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The order polytope

P: p-element poset, say P = {t1,...,tp}
The order polytope O(P) c RP is defined by

O(P)Z{(Xl,...,XP)ERP :0<x <1, ti<p tj=>X,'SXj}.

(a) If P is an antichain, then O(P) is the p-dimensional
unit cube [0,1]P.
(b) If Pis a chain t; <--- < t,, then O(P) is the p-dimensional
simplex 0 < x; <+ <xp < 1

dimO(P) = p, since if t;,..., t; is a linear extension of P, then
O(P) contains the p-dimensional simplex 0 < x;, <--- < x;, <1 (of
volume 1/p!).



Convex polytope

convex hull conv(X) of a subset X of RP: intersection of all
convex sets containing X

half-space in R”: a subset H of RP of the form
{x eRP : x-v<a} for some fixed 0 # v e R and o € R.
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Convex polytope

convex hull conv(X) of a subset X of RP: intersection of all
convex sets containing X

half-space in R”: a subset H of RP of the form
{x eRP : x-v<a} for some fixed 0 # v e R and o € R.

Let P cR. The following two conditions are
equivalent.

@ P is a bounded intersection of half-spaces.
e P =conv(X) for some finite X c RP.

Such a set P is a convex polytope.
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A vertex v of a convex polytope (or even convex set) P is a point
in P such that

v=Xx+(1-N)y, x,yeP, 0<A<1l=x=y.
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Vertices

A vertex v of a convex polytope (or even convex set) P is a point
in P such that

v=Xx+(1-N)y, x,yeP, 0<A<1l=x=y.

Equivalently, let V =Ny .p_conv(y) Y- Then V is the set of
vertices of P (necessarily finite).

Equivalently, v is a vertex of P if and only if there exists a
half-space H such that {v} =PnH.
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Order ideals

An order ideal of a poset P is a set / € P such that
tel, s<t=sel.

Let Sc P={t1,...,tp}. The characteristic vector xs of S is
defined by xs = (x1,%2,...,Xp) such that

X = 0, ti¢S
" 1, t;jeS.

Write Xs = (1 -x1,1 - x2,...,1 - Xxp).

The vertices of O(P) are the sets X, where | is an
order ideal of P.
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Proof

The vertices of O(P) are the sets X, where | is an
order ideal of P.

Clearly X, € O(P), and X, is a vertex (e.g., since it is a
vertex of the binary unit cube containing O(P)). Also, any binary
vector in O(P) has the form ;.

Assume v € O(P) is a vertex and v # X, for some /.
Idea: show v =Ax+(1-\)y for some 0<A<1and x,y € O(P).

Let v = (vi,...,Vp). Choose v; so 0 < v; <1 (exists since the only
binary vectors in O(P) have the form ;). Choose € > 0 sufficiently
small. Let v~ (respectively, v*) be obtained from v by subtracting
(respectively, adding) € to each entry equal to v;. Then

v,v" e O(P) and

==(v +v"). O
v 2(v vh)



Two remarks

Can also prove the previous theorem by showing directly
that every v e O(P) is a convex combination of the X,'s (not
difficult).



Two remarks

Can also prove the previous theorem by showing directly
that every v e O(P) is a convex combination of the X,'s (not
difficult).

Entire facial structure of O(P) can be described, but
omitted here.



Linear extensions

L(P): set of linear extensions o: P - {1,...,p}, i.e., o is bijective
and order-preserving.

e(P) =#L(P)



An example (from before)

4
3
a
abcd
bacd
abdc
badc

bdac



Decomposition of O(P)

Let 0 € L(P), regarded as the permutation t;,t;,,...,t;, of P (so
o(t) =Jj). Define

O(O') = {(Xl,...,Xn) eRP:0 X S Xjy S0 <X, < 1},

a simplex of volume 1/p! .
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Decomposition of O(P)

Theorem. The simplices O(o) have disjoint interiors, and
O(P) = Uger(p) O(0).

Corollary. The volume vol(O(P)) of O(P) is equal to e(P)/p!.

Proof of Corollary. O(P) is the union of e(p) simplices O(o)
with disjoint interiors and volume 1/p! each. O



Proof of decomposition theorem

The interior of the simplex 0 < x;, < x;, <+ < xj, <1 is given by

0 < xj; < Xj, <+ <xj, <1. Thus the interiors of the O(o)’s are
disjoint, since a set of distinct real numbers has a unique ordering
with respect to <. And clearly O(o) € O(P).



Proof of decomposition theorem

The interior of the simplex 0 < x;; < x;, <+ < x;, <1 is given by

0 < xj; < Xj, <+ <xj, <1. Thus the interiors of the O(o)’s are
disjoint, since a set of distinct real numbers has a unique ordering
with respect to <. And clearly O(o) € O(P).

Now suppose that (xi,...,xp) € O(P). Define i1,..., i, (not
necessarily unique) by

)(I-1 S Xi2 S <Xip

and
t,'j <t and Xij; = Xi, = j<k.

Then t;, t;,...,tj, is a linear extension o of P, and
(X1,...,%x) €O(P). O



An aside

This decomposition of O(P) is actually a triangulation,
i.e., the intersection of any two of the simplices is a common face
(possibly empty) of both. (Easy to see.)



An example

Three “compatible” linear extensions:

t1, ta, to, t3, s,
t1, ta, t3, o, g,
t1, ta, to, tg, t3,

ts,
ts,
t57

t7
t7
t7



Why volume 1/p! ?

The simplices 0 < x;; < x;, <+ < x;, <1 all have the same volume
(for any permutation i1,...,i, of 1,...,p), since they differ only by
a permutation of coordinates.



Why volume 1/p! ?

The simplices 0 < x;; < x;, <+ < x;, <1 all have the same volume
(for any permutation i1,...,i, of 1,...,p), since they differ only by
a permutation of coordinates.

Let P be a p-element antichain. Thus L(P) = &, (all
permutations of 1,...,p). Moreover, O(P) is a unit cube so has
volume 1. By the decomposition theorem, it is a union of p!
simplices 0 < x;; <-+- < x;, <1, all with the same volume. Thus the
volume of each simplex is 1/p!.
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nP={nx:xeP} n>1

int(P): interior of P



Ehrhart theory

P: a d-dimensional convex polytope in RP with integer vertices.
nP={nx:xeP} n>1

int(P): interior of P

For n>1, define

i(P,n)
i(P,n)

# (nP(ZP)
# (nint(P) () ZP) .

i(P,n) is the Ehrhart polynomial of P.



An example

SRR
p 3P

(n+1)?
(n-1)% = i(P,-n)

i(P,n)
i(P,n)
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hence is defined for all ne€Z
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Main results of Ehrhart theory

@ i(P,n) is a polynomial in n of degree d =dimP for n>1, and
hence is defined for all ne€Z

e i(P,0)=1
o ( ) i(P,n) = (-1)4i(P,-n)

Proofs: see e.g. EC1, §4.6.2, or Beck-Robins, Computing the
Continuous Discretely.



The order polynomial
P: p-element poset

For n> 1, define the order polynomial Qp(n) of P by

Qp(n)=#{f:P>{1,....n} | s<pt=f(s) <z f(t)}.



The order polynomial
P: p-element poset

For n> 1, define the order polynomial Qp(n) of P by

Qp(n)=#{f:P>{1,....n} | s<pt=f(s) <z f(t)}.

Qp(1) = 1
Qp(2) = 4 order ideals of P
= # vertices of O(P)
) _ n\\ (n+p-1
Q(p-chain,n) = ((p)) = ( ) )

Q(p-antichain,n) = n”



Strict order polynomial

For n> 1, define the strict order polynomial Qp(n) of P by

Qp(n)=#{f:P>{1,....n} | s<pt="F(s) <z f(t)}.



Strict order polynomial

For n> 1, define the strict order polynomial ﬁp(n) of P by

Qp(n)=#{f:P>{1,....n} | s<pt="F(s) <z f(t)}.

Qp(1) = 0 unless P is an antichain

(>

nP

Q(p-chain, n)

Q(p-antichain, n)



Polynomiality

Theorem. Qp(n) is a polynomial in n of degree p and leading
coefficient e(P)/p!. (Thus Qp(n) determines e(P).)
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finally choose a surjective order-preserving map P — S in es ways.
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Proof. es: number of surjective order-preserving maps
P—{1,...,s} (so es =0 if s> p).

To obtain f: P — {1,...,n} order-preserving, choose 1< s < p,
then choose an s-element subset S of {1,...,n} is ('s’) ways, and
finally choose a surjective order-preserving map P — S in es ways.

= Qp(n) = zp: es(Z).

s=1



Polynomiality

Qp(n) is a polynomial in n of degree p and leading
coefficient e(P)/p!. (Thus Qp(n) determines e(P).)

Proof. es: number of surjective order-preserving maps
P—{1,...,s} (so es =0 if s> p).

To obtain f: P — {1,...,n} order-preserving, choose 1< s < p,
then choose an s-element subset S of {1,...,n} is ('s’) ways, and
finally choose a surjective order-preserving map P — S in es ways.

= Qp(n) = zp: es(Z).

s=1

Now (;’) is a polynomial in n of degree s and leading coefficient
1/s!. Moreover, e, =e(P) (clear). The proof follows. O



Polynomiality (cont.)

Similarly:

Theorem. Qp(n) is a polynomial in n of degree p and leading
coefficient e(P)/p!.



Ehrhart polynomial of O(P)

integer points in nO(P): integer solutions (ai,...,ap) to
0<x;<n, ti<ptj= X <R X
Define f(t;) = a;. Thus
f:P—-{0,1,...,n}, ti<ptj=aj<zg aj,

so i(O(P),n)=Qp(n+1) (since #{0,1,...,n} =n+1).



Order polynomial reciprocity

strict order-preserving map f:P - N: s<p t = f(s) <z f(t)



Order polynomial reciprocity
strict order-preserving map f:P - N: s<p t = f(s) <z f(t)
points (xi,...,xp) in int(O(P)):
0<xi<1, ti<ptj = x;<x;
points (xi,...,xp) in nint(O(P)):

0<xj<n, ti<pti=x;j<Xxj}.



Order polynomial reciprocity

strict order-preserving map f: P - N: s<p t = f(s) <z f(t)
points (xi,...,xp) in int(O(P)):
0<xi<1, ti<ptj = x;<x;

points (xi,...,xp) in nint(O(P)):

0<xj<n, ti<pti=x;j<Xxj}.
Thus i(O(P), n) is the number of strict order-preserving maps
P —{1,...,n-1}. Since Qp(n) =i(O(P),n-1) and
i(O(P),n) = (-1)Pi(O(P),-n), we get:

C (reciprocity for order polynomials).
Qp(n) = (~1)PQ(-n).



Simple application

Corollary. Let ¢ be the length (one less than the number of
elements) of the longest chain of P. Then

Q2p(0) = Q2p(-1) =+ =Qp(-£) = 0.



Simple application

Let ¢ be the length (one less than the number of
elements) of the longest chain of P. Then

Q2p(0) = Q2p(-1) =+ =Qp(-£) = 0.

Proof. If sy <s; <--<sp is a chain of length m and
f:P —{1,...,n} is strictly order-preserving, then

f(so) <f(s1)<:-<f(sm)-

Thus n>m. O



Simple application

Let ¢ be the length (one less than the number of
elements) of the longest chain of P. Then

Q2p(0) = Q2p(-1) =+ =Qp(-£) = 0.

Proof. If sy <s; <--<sp is a chain of length m and
f:P —{1,...,n} is strictly order-preserving, then

f(so) <f(s1)<--<f(sm).
Thus n>m. O

Many other interesting results on order polynomials, but no time
here!
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convex body: a nonempty, compact, convex subset X of RP.
(Given that X is convex, compact is the same as bounded.)



Mixed volumes

convex body: a nonempty, compact, convex subset X of RP.
(Given that X is convex, compact is the same as bounded.)

Let o, 5 > 0. The Minkowski sum oK + 5L of two convex bodies
K, L is given by

aK+8L={ax+pBy : xe K, yel}.



An GXample

./'

(up to translation)

DA



Minkowski’s theorem

K, L: convex bodies in R”

a,3>0

Theorem (Minkowski). We have
P (p .
vol(aK + L) = E( _)V,-(K, LyaP™'p',
=0\

for certain real numbers Vi(K,L) >0, called the mixed volumes
of K and L.



Minkowski’s theorem

K, L: convex bodies in R”

a,3>0

Theorem (Minkowski). We have
P (p .
vol(aK + L) = E( _)V,-(K, LyaP™'p',
=0\

for certain real numbers Vi(K,L) >0, called the mixed volumes
of K and L.

Note. Vo(K, L) =vol(K) (set a=1,5=0) and V,(K,L) =vol(L)
(set «=0,8=1).



An example

3

4 + v =

a=3/\2, b=4/\/2

=] F = = £ DAl



An example

3

4 + v =

a=3/\2, b=4/\/2
1(aK + L) = 1202 + 2 ! af
VO = —
22
7
Vo(K,L) =12, Vi(K,L)= ——., Va(K,L)=0
= VoK) =12, Va(K.D) = 2D va(K.L)

=] F = = £ DAl



Unimodality and log-concavity

ap,ai,...,an: sequence of nonnegative real numbers
unimodal: ag < aj; <---<aj>aj;1 >+ > a, for some j
log-concave: a? > aj_1a;41, 1<i<n-1

no internal zeros: i <j<k, a;#0,a,#0=a;#0
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Unimodality and log-concavity

ap,ai,...,an: sequence of nonnegative real numbers
unimodal: ag < aj; <---<aj>aj;1 >+ > a, for some j
log-concave: a,2 >aj-1ai41, 1<i<n-1

no internal zeros: i <j<k, a;#0,a,#0=a;#0

Note. Log-concave and no internal zeros = unimodal.

Proof. Suppose ag, a1, ..., a, is not unimodal. Then for some

i<j—1, we have

aj > ajy1 = ajy2 = - = aj-1 < aj.

If no internal zeros, then 0 =a;;1 >0. Then a,?+1 < a;aj42, so the
sequence is not log-concave. O



Height of an element in a linear extension

Let t e P.
0 =51,...,5: linear extension of P
height of ¢ in o is k, if s, = t. Denoted ht,(t).

N; = N;(t): number of linear extensions o of P for which
ht,(t) = i. In other words

N;=#{oceL(P):o(t)=1i}.



An example

S5e

g

ht(4)

12345
21345
12435
21435
24135
12354
21354

TN W W ps



An example

S5e

o ht(4)
12345 4
21345

12435
14 2 21435
24135
12354
21354

= (N1, Na, N3, Ng, N5 ) = (0,1,2,2,2) (log-concave)

TN W W ps



The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937-38, and W. Fenchel, 1936).
For any convex bodies K, L,c RP, we have

Vi(K,L)? > Vi_y (K, L) Vi1 (K, L), 1<i<p-1.

. Moreover, the sequence V, Vi,..., V), has no internal zeros.



The Aleksandrov-Fenchel inequalities

Theorem (A. D. Aleksandrov, 1937-38, and W. Fenchel, 1936).
For any convex bodies K, L,c RP, we have

Vi(K,L)? > Viii(K, L) Vi (K, L), 1<i<p-1.
. Moreover, the sequence V, Vi,..., V), has no internal zeros.

Proof is difficult.



Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron
Graham, 1980) For any p-element poset P and t € P, we have

N;i(t)® > N1 (t)Nia(t), 2<i<p-1.

Moreover, the sequence Ny, ..., N, has no internal zeros (so it is
unimodal).



Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron
Graham, 1980) For any p-element poset P and t € P, we have

N;i(t)® > N1 (t)Nia(t), 2<i<p-1.

Moreover, the sequence Ny, ..., N, has no internal zeros (so it is
unimodal).
Plan of proof. : easy combinatorial argument.

: find convex bodies (actually, polytopes) in RP~1
such that N; = Vi(K, L) (up to multiplication by a positive
constant). (Proof by wishful thinking)



What are K and L?

Let P={t,t1,t2,... , tp-1}.
K={(xt, -, xp-1) eRPT:0<x <1, < xif t; < g, x; = 0if t; < t}

L={(x1,...,%p-1) ERPL: 0<x; <1, x; < xjif ty < tj, x; = Lif t; > t}
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What are K and L?

Let P={t,t1,t2,... , tp-1}.
K={(xt, -, xp-1) eRPT:0<x <1, < xif t; < g, x; = 0if t; < t}

L={(x1,...,%p-1) ERPL: 0<x; <1, x; < xjif ty < tj, x; = Lif t; > t}

Note that K,L c O(P - t).

Ni+1(t)

ViD= G



What is aK + gL?

aK + L =set of all (x1,...,Xp-1) € RP7! such that :

@ ti<p+ti=0<x<x;<a+f3
) t,'<pt:>XiS,B

o ti>pt=x 203



Proof that V;(K,L) = N;,1(t)
Recall P = {t1,...,tp_1,t}. For o, >0 let P =aK + 3L. For
each linear extension o: P — {1,... p}, define
Aa- = {(Xl,... ,Xp_l) eP:

Xij < Xj if O'(t,') SO'(tj)
xi< B if o(t) <o(t)
B<xi<a+p if o(t)>o(t).
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Recall P = {t1,...,tp_1,t}. For o, >0 let P =aK + 3L. For
each linear extension o: P — {1,... p}, define

AU = {(Xl,...,Xp_l) eP:
xi < x; it o(t;) SO’(I‘J')
xi< B if o(t) <o(t)
B<xi<a+p if o(t)>o(t).
(completely analogous the proof that O(P) is a

union of simplices O(0)): A,'s, for o € L(P), have disjoint
interiors and union P.



Proof that V;(K,L) = N;,1(t)

Recall P = {t1,...,tp_1,t}. For o, >0 let P =aK + 3L. For
each linear extension o: P — {1,... p}, define

Ag = {(Xl,...,Xp_l) eP:

Xi < X if O'(t,') SO’(I‘J')
xi< B if o(t) <o(t)
B<xi<a+p if o(t)>o(t).

(completely analogous the proof that O(P) is a
union of simplices O(0)): A,'s, for o € L(P), have disjoint
interiors and union P.

A, need not be a simplex because o is a linear extension of
P, not P —t.



Proof (cont.)

Let o(t) =/, and define w € S,_1 by
o(tw)) <o(tw@)) < <o(ty(p-1))-
Then A, consists of all (xq,...,Xp-1) € RP! satisfying
0 < Xp(1) < S Xp(im1) € B < Xu(i) 0 < Xyy(p-1) S @+ 6.
This is a product of two simplices with volume

ap—i ,Bi_l

(p- (-1

vol(A,) =



An example

1234
2134
1243
2143
2413

t=1 2

B<xo<xz3<xa<a+f3
0<x<B<xz3<xa<a+pf
B<xp<xa<xz3<a+[3
0<xn<fB<xp<xz<a+pf

O<xo<xya<f<xz<a+pf



Conclusion of proof

A, is a product of two simplices with volume

ap—i ,Bi_l

(p-) (-1

vol(A,) =




Conclusion of proof

A, is a product of two simplices with volume

ap—i ,Bi_l
voll&o) = i
=vol(P) = > wvol(A,)
oelL(P)
B p—i ,Bi_l
) Z; MG />'<: 1)'
so Vi(K, L) = N ()

(p-1



The chain polytope

P ={ty,...,t,} as before
Definition. The chain polytope C(P) c RP is defined by

C(P)={(x1,...,xp) eRP : 0 < x;, Z x; < 1 for every chain
tieC

(or maximal chain) C of P}.



The chain polytope

P ={ty,...,t,} as before
The chain polytope C(P) c RP is defined by
C(P)={(x1,....%) €RP : 0< x;, > x; <1 for every chain

tieC
(or maximal chain) C of P}.

(a) If P is an antichain, then C(P) = O(P), the
p-dimensional unit cube [0,1]".

(b) If P is a chain t; < - < t,, then C(P) is the p-dimensional
simplex x; >0, x; + -+ +x, < L.



Two notes

If Pis a chain t; <--- < tp, then define ¢: O(P) - C(P) by
d(x1,...,Xp) = (X1,% = X1,...,Xp — Xp-1). Then ¢ is a linear
isomorphism from O(P) to C(P). It preserves volume since the
linear transformation has determinant 1 (lower triangular with 1's
on the diagonal).



Two notes

If Pis a chain t; <--- < tp, then define ¢: O(P) - C(P) by
d(x1,...,Xp) = (X1,% = X1,...,Xp — Xp-1). Then ¢ is a linear
isomorphism from O(P) to C(P). It preserves volume since the
linear transformation has determinant 1 (lower triangular with 1's
on the diagonal).

dimC(P) = p, since the cube [0,1/p]P is contained in C(P).



Vertices of C(P)

Recall that if S ¢ P, then

0, t;¢S
XS:{(xl,...,xp):x,-:{ 1 t,-iS.}

Theorem. The vertices of C(P) are the sets xa, where A is an
antichain of P.



An example



Proof

Theorem. The vertices of C(P) are the sets xa, where A is an
antichain of P.



Proof

The vertices of C(P) are the sets xa, where A is an
antichain of P.

Clearly xa € O(P), and xa is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form xa.



Proof

The vertices of C(P) are the sets xa, where A is an
antichain of P.

Clearly xa € O(P), and xa is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form xa.

Assume v € C(P) is a vertex and v # x4 for some A.

Idea: show v =Ax+ (1-A)y for some 0 <A< 1and x,y € C(P).



Proof

The vertices of C(P) are the sets xa, where A is an
antichain of P.

Clearly xa € O(P), and xa is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form xa.

Assume v € C(P) is a vertex and v # x4 for some A.
Idea: show v =Ax+(1-\)y for some 0<A<1and x,y eC(P).

Let vi=(vi,...,vp), vExa. Let Q={tie P: 0<v;<1}. Let y
be the set of minimal elements of Q and Q> the set of minimal
elements of Q — Q.

if v is a vertex then Q1, @ + &.



Proof (cont.)

Define
e=min{v;,1-v; : t;e QU Qa}.
Define y = (y1,..-,¥p), z=(21,...,2p) € RP by
Vi, tif Qru@

yi=4y vite, tie@
vi—e, tieQa,

vi, tig@QiuQ
zi={ vi—&, tie@
vite, tieQo,

Easy to see y,ze C(P). Since y # zand v = %(y+z), it follows
that v is not a vertex of C(P). O



Order ideals and antichains

vertices of O(P): X;, where [ is an order ideal

vertices of C(P): xa, where A is an antichain



Order ideals and antichains
vertices of O(P): X;, where [ is an order ideal
vertices of C(P): xa, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P



Order ideals and antichains
vertices of O(P): X;, where [ is an order ideal
vertices of C(P): xa, where A is an antichain

. if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P

(1)
(A

{maximal elements of /}

{seP :s<tforsometeA}

N J

order ideals J
AcJ



Order ideals and antichains
vertices of O(P): X;, where [ is an order ideal
vertices of C(P): xa, where A is an antichain

. if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P

(1)
(A

{maximal elements of /}

{seP :s<tforsometeA}

N J

order ideals J
AcJ

Thus there is a (canonical) bijection V(O(P)) - V(C(P)). What
about other faces?



Example of order ideal <« antichain bijection



Example of order ideal <« antichain bijection



The X-poset

a b

: 0< a,b (2 equations), d,e <1 (2 equations), a<c, b<c,
c<d, c<e, so 8 facets (maximal faces)

:0<a,b,c,d,e (5equations), a+c+d<1l a+c+e<l,
b+c+d<1l b+c+e<1, so9 facets



The X-poset

a b

: 0< a,b (2 equations), d,e <1 (2 equations), a<c, b<c,
c<d, c<e, so 8 facets (maximal faces)

:0<a,b,c,d,e (5equations), a+c+d<1l a+c+e<l,
b+c+d<1l b+c+e<1, so9 facets

Hence O(P) and C(P) are not combinatorially equivalent (i.e.,
they don't have isomorphic face posets)



Length two posets

If P has no 3-element chain, then there is a bijective
linear transformation 7: O(P) - C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).



Length two posets

If P has no 3-element chain, then there is a bijective
linear transformation 7: O(P) - C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear
transformation won't work since O(P) and C(P) need not be
combinatorially equivalent.



Length two posets

If P has no 3-element chain, then there is a bijective
linear transformation 7: O(P) - C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear
transformation won't work since O(P) and C(P) need not be
combinatorially equivalent.

For the characterization of P for which there is a bijective
linear transformation 7: O(P) — C(P) of determinant 1, see Hibi
and Li, arXiv:1208.4029.



The transfer map

Definition. Define the transfer map ¢: O(P) — C(P) as follows:
if x=(x1,...,%,) € O(P) and t; € P, then ¢(x) = (y1,-..,¥p),
where

yi =min{x; - x; : t; covers t; in P}.

(If t; is a minimal element of P, then y; = x;.)



An example




Transfer theorem

(a) The transfer map ¢ is a continuous,
piecewise-linear bijection from O(P) onto C(P).

Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 U---U Xi such that ¢ restricted to each X;
is linear.



Transfer theorem

(a) The transfer map ¢ is a continuous,
piecewise-linear bijection from O(P) onto C(P).

Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 U---U Xi such that ¢ restricted to each X;
is linear.

(b) Let neP={1,2,...} and x € O(P). Then nx € ZP if and only
if ngp(x) € ZP.



Transfer theorem

(a) The transfer map ¢ is a continuous,
piecewise-linear bijection from O(P) onto C(P).

Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 U---U Xi such that ¢ restricted to each X;
is linear.

(b) Let neP={1,2,...} and x € O(P). Then nx € ZP if and only
if ngp(x) € ZP.

vol(C(P)) =vol(O(P)) = e(P) and
i(C(P),n)=i(O(P),n)=Qp(n+1).



Transfer theorem proof.

(a) The transfer map ¢ is a continuous, piecewise-linear bijection
from O(P) onto C(P).

Proof. Continuity is immediate from the definition. Recall the
decomposition O(P) = Uyez(py O(0), where o = (ti,...,t;,) and

O(0) = {(x1,...,xn) eRP : 0 < x; < xp, <+ < x5, < 1)

Clearly ¢ is linear on each O(0), so ¢ is piecewise-linear.



Transfer theorem proof.

(a) The transfer map ¢ is a continuous, piecewise-linear bijection
from O(P) onto C(P).

Proof. Continuity is immediate from the definition. Recall the
decomposition O(P) = Uyez(py O(0), where o = (ti,...,t;,) and

O(0) = {(x1,...,xn) eRP : 0 < x; < xp, <+ < x5, < 1)
Clearly ¢ is linear on each O(0), so ¢ is piecewise-linear.
Define 9:C(P) = O(P) by ¥(y1,...,¥p) = (x1,...,Xp), where

Xj = max{yj +yi + - +yij * tiy <t <--<tj =t}

Yo(x) = x and ¢pp(y) =y for all x e O(P) and
y € C(P). Hence ¢ is a bijection with inverse ).



An example (redux)




Conclusion of proof

Remains to show that nx € ZP if and only if n¢(x) € ZP. This is
clear from the formulas for ¢(x) and ¥(y).



Conclusion of proof

Remains to show that nx € ZP if and only if n¢(x) € ZP. This is
clear from the formulas for ¢(x) and ¥(y).

Alternatively, the restriction of ¢ to each O(o) belongs to
SL(p,Z), i.e., the matrix of of ¢ with respect to the standard basis
of RP is integral of determinant 1. (In fact, it's lower triangular
with 1's on the diagonal.)



Interesting corollary

A(P): set of chains of P (order complex)

Corollary. Qp(n) (and hence e(P)) depends only on A(P).



Interesting corollary

A(P): set of chains of P (order complex)
Qp(n) (and hence e(P)) depends only on A(P).

Proof. The set A of antichains of P depends only on A(P).

Recall
C(P) =conv{xa : Ac A}.

Thus C(P) depends only on A(P). Since Qp(n+1) =i(C(P),n),
the proof follows. 0O



An example where A(P) = A(Q)

11 11
10 10
3 4
6 6 07




An example where A(P) = A(Q)




Aside: when does A(P) =A(Q)?

P: finite poset

autonomous subset Q € P: if te P— Q, then either:

e t>sforallse@



Aside: when does A(P) =A(Q)?

P: finite poset

autonomous subset Q € P: if te P— Q, then either:
e t>sforallse@

o t<sforallse@



Aside: when does A(P) =A(Q)?

P: finite poset

autonomous subset Q € P: if te P— Q, then either:
e t>sforallse@
o t<sforallse@

o t| s (i.e., s and t are incomparable) for all s € Q.



Aside: when does A(P) =A(Q)?

P: finite poset

autonomous subset Q € P: if t € P— @, then either:
e t>sforallse@
o t<sforallse®
o t| s (i.e., s and t are incomparable) for all s € Q.
flip of an autonomous @ < P: keep all relations s < t unchanged

unless both s;t € Q. If s<tin Q, then change to s > t, and vice
versa. (We are “dualizing” @ inside P.)



Aside: when does A(P) =A(Q)?

P: finite poset

autonomous subset Q € P: if t € P— @, then either:
e t>sforallse@
o t<sforallse®
o t| s (i.e., s and t are incomparable) for all s € Q.
flip of an autonomous @ < P: keep all relations s < t unchanged

unless both s;t € Q. If s<tin Q, then change to s > t, and vice
versa. (We are “dualizing” @ inside P.)

if @ = P, then the flip of @ gives P*, the dual of P



Flip example




Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier
work of Gallai and others). Let P and Q be finite posets. Then
A(P) = A(Q) if and only if Q can be obtained from P by a
sequence of flips.



Flip theorem

(Dreesen, Poguntke, Winkler, 1985; implicit in earlier
work of Gallai and others). Let P and Q be finite posets. Then
A(P) = A(Q) if and only if Q can be obtained from P by a
sequence of flips.

Easy to see that flips preserve the order polynomial Qp(n). This
gives another proof that if A(P) = A(Q) then Qp(n) =Qg(n), so
also e(P) = e(Q) (Golumbic, 1980).



Chain polytope analogue of N;(t),..., Ny(t).

for te P,
N;(t) =#{oceL(P) : o(t) =1i}.
Then N;(t)? > N;_1(t)N;,1(t), and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes
related to O(P).



Chain polytope analogue of N;(t),..., Ny(t).

for te P,
N;(t) =#{oceL(P) : o(t) =1i}.
Then N;(t)? > N;_1(t)N;,1(t), and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes
related to O(P).

Would like to “transfer” this result to C(P). What is the analogue
of Ni(t)?



M;(t)

Given t € P and o € L(P) with o(t) =, define

spread, (t) =max{i : 0 *(j-1),0 2(j-2),...,0 (- i) are

all incomparable with t}.



M;(t)

Given t € P and o € L(P) with o(t) =, define

spread, (t) =max{i : 0 *(j-1),0 2(j-2),...,0 (- i) are
all incomparable with t}.

M;(t) = #{o € L(P) : spread,(t) =i}.



M;(t)

Given t € P and o € L(P) with o(t) =, define

spread, (t) =max{i : 0 *(j-1),0 2(j-2),...,0 (- i) are
all incomparable with t}.

M;(t) = #{o € L(P) : spread,(t) =i}.

Theorem. I\/I,'(t)2 >Mi_1(t)M1(t), 1<i<p-1



M;(t)

Given t € P and o € L(P) with o(t) =, define
spread, (t) =max{i : 0 *(j-1),0 2(j-2),...,0 (- i) are
all incomparable with t}.
M;(t) = #{o € L(P) : spread,(t) =i}.
M;(t)? > Mi1(t)Mjsa(t), 1<i<p-1

Proof. “Transfer’ the proof that N;(t)? > N;_1(t)N;,1(t) (messy
details omitted).



An example

g

3

spread(2)

1234
1324
1342
3124
3142
3412

0

O O N =



An example

1 3

o spread(2)

1234 0
1324 1
1342 2
3124 0
3142 1
3412 0

= (M07 Ml7 M27 M3) = (3727170)



Decreasing property

Theorem. We have My(t) > My(t) > > Mp_1(t).



Decreasing property
We have Mo(t) > My(t) > - > Mp_1(t).
Proof. Let
M;(t) = {o € L(P) : spread,(c) = i}.

Suffices to give a injection (1-1 correspondence)
M;(t) = M;_1(t), 1<i<p-1.

Given a linear extension
o= (t/qv S tkj_lv tkj =t, tkj+1) B tkp)
of spread at least 1, map it to

(tklu ey tkj,27 t, tkj,p tj+17 ) tkp)‘ O



Decreasing property
Theorem. We have My(t) > My(t) > > Mp_1(t).
Proof. Let
M;(t) ={o € L(P) : spread,(c) = i}.

Suffices to give a injection (1-1 correspondence)
M;(t) = M;_1(t), 1<i<p-1.

Given a linear extension
o= (t/qv S tkj_lv tkj =t, tkj+1’ B tkp)
of spread at least 1, map it to

(tklu ey tkj,27 t, tkj,p tj+17 ) tkp)' O

END OF TOPIC 2



