbers $V_{i}(K, L) \geq 0$, called the mixed volumes of K and L.

Minkowski's theorem

K, L : convex bodies in \mathbb{R}^{p}
$\alpha, \beta \geq 0$
Theorem (Minkowski). We have

$$
\operatorname{vol}(\alpha K+\beta L)=\sum_{i=0}^{p}\binom{p}{i} V_{i}(K, L) \alpha^{p-i} \beta^{i}
$$

for certain real numbers $V_{i}(K, L) \geq 0$, called the mixed volumes of K and L.

Note. $V_{0}(K, L)=\operatorname{vol}(K)(\operatorname{set} \alpha=1, \beta=0)$ and $V_{p}(K, L)=\operatorname{vol}(L)$ (set $\alpha=0, \beta=1$).

An example

An example

Unimodality and log-concavity

$a_{0}, a_{1}, \ldots, a_{n}$: sequence of nonnegative real numbers unimodal: $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j log-concave: $a_{i}^{2} \geq a_{i-1} a_{i+1}, 1 \leq i \leq n-1$
no internal zeros: $i<j<k, a_{i} \neq 0, a_{k} \neq 0 \Rightarrow a_{j} \neq 0$

Unimodality and log-concavity

$a_{0}, a_{1}, \ldots, a_{n}$: sequence of nonnegative real numbers unimodal: $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j log-concave: $a_{i}^{2} \geq a_{i-1} a_{i+1}, 1 \leq i \leq n-1$
no internal zeros: $i<j<k, a_{i} \neq 0, a_{k} \neq 0 \Rightarrow a_{j} \neq 0$
Note. Log-concave and no internal zeros \Rightarrow unimodal.

Unimodality and log-concavity

$a_{0}, a_{1}, \ldots, a_{n}$: sequence of nonnegative real numbers
unimodal: $a_{0} \leq a_{1} \leq \cdots \leq a_{j} \geq a_{j+1} \geq \cdots \geq a_{n}$ for some j log-concave: $a_{i}^{2} \geq a_{i-1} a_{i+1}, 1 \leq i \leq n-1$
no internal zeros: $i<j<k, a_{i} \neq 0, a_{k} \neq 0 \Rightarrow a_{j} \neq 0$
Note. Log-concave and no internal zeros \Rightarrow unimodal.
Proof. Suppose $a_{0}, a_{1}, \ldots, a_{n}$ is not unimodal. Then for some $i<j-1$, we have

$$
a_{i}>a_{i+1}=a_{i+2}=\cdots=a_{j-1}<a_{j} .
$$

If no internal zeros, then $0=a_{i+1}>0$. Then $a_{i+1}^{2}<a_{i} a_{i+2}$, so the sequence is not log-concave.

Height of an element in a linear extension

Let $t \in P$.
$\sigma=s_{1}, \ldots, s_{p}$: linear extension of P
height of t in σ is k, if $s_{k}=t$. Denoted $\mathrm{ht}_{\sigma}(t)$.
$N_{i}=N_{i}(t)$: number of linear extensions σ of P for which $\mathrm{ht}_{\sigma}(t)=i$. In other words

$$
N_{i}=\#\{\sigma \in \mathcal{L}(P): \sigma(t)=i\}
$$

An example

An example

The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937-38, and W. Fenchel, 1936). For any convex bodies $K, L, \subset \mathbb{R}^{p}$, we have

$$
V_{i}(K, L)^{2} \geq V_{i-1}(K, L) V_{i+1}(K, L), \quad 1 \leq i \leq p-1 .
$$

. Moreover, the sequence $V_{0}, V_{1}, \ldots, V_{p}$ has no internal zeros.

The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937-38, and W. Fenchel, 1936). For any convex bodies $K, L, \subset \mathbb{R}^{p}$, we have

$$
V_{i}(K, L)^{2} \geq V_{i-1}(K, L) V_{i+1}(K, L), \quad 1 \leq i \leq p-1 .
$$

. Moreover, the sequence $V_{0}, V_{1}, \ldots, V_{p}$ has no internal zeros.
Proof is difficult.

Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron Graham, 1980) For any p-element poset P and $t \in P$, we have

$$
N_{i}(t)^{2} \geq N_{i-1}(t) N_{i+1}(t), \quad 2 \leq i \leq p-1 .
$$

Moreover, the sequence N_{1}, \ldots, N_{p} has no internal zeros (so it is unimodal).

Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron Graham, 1980) For any p-element poset P and $t \in P$, we have

$$
N_{i}(t)^{2} \geq N_{i-1}(t) N_{i+1}(t), \quad 2 \leq i \leq p-1 .
$$

Moreover, the sequence N_{1}, \ldots, N_{p} has no internal zeros (so it is unimodal).

Plan of proof. No internal zeros: easy combinatorial argument.
Log-concavity: find convex bodies (actually, polytopes) in \mathbb{R}^{p-1} such that $N_{i}=V_{i}(K, L)$ (up to multiplication by a positive constant). (Proof by wishful thinking)

What are K and L ?

$$
\begin{aligned}
& \text { Let } P=\left\{t, t_{1}, t_{2}, \ldots, t_{p-1}\right\} \\
& K=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j} \text { if } t_{i} \leq t_{j}, x_{i}=0 \text { if } t_{i}<t\right\} \\
& L=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j} \text { if } t_{i} \leq t_{j}, x_{i}=1 \text { if } t_{i}>t\right\}
\end{aligned}
$$

What are K and L ?

$$
\begin{aligned}
& \text { Let } P=\left\{t, t_{1}, t_{2}, \ldots, t_{p-1}\right\} \\
& K=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j} \text { if } t_{i} \leq t_{j}, x_{i}=0 \text { if } t_{i}<t\right\} \\
& L=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j} \text { if } t_{i} \leq t_{j}, x_{i}=1 \text { if } t_{i}>t\right\}
\end{aligned}
$$

Note that $K, L \subset \mathcal{O}(P-t)$.

What are K and L ?

Let $P=\left\{t, t_{1}, t_{2}, \ldots, t_{p-1}\right\}$.
$K=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j}\right.$ if $t_{i} \leq t_{j}, x_{i}=0$ if $\left.t_{i}<t\right\}$
$L=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}: 0 \leq x_{i} \leq 1, x_{i} \leq x_{j}\right.$ if $t_{i} \leq t_{j}, x_{i}=1$ if $\left.t_{i}>t\right\}$
Note that $K, L \subset \mathcal{O}(P-t)$.
Claim. $V_{i}(K, L)=\frac{N_{i+1}(t)}{(p-1)!}$

What is $\alpha K+\beta L$?

$$
\alpha K+\beta L=\text { set of all }\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1} \text { such that: }
$$

- $t_{i} \leq P_{-t} t_{j} \Rightarrow 0 \leq x_{i} \leq x_{j} \leq \alpha+\beta$
- $t_{i}<p t \Rightarrow x_{i} \leq \beta$
- $t_{i}>_{P} t \Rightarrow x_{i} \geq \beta$

Proof that $V_{i}(K, L)=N_{i+1}(t)$

Recall $P=\left\{t_{1}, \ldots, t_{p-1}, t\right\}$. For $\alpha, \beta \geq 0$ let $\mathcal{P}=\alpha K+\beta L$. For each linear extension $\sigma: P \rightarrow\{1, \ldots, p\}$, define

$$
\begin{gathered}
\Delta_{\sigma}=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathcal{P}:\right. \\
x_{i} \leq x_{j}
\end{gathered} \text { if } \quad \sigma\left(t_{i}\right) \leq \sigma\left(t_{j}\right), ~ \begin{array}{rll}
x_{i} \leq \beta & \text { if } & \sigma\left(t_{i}\right)<\sigma(t) \\
\beta \leq x_{i} \leq \alpha+\beta & \text { if } & \sigma\left(t_{i}\right)>\sigma(t) .
\end{array}
$$

Proof that $V_{i}(K, L)=N_{i+1}(t)$

Recall $P=\left\{t_{1}, \ldots, t_{p-1}, t\right\}$. For $\alpha, \beta \geq 0$ let $\mathcal{P}=\alpha K+\beta L$. For each linear extension $\sigma: P \rightarrow\{1, \ldots, p\}$, define

$$
\begin{array}{rll}
\Delta_{\sigma}=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathcal{P}:\right. \\
x_{i} \leq x_{j} & \text { if } & \sigma\left(t_{i}\right) \leq \sigma\left(t_{j}\right) \\
x_{i} \leq \beta & \text { if } & \sigma\left(t_{i}\right)<\sigma(t) \\
\beta \leq x_{i} \leq \alpha+\beta & \text { if } & \sigma\left(t_{i}\right)>\sigma(t) .
\end{array}
$$

Easy to check (completely analogous the proof that $\mathcal{O}(P)$ is a union of simplices $\mathcal{O}(\sigma))$: Δ_{σ} 's, for $\sigma \in \mathcal{L}(P)$, have disjoint interiors and union \mathcal{P}.

Proof that $V_{i}(K, L)=N_{i+1}(t)$

Recall $P=\left\{t_{1}, \ldots, t_{p-1}, t\right\}$. For $\alpha, \beta \geq 0$ let $\mathcal{P}=\alpha K+\beta L$. For each linear extension $\sigma: P \rightarrow\{1, \ldots, p\}$, define

$$
\begin{array}{rll}
\Delta_{\sigma}=\left\{\left(x_{1}, \ldots, x_{p-1}\right) \in \mathcal{P}:\right. \\
x_{i} \leq x_{j} & \text { if } & \sigma\left(t_{i}\right) \leq \sigma\left(t_{j}\right) \\
x_{i} \leq \beta & \text { if } & \sigma\left(t_{i}\right)<\sigma(t) \\
\beta \leq x_{i} \leq \alpha+\beta & \text { if } & \sigma\left(t_{i}\right)>\sigma(t) .
\end{array}
$$

Easy to check (completely analogous the proof that $\mathcal{O}(P)$ is a union of simplices $\mathcal{O}(\sigma))$: Δ_{σ} 's, for $\sigma \in \mathcal{L}(P)$, have disjoint interiors and union \mathcal{P}.
Note. Δ_{σ} need not be a simplex because σ is a linear extension of P, not $P-t$.

Proof (cont.)

Let $\sigma(t)=i$, and define $\boldsymbol{w} \in \mathfrak{S}_{p-1}$ by

$$
\sigma\left(t_{w(1)}\right)<\sigma\left(t_{w(2)}\right)<\cdots<\sigma\left(t_{w(p-1)}\right) .
$$

Then Δ_{σ} consists of all $\left(x_{1}, \ldots, x_{p-1}\right) \in \mathbb{R}^{p-1}$ satisfying

$$
0 \leq x_{w(1)} \leq \cdots \leq x_{w(i-1)} \leq \beta \leq x_{w(i)} \leq \cdots \leq x_{w(p-1)} \leq \alpha+\beta .
$$

This is a product of two simplices with volume

$$
\operatorname{vol}\left(\Delta_{\sigma}\right)=\frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}
$$

An example

$1234 \beta \leq x_{2} \leq x_{3} \leq x_{4} \leq \alpha+\beta$
$21340 \leq x_{2} \leq \beta \leq x_{3} \leq x_{4} \leq \alpha+\beta$
$1243 \quad \beta \leq x_{2} \leq x_{4} \leq x_{3} \leq \alpha+\beta$
$21430 \leq x_{2} \leq \beta \leq x_{4} \leq x_{3} \leq \alpha+\beta$
$24130 \leq x_{2} \leq x_{4} \leq \beta \leq x_{3} \leq \alpha+\beta$

Conclusion of proof

Δ_{σ} is a product of two simplices with volume

$$
\operatorname{vol}\left(\Delta_{\sigma}\right)=\frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!}
$$

Conclusion of proof

Δ_{σ} is a product of two simplices with volume

$$
\begin{aligned}
& \operatorname{vol}\left(\Delta_{\sigma}\right)=\frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!} \\
\Rightarrow \operatorname{vol}(\mathcal{P}) & =\sum_{\sigma \in \mathcal{L}(P)} \operatorname{vol}\left(\Delta_{\sigma}\right) \\
& =\sum_{i=1}^{p} N_{i}(t) \frac{\alpha^{p-i}}{(p-i)!} \frac{\beta^{i-1}}{(i-1)!} \\
& =\frac{1}{(p-1)!} \sum_{i=0}^{p-1} N_{i+1}(t)\binom{p-1}{i} \alpha^{p-1-i} \beta^{i}
\end{aligned}
$$

so $V_{i}(K, L)=\frac{N_{i+1}(t)}{(p-1)!}$.

The chain polytope

$\boldsymbol{P}=\left\{t_{1}, \ldots, t_{p}\right\}$ as before
Definition. The chain polytope $\mathcal{C}(P) \subset \mathbb{R}^{p}$ is defined by

$$
\begin{gathered}
\mathcal{C}(P)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}: 0 \leq x_{i}, \sum_{t_{i} \in C} x_{i} \leq 1\right. \text { for every chain } \\
\text { (or maximal chain) } C \text { of } P\} .
\end{gathered}
$$

The chain polytope

$\boldsymbol{P}=\left\{t_{1}, \ldots, t_{p}\right\}$ as before
Definition. The chain polytope $\mathcal{C}(P) \subset \mathbb{R}^{p}$ is defined by

$$
\begin{gathered}
\mathcal{C}(P)=\left\{\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}: 0 \leq x_{i}, \sum_{t_{i} \in C} x_{i} \leq 1\right. \text { for every chain } \\
\text { (or maximal chain) } C \text { of } P\} .
\end{gathered}
$$

Example. (a) If P is an antichain, then $\mathcal{C}(P)=\mathcal{O}(P)$, the p-dimensional unit cube $[0,1]^{p}$.
(b) If P is a chain $t_{1}<\cdots<t_{p}$, then $\mathcal{C}(P)$ is the p-dimensional simplex $x_{i} \geq 0, x_{1}+\cdots+x_{p} \leq 1$.

Two notes

Note. If P is a chain $t_{1}<\cdots<t_{p}$, then define $\phi: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ by $\phi\left(x_{1}, \ldots, x_{p}\right)=\left(x_{1}, x_{2}-x_{1}, \ldots, x_{p}-x_{p-1}\right)$. Then ϕ is a linear isomorphism from $\mathcal{O}(P)$ to $\mathcal{C}(P)$. It preserves volume since the linear transformation has determinant 1 (lower triangular with 1's on the diagonal).

Two notes

Note. If P is a chain $t_{1}<\cdots<t_{p}$, then define $\phi: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ by $\phi\left(x_{1}, \ldots, x_{p}\right)=\left(x_{1}, x_{2}-x_{1}, \ldots, x_{p}-x_{p-1}\right)$. Then ϕ is a linear isomorphism from $\mathcal{O}(P)$ to $\mathcal{C}(P)$. It preserves volume since the linear transformation has determinant 1 (lower triangular with 1's on the diagonal).

Note. $\operatorname{dim} \mathcal{C}(P)=p$, since the cube $[0,1 / p]^{p}$ is contained in $\mathcal{C}(P)$.

Vertices of $\mathcal{C}(P)$

Recall that if $S \subseteq P$, then

$$
\chi_{s}=\left\{\left(x_{1}, \ldots, x_{p}\right): x_{i}=\left\{\begin{array}{cc}
0, & t_{i} \notin S \\
1, & t_{i} \in S
\end{array}\right\}\right.
$$

Theorem. The vertices of $\mathcal{C}(P)$ are the sets χ_{A}, where A is an antichain of P.

An example

$$
t_{1}^{t_{3}}
$$

Proof

Theorem. The vertices of $\mathcal{C}(P)$ are the sets χ_{A}, where A is an antichain of P.

Proof

Theorem. The vertices of $\mathcal{C}(P)$ are the sets χ_{A}, where A is an antichain of P.

Proof. Clearly $\chi_{A} \in \mathcal{O}(P)$, and χ_{A} is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_{A}.

Proof

Theorem. The vertices of $\mathcal{C}(P)$ are the sets χ_{A}, where A is an antichain of P.

Proof. Clearly $\chi_{A} \in \mathcal{O}(P)$, and χ_{A} is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_{A}.

Assume $v \in \mathcal{C}(P)$ is a vertex and $v \neq \chi_{A}$ for some A.
Idea: show $v=\lambda x+(1-\lambda) y$ for some $0<\lambda<1$ and $x, y \in \mathcal{C}(P)$.

Proof

Theorem. The vertices of $\mathcal{C}(P)$ are the sets χ_{A}, where A is an antichain of P.

Proof. Clearly $\chi_{A} \in \mathcal{O}(P)$, and χ_{A} is a vertex (e.g., since it is a vertex of the binary unit cube containing $\mathcal{C}(P)$). Also, any binary vector in $\mathcal{C}(P)$ has the form χ_{A}.

Assume $v \in \mathcal{C}(P)$ is a vertex and $v \neq \chi_{A}$ for some A.
Idea: show $v=\lambda x+(1-\lambda) y$ for some $0<\lambda<1$ and $x, y \in \mathcal{C}(P)$. Let $v=\left(v_{1}, \ldots, v_{p}\right), v \neq \chi_{A}$. Let $Q=\left\{t_{i} \in P: 0<v_{i}<1\right\}$. Let Q_{1} be the set of minimal elements of Q and Q_{2} the set of minimal elements of $Q-Q_{1}$.

Easy: if v is a vertex then $Q_{1}, Q_{2} \neq \varnothing$.

Proof (cont.)

Define

$$
\varepsilon=\min \left\{v_{i}, 1-v_{i}: t_{i} \in Q_{1} \cup Q_{2}\right\} .
$$

Define $y=\left(y_{1}, \ldots, y_{p}\right), z=\left(z_{1}, \ldots, z_{p}\right) \in \mathbb{R}^{p}$ by

$$
\begin{aligned}
& y_{i}=\left\{\begin{aligned}
v_{i}, & t_{i} \notin Q_{1} \cup Q_{2} \\
v_{i}+\varepsilon, & t_{i} \in Q_{1} \\
v_{i}-\varepsilon, & t_{i} \in Q_{2},
\end{aligned}\right. \\
& z_{i}=\left\{\begin{aligned}
v_{i}, & t_{i} \notin Q_{1} \cup Q_{2} \\
v_{i}-\varepsilon, & t_{i} \in Q_{1} \\
v_{i}+\varepsilon, & t_{i} \in Q_{2},
\end{aligned}\right.
\end{aligned}
$$

Easy to see $y, z \in \mathcal{C}(P)$. Since $y \neq z$ and $v=\frac{1}{2}(y+z)$, it follows that v is not a vertex of $\mathcal{C}(P)$. $\quad \square$

Order ideals and antichains

Recall: vertices of $\mathcal{O}(P)$: $\bar{\chi}_{I}$, where I is an order ideal vertices of $\mathcal{C}(P)$: χ_{A}, where A is an antichain

Order ideals and antichains

Recall: vertices of $\mathcal{O}(P)$: $\bar{\chi}_{l}$, where I is an order ideal vertices of $\mathcal{C}(P)$: χ_{A}, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

Order ideals and antichains

Recall: vertices of $\mathcal{O}(P)$: $\bar{\chi}_{I}$, where I is an order ideal vertices of $\mathcal{C}(P)$: χ_{A}, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

$$
\begin{aligned}
f(I) & =\{\text { maximal elements of } I\} \\
f^{-1}(A) & =\{s \in P: s \leq t \text { for some } t \in A\} \\
& =\bigcap_{\substack{\text { order ideals } J \\
A \subseteq J}} J .
\end{aligned}
$$

Order ideals and antichains

Recall: vertices of $\mathcal{O}(P)$: $\bar{\chi}_{I}$, where I is an order ideal vertices of $\mathcal{C}(P)$: χ_{A}, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from order ideals of P to antichains of P

$$
\begin{aligned}
f(I) & =\{\text { maximal elements of } I\} \\
f^{-1}(A) & =\{s \in P: s \leq t \text { for some } t \in A\} \\
& =\bigcap_{\substack{\text { order ideals } J \\
A \subseteq J}} J .
\end{aligned}
$$

Thus there is a (canonical) bijection $V(\mathcal{O}(P)) \rightarrow V(\mathcal{C}(P))$. What about other faces?

Example of order ideal \leftrightarrow antichain bijection

Example of order ideal \leftrightarrow antichain bijection

The X-poset

$\mathcal{O}(P): 0 \leq a, b$ (2 equations), $d, e \leq 1$ (2 equations), $a \leq c, b \leq c$, $c \leq d, c \leq e$, so 8 facets (maximal faces)
$\mathcal{C}(P): 0 \leq a, b, c, d, e$ (5 equations), $a+c+d \leq 1, a+c+e \leq 1$, $b+c+d \leq 1, b+c+e \leq 1$, so 9 facets

The X-poset

$\mathcal{O}(P): 0 \leq a, b$ (2 equations), $d, e \leq 1$ (2 equations), $a \leq c, b \leq c$, $c \leq d, c \leq e$, so 8 facets (maximal faces)
$\mathcal{C}(P): 0 \leq a, b, c, d, e$ (5 equations), $a+c+d \leq 1, a+c+e \leq 1$, $b+c+d \leq 1, b+c+e \leq 1$, so 9 facets

Hence $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are not combinatorially equivalent (i.e., they don't have isomorphic face posets)

Length two posets

Exercise. If P has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ of determinant 1 . Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

Length two posets

Exercise. If P has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ of determinant 1 . Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear transformation won't work since $\mathcal{O}(P)$ and $\mathcal{C}(P)$ need not be combinatorially equivalent.

Length two posets

Exercise. If P has no 3-element chain, then there is a bijective linear transformation $\tau: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ of determinant 1 . Thus $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are combinatorial equivalent and have the same Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear transformation won't work since $\mathcal{O}(P)$ and $\mathcal{C}(P)$ need not be combinatorially equivalent.

Note. For the characterization of P for which there is a bijective linear transformation $\tau: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ of determinant 1 , see Hibi and Li, arXiv:1208.4029.

The transfer map

Definition. Define the transfer map $\phi: \mathcal{O}(P) \rightarrow \mathcal{C}(P)$ as follows: if $x=\left(x_{1}, \ldots, x_{p}\right) \in \mathcal{O}(P)$ and $t_{i} \in P$, then $\phi(x)=\left(y_{1}, \ldots, y_{p}\right)$, where

$$
y_{i}=\min \left\{x_{i}-x_{j}: t_{i} \text { covers } t_{j} \text { in } P\right\} .
$$

(If t_{i} is a minimal element of P, then $y_{i}=x_{i}$.)

An example

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P)=X_{1} \cup \cdots \cup X_{k}$ such that ϕ restricted to each X_{i} is linear.

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P)=X_{1} \cup \cdots \cup X_{k}$ such that ϕ restricted to each X_{i} is linear.
(b) Let $n \in \mathbb{P}=\{1,2, \ldots\}$ and $x \in \mathcal{O}(P)$. Then $n x \in \mathbb{Z}^{p}$ if and only if $n \phi(x) \in \mathbb{Z}^{p}$.

Transfer theorem

Theorem. (a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Note. Piecewise-linear means that we can express $\mathcal{O}(P)$ as a finite union $\mathcal{O}(P)=X_{1} \cup \cdots \cup X_{k}$ such that ϕ restricted to each X_{i} is linear.
(b) Let $n \in \mathbb{P}=\{1,2, \ldots\}$ and $x \in \mathcal{O}(P)$. Then $n x \in \mathbb{Z}^{p}$ if and only if $n \phi(x) \in \mathbb{Z}^{p}$.

Corollary. $\operatorname{vol}(\mathcal{C}(P))=\operatorname{vol}(\mathcal{O}(P))=e(P)$ and $i(\mathcal{C}(P), n)=i(\mathcal{O}(P), n)=\Omega_{P}(n+1)$.

Transfer theorem proof.

(a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Proof. Continuity is immediate from the definition. Recall the decomposition $\mathcal{O}(P)=\cup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$, where $\sigma=\left(t_{i_{1}}, \ldots, t_{i_{p}}\right)$ and

$$
\mathcal{O}(\sigma)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{p}: 0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1\right\}
$$

Clearly ϕ is linear on each $\mathcal{O}(\sigma)$, so ϕ is piecewise-linear.

Transfer theorem proof.

(a) The transfer map ϕ is a continuous, piecewise-linear bijection from $\mathcal{O}(P)$ onto $\mathcal{C}(P)$.

Proof. Continuity is immediate from the definition. Recall the decomposition $\mathcal{O}(P)=\bigcup_{\sigma \in \mathcal{L}(P)} \mathcal{O}(\sigma)$, where $\sigma=\left(t_{i_{1}}, \ldots, t_{i_{p}}\right)$ and

$$
\mathcal{O}(\sigma)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{p}: 0 \leq x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{p}} \leq 1\right\} .
$$

Clearly ϕ is linear on each $\mathcal{O}(\sigma)$, so ϕ is piecewise-linear.
Define $\psi: \mathcal{C}(P) \rightarrow \mathcal{O}(P)$ by $\psi\left(y_{1}, \ldots, y_{p}\right)=\left(x_{1}, \ldots, x_{p}\right)$, where

$$
x_{j}=\max \left\{y_{i_{1}}+y_{i_{2}}+\cdots+y_{i_{k}}: t_{i_{1}}<t_{i_{2}}<\cdots<t_{i_{k}}=t_{j}\right\} .
$$

Easy to check: $\psi \phi(x)=x$ and $\phi \psi(y)=y$ for all $x \in \mathcal{O}(P)$ and $y \in \mathcal{C}(P)$. Hence ϕ is a bijection with inverse ψ.

An example (redux)

Conclusion of proof

Remains to show that $n x \in \mathbb{Z}^{p}$ if and only if $n \phi(x) \in \mathbb{Z}^{p}$. This is clear from the formulas for $\phi(x)$ and $\psi(y)$.

Conclusion of proof

Remains to show that $n x \in \mathbb{Z}^{p}$ if and only if $n \phi(x) \in \mathbb{Z}^{p}$. This is clear from the formulas for $\phi(x)$ and $\psi(y)$.

Alternatively, the restriction of ϕ to each $\mathcal{O}(\sigma)$ belongs to $\mathrm{SL}(p, \mathbb{Z})$, i.e., the matrix of of ϕ with respect to the standard basis of \mathbb{R}^{p} is integral of determinant 1 . (In fact, it's lower triangular with 1's on the diagonal.)

Interesting corollary

$\Delta(P)$: set of chains of P (order complex)
Corollary. $\Omega_{P}(n)$ (and hence $e(P)$) depends only on $\Delta(P)$.

Interesting corollary

$\Delta(P)$: set of chains of P (order complex)
Corollary. $\Omega_{P}(n)$ (and hence $e(P)$) depends only on $\Delta(P)$.
Proof. The set \mathcal{A} of antichains of P depends only on $\Delta(P)$. Recall

$$
\mathcal{C}(P)=\operatorname{conv}\left\{\chi_{A}: A \in \mathcal{A}\right\}
$$

Thus $\mathcal{C}(P)$ depends only on $\Delta(P)$. Since $\Omega_{P}(n+1)=i(\mathcal{C}(P), n)$, the proof follows.

An example where $\Delta(P)=\Delta(Q)$

An example where $\Delta(P)=\Delta(Q)$

Aside: when does $\Delta(P)=\Delta(Q)$?

P : finite poset
autonomous subset $Q \subseteq P$: if $t \in P-Q$, then either:

- $t>s$ for all $s \in Q$

Aside: when does $\Delta(P)=\Delta(Q)$?

P : finite poset
autonomous subset $Q \subseteq P$: if $t \in P-Q$, then either:

- $t>s$ for all $s \in Q$
- $t<s$ for all $s \in Q$

Aside: when does $\Delta(P)=\Delta(Q)$?

P : finite poset
autonomous subset $Q \subseteq P$: if $t \in P-Q$, then either:

- $t>s$ for all $s \in Q$
- $t<s$ for all $s \in Q$
- $t \| s$ (i.e., s and t are incomparable) for all $s \in Q$.

Aside: when does $\Delta(P)=\Delta(Q)$?

P : finite poset
autonomous subset $Q \subseteq P$: if $t \in P-Q$, then either:

- $t>s$ for all $s \in Q$
- $t<s$ for all $s \in Q$
- $t \| s$ (i.e., s and t are incomparable) for all $s \in Q$.
flip of an autonomous $Q \subseteq P$: keep all relations $s<t$ unchanged unless both $s, t \in Q$. If $s<t$ in Q, then change to $s>t$, and vice versa. (We are "dualizing" Q inside P.)

Aside: when does $\Delta(P)=\Delta(Q)$?

P : finite poset
autonomous subset $Q \subseteq P$: if $t \in P-Q$, then either:

- $t>s$ for all $s \in Q$
- $t<s$ for all $s \in Q$
- $t \| s$ (i.e., s and t are incomparable) for all $s \in Q$.
flip of an autonomous $Q \subseteq P$: keep all relations $s<t$ unchanged unless both $s, t \in Q$. If $s<t$ in Q, then change to $s>t$, and vice versa. (We are "dualizing" Q inside P.)

Special case: if $Q=P$, then the flip of Q gives P^{*}, the dual of P

Flip example

Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier work of Gallai and others). Let P and Q be finite posets. Then $\Delta(P)=\Delta(Q)$ if and only if Q can be obtained from P by a sequence of flips.

Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier work of Gallai and others). Let P and Q be finite posets. Then $\Delta(P)=\Delta(Q)$ if and only if Q can be obtained from P by a sequence of flips.

Easy to see that flips preserve the order polynomial $\Omega_{p}(n)$. This gives another proof that if $\Delta(P)=\Delta(Q)$ then $\Omega_{P}(n)=\Omega_{Q}(n)$, so also $e(P)=e(Q)$ (Golumbic, 1980).

Chain polytope analogue of $N_{1}(t), \ldots, N_{p}(t)$.

Recall: for $t \in P$,

$$
N_{i}(t)=\#\{\sigma \in \mathcal{L}(P): \sigma(t)=i\} .
$$

Then $N_{i}(t)^{2} \geq N_{i-1}(t) N_{i+1}(t)$, and no internal zeros.
Proof based on Aleksandrov-Fenchel inequalities for polytopes related to $\mathcal{O}(P)$.

Chain polytope analogue of $N_{1}(t), \ldots, N_{p}(t)$.

Recall: for $t \in P$,

$$
N_{i}(t)=\#\{\sigma \in \mathcal{L}(P): \sigma(t)=i\} .
$$

Then $N_{i}(t)^{2} \geq N_{i-1}(t) N_{i+1}(t)$, and no internal zeros.
Proof based on Aleksandrov-Fenchel inequalities for polytopes related to $\mathcal{O}(P)$.

Would like to "transfer" this result to $\mathcal{C}(P)$. What is the analogue of $N_{i}(t)$?
$M_{i}(t)$

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t)=j$, define

$$
\begin{gathered}
\operatorname{spread}_{\sigma}(t)=\max \left\{i: \sigma^{-1}(j-1), \sigma^{-1}(j-2), \ldots, \sigma^{-1}(j-i)\right. \text { are } \\
\text { all incomparable with } t\} .
\end{gathered}
$$

$M_{i}(t)$

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t)=j$, define

$$
\begin{gathered}
\operatorname{spread}_{\sigma}(t)=\max \left\{i: \sigma^{-1}(j-1), \sigma^{-1}(j-2), \ldots, \sigma^{-1}(j-i)\right. \text { are } \\
\text { all incomparable with } t\} .
\end{gathered}
$$

$M_{i}(t)=\#\left\{\sigma \in \mathcal{L}(P): \operatorname{spread}_{\sigma}(t)=i\right\}$.

$M_{i}(t)$

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t)=j$, define

$$
\begin{gathered}
\operatorname{spread}_{\sigma}(t)=\max \left\{i: \sigma^{-1}(j-1), \sigma^{-1}(j-2), \ldots, \sigma^{-1}(j-i)\right. \text { are } \\
\text { all incomparable with } t\} .
\end{gathered}
$$

$M_{i}(t)=\#\left\{\sigma \in \mathcal{L}(P): \operatorname{spread}_{\sigma}(t)=i\right\}$.
Theorem. $M_{i}(t)^{2} \geq M_{i-1}(t) M_{i+1}(t), \quad 1 \leq i \leq p-1$

$M_{i}(t)$

Given $t \in P$ and $\sigma \in \mathcal{L}(P)$ with $\sigma(t)=j$, define

$$
\begin{gathered}
\operatorname{spread}_{\sigma}(t)=\max \left\{i: \sigma^{-1}(j-1), \sigma^{-1}(j-2), \ldots, \sigma^{-1}(j-i)\right. \text { are } \\
\text { all incomparable with } t\} .
\end{gathered}
$$

$M_{i}(t)=\#\left\{\sigma \in \mathcal{L}(P): \operatorname{spread}_{\sigma}(t)=i\right\}$.
Theorem. $M_{i}(t)^{2} \geq M_{i-1}(t) M_{i+1}(t), \quad 1 \leq i \leq p-1$
Proof. "Transfer" the proof that $N_{i}(t)^{2} \geq N_{i-1}(t) N_{i+1}(t)$ (messy details omitted).

An example

An example

$$
\begin{array}{cc}
2 & 0 \\
1 & 0 \\
& \\
\frac{\sigma}{2} & \operatorname{spread}(2) \\
\hline 1234 & 0 \\
1324 & 1 \\
1342 & 2 \\
3124 & 0 \\
3142 & 1 \\
3412 & 0 \\
& \\
\Rightarrow\left(M_{0}, M_{1}, M_{2}, M_{3}\right)=(3,2,1,0)
\end{array}
$$

Decreasing property

Theorem. We have $M_{0}(t) \geq M_{1}(t) \geq \cdots \geq M_{p-1}(t)$.

Decreasing property

Theorem. We have $M_{0}(t) \geq M_{1}(t) \geq \cdots \geq M_{p-1}(t)$.
Proof. Let

$$
\mathcal{M}_{i}(t)=\left\{\sigma \in \mathcal{L}(P): \operatorname{spread}_{t}(\sigma)=i\right\} .
$$

Suffices to give a injection (1-1 correspondence) $\mathcal{M}_{i}(t) \rightarrow \mathcal{M}_{i-1}(t), \quad 1 \leq i \leq p-1$.

Given a linear extension

$$
\sigma=\left(t_{k_{1}}, \ldots, t_{k_{j-1}}, t_{k_{j}}=t, t_{k_{j+1}}, \ldots, t_{k_{p}}\right)
$$

of spread at least 1 , map it to

$$
\left(t_{k_{1}}, \ldots, t_{k_{j-2}}, t, t_{k_{j-1}}, t_{j+1}, \ldots, t_{k_{p}}\right)
$$

Decreasing property

Theorem. We have $M_{0}(t) \geq M_{1}(t) \geq \cdots \geq M_{p-1}(t)$.
Proof. Let

$$
\mathcal{M}_{i}(t)=\left\{\sigma \in \mathcal{L}(P): \operatorname{spread}_{t}(\sigma)=i\right\} .
$$

Suffices to give a injection (1-1 correspondence) $\mathcal{M}_{i}(t) \rightarrow \mathcal{M}_{i-1}(t), \quad 1 \leq i \leq p-1$.

Given a linear extension

$$
\sigma=\left(t_{k_{1}}, \ldots, t_{k_{j-1}}, t_{k_{j}}=t, t_{k_{j+1}}, \ldots, t_{k_{p}}\right)
$$

of spread at least 1 , map it to

$$
\left(t_{k_{1}}, \ldots, t_{k_{j-2}}, t, t_{k_{j-1}}, t_{j+1}, \ldots, t_{k_{p}}\right)
$$

END OF TOPIC 2

