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The order polytope

P: p-element poset, say P = {t1, . . . , tp}

Definition. The order polytope O(P) ⊂ Rp is defined by

O(P) = {(x1, . . . , xp) ∈ R
p ∶ 0 ≤ xi ≤ 1, ti ≤P tj ⇒ xi ≤ xj}.
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The order polytope

P: p-element poset, say P = {t1, . . . , tp}
Definition. The order polytope O(P) ⊂ Rp is defined by

O(P) = {(x1, . . . , xp) ∈ Rp ∶ 0 ≤ xi ≤ 1, ti ≤P tj ⇒ xi ≤ xj}.

Example. (a) If P is an antichain, then O(P) is the p-dimensional
unit cube [0,1]p .
(b) If P is a chain t1 < ⋯ < tp, then O(P) is the p-dimensional
simplex 0 ≤ x1 ≤ ⋯ ≤ xp ≤ 1.

dimO(P) = p, since if ti1, . . . , tip is a linear extension of P , then
O(P) contains the p-dimensional simplex 0 ≤ xi1 ≤ ⋯ ≤ xip ≤ 1 (of
volume 1/p!).
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Convex polytope

convex hull conv(X ) of a subset X of Rp: intersection of all
convex sets containing X

half-space in R
p: a subset H of Rp of the form{x ∈ Rp ∶ x ⋅ v ≤ α} for some fixed 0 ≠ v ∈ Rp and α ∈ R.

Classical theorem. Let P ⊆ R. The following two conditions are
equivalent.

P is a bounded intersection of half-spaces.

P = conv(X ) for some finite X ⊂ Rp.

Such a set P is a convex polytope.
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in P such that

v = λx + (1 − λ)y , x , y ∈ P, 0 ≤ λ ≤ 1⇒ x = y .
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Vertices

A vertex v of a convex polytope (or even convex set) P is a point
in P such that

v = λx + (1 − λ)y , x , y ∈ P, 0 ≤ λ ≤ 1⇒ x = y .

Equivalently, let V = ⋂Y ∶ P=conv(Y )Y . Then V is the set of
vertices of P (necessarily finite).

Equivalently, v is a vertex of P if and only if there exists a
half-space H such that {v} = P ∩H.
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Order ideals

An order ideal of a poset P is a set I ⊆ P such that
t ∈ I , s < t ⇒ s ∈ I .

Let S ⊆ P = {t1, . . . , tp}. The characteristic vector χS of S is
defined by χS = (x1, x2, . . . , xp) such that

xi = { 0, ti /∈ S
1, ti ∈ S .

Write χS = (1 − x1,1 − x2, . . . ,1 − xp).
Theorem. The vertices of O(P) are the sets χI , where I is an
order ideal of P.
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Proof

Theorem. The vertices of O(P) are the sets χI , where I is an
order ideal of P.

Proof. Clearly χI ∈ O(P), and χI is a vertex (e.g., since it is a
vertex of the binary unit cube containing O(P)). Also, any binary
vector in O(P) has the form χI .

Assume v ∈ O(P) is a vertex and v ≠ χI for some I .

Idea: show v = λx + (1 − λ)y for some 0 < λ < 1 and x , y ∈ O(P).
Let v = (v1, . . . , vp). Choose vi so 0 < vi < 1 (exists since the only
binary vectors in O(P) have the form χI ). Choose ǫ > 0 sufficiently
small. Let v− (respectively, v+) be obtained from v by subtracting
(respectively, adding) ǫ to each entry equal to vi . Then
v−, v+ ∈ O(P) and

v =
1

2
(v− + v+). ◻



Two remarks

Note. Can also prove the previous theorem by showing directly
that every v ∈ O(P) is a convex combination of the χI ’s (not
difficult).



Two remarks

Note. Can also prove the previous theorem by showing directly
that every v ∈ O(P) is a convex combination of the χI ’s (not
difficult).

Note. Entire facial structure of O(P) can be described, but
omitted here.



Linear extensions

L(P): set of linear extensions σ∶P → {1, . . . ,p}, i.e., σ is bijective
and order-preserving.

e(P) ∶=#L(P)



An example (from before)
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Decomposition of O(P)

Let σ ∈ L(P), regarded as the permutation ti1, ti2 , . . . , tip of P (so
σ(tij ) = j). Define

O(σ) = {(x1, . . . , xn) ∈ Rp ∶ 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1},
a simplex of volume 1/p! .
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Decomposition of O(P)

Theorem. The simplices O(σ) have disjoint interiors, and
O(P) = ⋃σ∈L(P)O(σ).
Corollary. The volume vol(O(P)) of O(P) is equal to e(P)/p!.
Proof of Corollary. O(P) is the union of e(p) simplices O(σ)
with disjoint interiors and volume 1/p! each. ◻



Proof of decomposition theorem

The interior of the simplex 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1 is given by
0 < xi1 < xi2 < ⋯ < xip < 1. Thus the interiors of the O(σ)’s are
disjoint, since a set of distinct real numbers has a unique ordering
with respect to <. And clearly O(σ) ⊆ O(P).



Proof of decomposition theorem

The interior of the simplex 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1 is given by
0 < xi1 < xi2 < ⋯ < xip < 1. Thus the interiors of the O(σ)’s are
disjoint, since a set of distinct real numbers has a unique ordering
with respect to <. And clearly O(σ) ⊆ O(P).
Now suppose that (x1, . . . , xp) ∈ O(P). Define i1, . . . , ip (not
necessarily unique) by

xi1 ≤ xi2 ≤ ⋯ ≤ xip

and
tij < tik and xij = xik ⇒ j < k .

Then ti1, ti2 , . . . , tip is a linear extension σ of P , and(x1, . . . , xp) ∈ O(P). ◻



An aside

Note. This decomposition of O(P) is actually a triangulation,
i.e., the intersection of any two of the simplices is a common face
(possibly empty) of both. (Easy to see.)
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Three “compatible” linear extensions:

t1, t4, t2, t3, t6, t5, t7

t1, t4, t3, t2, t6, t5, t7

t1, t4, t2, t6, t3, t5, t7



Why volume 1/p! ?

The simplices 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1 all have the same volume
(for any permutation i1, . . . , ip of 1, . . . ,p), since they differ only by
a permutation of coordinates.



Why volume 1/p! ?

The simplices 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1 all have the same volume
(for any permutation i1, . . . , ip of 1, . . . ,p), since they differ only by
a permutation of coordinates.

Let P be a p-element antichain. Thus L(P) =Sp (all
permutations of 1, . . . ,p). Moreover, O(P) is a unit cube so has
volume 1. By the decomposition theorem, it is a union of p!
simplices 0 ≤ xi1 ≤ ⋯ ≤ xip ≤ 1, all with the same volume. Thus the
volume of each simplex is 1/p!.
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Ehrhart theory

P : a d -dimensional convex polytope in R
p with integer vertices.

nP = {nx ∶ x ∈ P}, n ≥ 1
int(P): interior of P
For n ≥ 1, define

i(P,n) = # (nP⋂Z
p)

ī(P,n) = # (n int(P)⋂Z
p) .

i(P,n) is the Ehrhart polynomial of P.



An example

P 3P
i(P,n) = (n + 1)2
ī(P,n) = (n − 1)2 = i(P,−n)
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Main results of Ehrhart theory

i(P,n) is a polynomial in n of degree d = dimP for n ≥ 1, and
hence is defined for all n ∈ Z

i(P,0) = 1
(Ehrhart’s law of reciprocity) ī(P,n) = (−1)d i(P,−n)

Proofs: see e.g. EC1, §4.6.2, or Beck-Robins, Computing the
Continuous Discretely.



The order polynomial

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .



The order polynomial

P: p-element poset

For n ≥ 1, define the order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s ≤P t ⇒ f (s) ≤Z f (t)} .

ΩP(1) = 1

ΩP(2) = # order ideals of P

= # vertices of O(P)
Ω(p-chain,n) = ((n

p
)) = (n + p − 1

p
)

Ω(p-antichain,n) = np



Strict order polynomial

For n ≥ 1, define the strict order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s <P t ⇒ f (s) <Z f (t)} .



Strict order polynomial

For n ≥ 1, define the strict order polynomial ΩP(n) of P by

ΩP(n) =#{f ∶P → {1, . . . ,n} ∣ s <P t ⇒ f (s) <Z f (t)} .

ΩP(1) = 0 unless P is an antichain

Ω(p-chain,n) = (n
p
)

Ω(p-antichain,n) = np



Polynomiality
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coefficient e(P)/p!. (Thus ΩP(n) determines e(P).)
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Polynomiality

Theorem. ΩP(n) is a polynomial in n of degree p and leading
coefficient e(P)/p!. (Thus ΩP(n) determines e(P).)
Proof. es : number of surjective order-preserving maps
P → {1, . . . , s} (so es = 0 if s > p).

To obtain f ∶P → {1, . . . ,n} order-preserving, choose 1 ≤ s ≤ p,
then choose an s-element subset S of {1, . . . ,n} is (n

s
) ways, and

finally choose a surjective order-preserving map P → S in es ways.

⇒ ΩP(n) = p

∑
s=1

es(n
s
).

Now (n
s
) is a polynomial in n of degree s and leading coefficient

1/s!. Moreover, ep = e(P) (clear). The proof follows. ◻



Polynomiality (cont.)

Similarly:

Theorem. ΩP(n) is a polynomial in n of degree p and leading
coefficient e(P)/p!.



Ehrhart polynomial of O(P)

integer points in nO(P): integer solutions (a1, . . . ,ap) to
0 ≤ xi ≤ n, ti ≤P tj ⇒ xi ≤R xj

Define f (ti) = ai . Thus
f ∶P → {0,1, . . . ,n}, ti ≤P tj ⇒ ai ≤Z aj ,

so i(O(P),n) = ΩP(n + 1) (since #{0,1, . . . ,n} = n + 1).
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Order polynomial reciprocity

strict order-preserving map f ∶P → N: s <P t ⇒ f (s) <Z f (t)
points (x1, . . . , xp) in int(O(P)):

0<xi<1, ti <P tj ⇒ xi<xj

points (x1, . . . , xp) in n int(O(P)):
0 < xi < n, ti <P tj ⇒ xi < xj}.



Order polynomial reciprocity

strict order-preserving map f ∶P → N: s <P t ⇒ f (s) <Z f (t)
points (x1, . . . , xp) in int(O(P)):

0<xi<1, ti <P tj ⇒ xi<xj

points (x1, . . . , xp) in n int(O(P)):
0 < xi < n, ti <P tj ⇒ xi < xj}.

Thus ī(O(P),n) is the number of strict order-preserving maps
P → {1, . . . ,n − 1}. Since ΩP(n) = i(O(P),n − 1) and
ī(O(P),n) = (−1)p i(O(P),−n), we get:

Corollary (reciprocity for order polynomials).
ΩP(n) = (−1)pΩ(−n).



Simple application

Corollary. Let ℓ be the length (one less than the number of
elements) of the longest chain of P. Then

ΩP(0) = ΩP(−1) = ⋯ = ΩP(−ℓ) = 0.



Simple application

Corollary. Let ℓ be the length (one less than the number of
elements) of the longest chain of P. Then

ΩP(0) = ΩP(−1) = ⋯ = ΩP(−ℓ) = 0.
Proof. If s0 < s1 < ⋯ < sm is a chain of length m and
f ∶P → {1, . . . ,n} is strictly order-preserving, then

f (s0) < f (s1) < ⋯ < f (sm).
Thus n > m. ◻



Simple application

Corollary. Let ℓ be the length (one less than the number of
elements) of the longest chain of P. Then

ΩP(0) = ΩP(−1) = ⋯ = ΩP(−ℓ) = 0.
Proof. If s0 < s1 < ⋯ < sm is a chain of length m and
f ∶P → {1, . . . ,n} is strictly order-preserving, then

f (s0) < f (s1) < ⋯ < f (sm).
Thus n > m. ◻

Many other interesting results on order polynomials, but no time
here!
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Mixed volumes

convex body: a nonempty, compact, convex subset X of Rp.
(Given that X is convex, compact is the same as bounded.)

Let α,β ≥ 0. The Minkowski sum αK + βL of two convex bodies
K ,L is given by

αK + βL = {αx + βy ∶ x ∈ K , y ∈ L}.



An example



Minkowski’s theorem

K ,L: convex bodies in R
p

α,β ≥ 0

Theorem (Minkowski). We have

vol(αK + βL) = p

∑
i=0

(p
i
)Vi(K ,L)αp−iβi ,

for certain real numbers Vi(K ,L) ≥ 0, called the mixed volumes
of K and L.



Minkowski’s theorem

K ,L: convex bodies in R
p

α,β ≥ 0

Theorem (Minkowski). We have

vol(αK + βL) = p

∑
i=0

(p
i
)Vi(K ,L)αp−iβi ,

for certain real numbers Vi(K ,L) ≥ 0, called the mixed volumes
of K and L.

Note. V0(K ,L) = vol(K) (set α = 1, β = 0) and Vp(K ,L) = vol(L)
(set α = 0, β = 1).
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An example

+ =

a = 3/√2, b = 4/√2

vol(αK + βL) = 12α2 + 2
7

2
√
2
αβ

⇒ V0(K ,L) = 12, V1(K ,L) = 7

2
√
2
, V2(K ,L) = 0



Unimodality and log-concavity

a0,a1, . . . ,an: sequence of nonnegative real numbers

unimodal: a0 ≤ a1 ≤ ⋯ ≤ aj ≥ aj+1 ≥ ⋯ ≥ an for some j

log-concave: a2i ≥ ai−1ai+1, 1 ≤ i ≤ n − 1

no internal zeros: i < j < k , ai ≠ 0,ak ≠ 0⇒ aj ≠ 0
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Unimodality and log-concavity

a0,a1, . . . ,an: sequence of nonnegative real numbers

unimodal: a0 ≤ a1 ≤ ⋯ ≤ aj ≥ aj+1 ≥ ⋯ ≥ an for some j

log-concave: a2i ≥ ai−1ai+1, 1 ≤ i ≤ n − 1

no internal zeros: i < j < k , ai ≠ 0,ak ≠ 0⇒ aj ≠ 0

Note. Log-concave and no internal zeros ⇒ unimodal.

Proof. Suppose a0,a1, . . . ,an is not unimodal. Then for some
i < j − 1, we have

ai > ai+1 = ai+2 = ⋯ = aj−1 < aj .

If no internal zeros, then 0 = ai+1 > 0. Then a2i+1 < aiai+2, so the
sequence is not log-concave. ◻



Height of an element in a linear extension

Let t ∈ P .

σ = s1, . . . , sp: linear extension of P

height of t in σ is k , if sk = t. Denoted htσ(t).

Ni = Ni(t): number of linear extensions σ of P for which
htσ(t) = i . In other words

Ni =#{σ ∈ L(P) ∶ σ(t) = i}.



An example
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σ ht(4)
1 2 3 4 5 4
2 1 3 4 5 4
1 2 4 3 5 3
2 1 4 3 5 3
2 4 1 3 5 2
1 2 3 5 4 5
2 1 3 5 4 5



An example

1 2

3 4

5

σ ht(4)
1 2 3 4 5 4
2 1 3 4 5 4
1 2 4 3 5 3
2 1 4 3 5 3
2 4 1 3 5 2
1 2 3 5 4 5
2 1 3 5 4 5

⇒ (N1,N2,N3,N4,N5) = (0,1,2,2,2) (log-concave)



The Aleksandrov-Fenchel inequalities

Theorem (A.D. Aleksandrov, 1937–38, and W. Fenchel, 1936).
For any convex bodies K ,L,⊂ Rp, we have

Vi(K ,L)2 ≥ Vi−1(K ,L)Vi+1(K ,L), 1 ≤ i ≤ p − 1.

. Moreover, the sequence V0,V1, . . . ,Vp has no internal zeros.



The Aleksandrov-Fenchel inequalities

Theorem (A.D. Aleksandrov, 1937–38, and W. Fenchel, 1936).
For any convex bodies K ,L,⊂ Rp, we have

Vi(K ,L)2 ≥ Vi−1(K ,L)Vi+1(K ,L), 1 ≤ i ≤ p − 1.

. Moreover, the sequence V0,V1, . . . ,Vp has no internal zeros.

Proof is difficult.



Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron
Graham, 1980) For any p-element poset P and t ∈ P, we have

Ni(t)2 ≥ Ni−1(t)Ni+1(t), 2 ≤ i ≤ p − 1.

Moreover, the sequence N1, . . . ,Np has no internal zeros (so it is
unimodal).



Chung-Fishburn-Graham conjecture

Theorem (conjecture of Fan Chung, Peter Fishburn, and Ron
Graham, 1980) For any p-element poset P and t ∈ P, we have

Ni(t)2 ≥ Ni−1(t)Ni+1(t), 2 ≤ i ≤ p − 1.

Moreover, the sequence N1, . . . ,Np has no internal zeros (so it is
unimodal).

Plan of proof. No internal zeros: easy combinatorial argument.

Log-concavity: find convex bodies (actually, polytopes) in R
p−1

such that Ni = Vi(K ,L) (up to multiplication by a positive
constant). (Proof by wishful thinking)



What are K and L?

Let P = {t, t1, t2, . . . , tp−1}.
K = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 0 if ti < t}
L = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 1 if ti > t}



What are K and L?

Let P = {t, t1, t2, . . . , tp−1}.
K = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 0 if ti < t}
L = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 1 if ti > t}
Note that K ,L ⊂ O(P − t).



What are K and L?

Let P = {t, t1, t2, . . . , tp−1}.
K = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 0 if ti < t}
L = {(x1, . . . , xp−1) ∈ Rp−1 ∶ 0 ≤ xi ≤ 1, xi ≤ xj if ti ≤ tj , xi = 1 if ti > t}
Note that K ,L ⊂ O(P − t).
Claim. Vi(K ,L) = Ni+1(t)(p − 1)!



What is αK +βL?

αK + βL = set of all (x1, . . . , xp−1) ∈ Rp−1 such that ∶

ti ≤P−t tj ⇒ 0 ≤ xi ≤ xj ≤ α + β

ti <P t ⇒ xi ≤ β

ti >P t ⇒ xi ≥ β



Proof that Vi(K ,L) = Ni+1(t)

Recall P = {t1, . . . , tp−1, t}. For α,β ≥ 0 let P = αK + βL. For
each linear extension σ∶P → {1, . . . ,p}, define

∆σ = {(x1, . . . , xp−1) ∈ P ∶
xi ≤ xj if σ(ti) ≤ σ(tj)
xi ≤ β if σ(ti) < σ(t)

β ≤ xi ≤ α + β if σ(ti) > σ(t).
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Recall P = {t1, . . . , tp−1, t}. For α,β ≥ 0 let P = αK + βL. For
each linear extension σ∶P → {1, . . . ,p}, define

∆σ = {(x1, . . . , xp−1) ∈ P ∶
xi ≤ xj if σ(ti) ≤ σ(tj)
xi ≤ β if σ(ti) < σ(t)

β ≤ xi ≤ α + β if σ(ti) > σ(t).
Easy to check (completely analogous the proof that O(P) is a
union of simplices O(σ)): ∆σ’s, for σ ∈ L(P), have disjoint
interiors and union P.



Proof that Vi(K ,L) = Ni+1(t)

Recall P = {t1, . . . , tp−1, t}. For α,β ≥ 0 let P = αK + βL. For
each linear extension σ∶P → {1, . . . ,p}, define

∆σ = {(x1, . . . , xp−1) ∈ P ∶
xi ≤ xj if σ(ti) ≤ σ(tj)
xi ≤ β if σ(ti) < σ(t)

β ≤ xi ≤ α + β if σ(ti) > σ(t).
Easy to check (completely analogous the proof that O(P) is a
union of simplices O(σ)): ∆σ’s, for σ ∈ L(P), have disjoint
interiors and union P.

Note. ∆σ need not be a simplex because σ is a linear extension of
P , not P − t.



Proof (cont.)

Let σ(t) = i , and define w ∈ Sp−1 by

σ(tw(1)) < σ(tw(2)) < ⋯ < σ(tw(p−1)).
Then ∆σ consists of all (x1, . . . , xp−1) ∈ Rp−1 satisfying

0 ≤ xw(1) ≤ ⋯ ≤ xw(i−1) ≤ β ≤ xw(i) ≤ ⋯ ≤ xw(p−1) ≤ α + β.

This is a product of two simplices with volume

vol(∆σ) = αp−i

(p − i)!
βi−1

(i − 1)! .



An example

t 2

3 4

=1

1234 β ≤ x2 ≤ x3 ≤ x4 ≤ α + β

21 34 0 ≤ x2 ≤ β ≤ x3 ≤ x4 ≤ α + β

1243 β ≤ x2 ≤ x4 ≤ x3 ≤ α + β

21 43 0 ≤ x2 ≤ β ≤ x4 ≤ x3 ≤ α + β

241 3 0 ≤ x2 ≤ x4 ≤ β ≤ x3 ≤ α + β



Conclusion of proof

∆σ is a product of two simplices with volume

vol(∆σ) = αp−i

(p − i)!
βi−1

(i − 1)! .



Conclusion of proof

∆σ is a product of two simplices with volume

vol(∆σ) = αp−i

(p − i)!
βi−1

(i − 1)! .
⇒ vol(P) = ∑

σ∈L(P)

vol(∆σ)

=
p

∑
i=1

Ni(t) αp−i

(p − i)!
βi−1

(i − 1)!
=

1

(p − 1)!
p−1

∑
i=0

Ni+1(t)(p − 1
i
)αp−1−iβi ,

so Vi(K ,L) = Ni+1(t)(p − 1)! . ◻



The chain polytope

P = {t1, . . . , tp} as before
Definition. The chain polytope C(P) ⊂ Rp is defined by

C(P) = {(x1, . . . , xp) ∈ Rp ∶ 0 ≤ xi , ∑
ti ∈C

xi ≤ 1 for every chain

(or maximal chain) C of P}.



The chain polytope

P = {t1, . . . , tp} as before
Definition. The chain polytope C(P) ⊂ Rp is defined by

C(P) = {(x1, . . . , xp) ∈ Rp ∶ 0 ≤ xi , ∑
ti ∈C

xi ≤ 1 for every chain

(or maximal chain) C of P}.
Example. (a) If P is an antichain, then C(P) = O(P), the
p-dimensional unit cube [0,1]p .
(b) If P is a chain t1 < ⋯ < tp, then C(P) is the p-dimensional
simplex xi ≥ 0, x1 +⋯+ xp ≤ 1.



Two notes

Note. If P is a chain t1 < ⋯ < tp, then define φ∶O(P) → C(P) by
φ(x1, . . . , xp) = (x1, x2 − x1, . . . , xp − xp−1). Then φ is a linear
isomorphism from O(P) to C(P). It preserves volume since the
linear transformation has determinant 1 (lower triangular with 1’s
on the diagonal).



Two notes

Note. If P is a chain t1 < ⋯ < tp, then define φ∶O(P) → C(P) by
φ(x1, . . . , xp) = (x1, x2 − x1, . . . , xp − xp−1). Then φ is a linear
isomorphism from O(P) to C(P). It preserves volume since the
linear transformation has determinant 1 (lower triangular with 1’s
on the diagonal).

Note. dimC(P) = p, since the cube [0,1/p]p is contained in C(P).



Vertices of C(P)

Recall that if S ⊆ P , then

χS = {(x1, . . . , xp) ∶ xi = { 0, ti /∈ S
1, ti ∈ S .

}
Theorem. The vertices of C(P) are the sets χA, where A is an
antichain of P.



An example

t

t t

t
1 2

3 4

(0,0,0,0)

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

(1,1,0,0)

(1,0,0,1)

(0,0,1,1)
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Theorem. The vertices of C(P) are the sets χA, where A is an
antichain of P.
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Proof. Clearly χA ∈ O(P), and χA is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form χA.
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Theorem. The vertices of C(P) are the sets χA, where A is an
antichain of P.

Proof. Clearly χA ∈ O(P), and χA is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form χA.

Assume v ∈ C(P) is a vertex and v ≠ χA for some A.

Idea: show v = λx + (1 − λ)y for some 0 < λ < 1 and x , y ∈ C(P).



Proof

Theorem. The vertices of C(P) are the sets χA, where A is an
antichain of P.

Proof. Clearly χA ∈ O(P), and χA is a vertex (e.g., since it is a
vertex of the binary unit cube containing C(P)). Also, any binary
vector in C(P) has the form χA.

Assume v ∈ C(P) is a vertex and v ≠ χA for some A.

Idea: show v = λx + (1 − λ)y for some 0 < λ < 1 and x , y ∈ C(P).
Let v = (v1, . . . , vp), v ≠ χA. Let Q = {ti ∈ P ∶ 0 < vi < 1}. Let Q1

be the set of minimal elements of Q and Q2 the set of minimal
elements of Q −Q1.

Easy: if v is a vertex then Q1,Q2 ≠ ∅.



Proof (cont.)

Define
ε = min{vi ,1 − vi ∶ ti ∈ Q1 ∪Q2}.

Define y = (y1, . . . , yp), z = (z1, . . . , zp) ∈ Rp by

yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vi , ti /∈ Q1 ∪Q2

vi + ε, ti ∈ Q1

vi − ε, ti ∈ Q2,

zi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vi , ti /∈ Q1 ∪Q2

vi − ε, ti ∈ Q1

vi + ε, ti ∈ Q2,

Easy to see y , z ∈ C(P). Since y ≠ z and v = 1

2
(y + z), it follows

that v is not a vertex of C(P). ◻



Order ideals and antichains

Recall: vertices of O(P): χI , where I is an order ideal

vertices of C(P): χA, where A is an antichain
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Recall: vertices of O(P): χI , where I is an order ideal

vertices of C(P): χA, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P



Order ideals and antichains

Recall: vertices of O(P): χI , where I is an order ideal

vertices of C(P): χA, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P

f (I) = {maximal elements of I}
f −1(A) = {s ∈ P ∶ s ≤ t for some t ∈ A}

= ⋂
order ideals J

A⊆J

J.



Order ideals and antichains

Recall: vertices of O(P): χI , where I is an order ideal

vertices of C(P): χA, where A is an antichain

Posets 101: if P is a finite poset, then there is a bijection f from
order ideals of P to antichains of P

f (I) = {maximal elements of I}
f −1(A) = {s ∈ P ∶ s ≤ t for some t ∈ A}

= ⋂
order ideals J

A⊆J

J.

Thus there is a (canonical) bijection V (O(P))→ V (C(P)). What
about other faces?



Example of order ideal ↔ antichain bijection



Example of order ideal ↔ antichain bijection



The X -poset

a b

c

d e

O(P): 0 ≤ a,b (2 equations), d , e ≤ 1 (2 equations), a ≤ c , b ≤ c ,
c ≤ d , c ≤ e, so 8 facets (maximal faces)

C(P): 0 ≤ a,b, c ,d , e (5 equations), a + c + d ≤ 1, a + c + e ≤ 1,
b + c + d ≤ 1, b + c + e ≤ 1, so 9 facets



The X -poset

a b

c

d e

O(P): 0 ≤ a,b (2 equations), d , e ≤ 1 (2 equations), a ≤ c , b ≤ c ,
c ≤ d , c ≤ e, so 8 facets (maximal faces)

C(P): 0 ≤ a,b, c ,d , e (5 equations), a + c + d ≤ 1, a + c + e ≤ 1,
b + c + d ≤ 1, b + c + e ≤ 1, so 9 facets

Hence O(P) and C(P) are not combinatorially equivalent (i.e.,
they don’t have isomorphic face posets)



Length two posets

Exercise. If P has no 3-element chain, then there is a bijective
linear transformation τ ∶O(P)→ C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).



Length two posets

Exercise. If P has no 3-element chain, then there is a bijective
linear transformation τ ∶O(P)→ C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear
transformation won’t work since O(P) and C(P) need not be
combinatorially equivalent.



Length two posets

Exercise. If P has no 3-element chain, then there is a bijective
linear transformation τ ∶O(P)→ C(P) of determinant 1. Thus
O(P) and C(P) are combinatorial equivalent and have the same
Ehrhart polynomial (and hence the same volume).

Would like something similar for any finite poset, but a linear
transformation won’t work since O(P) and C(P) need not be
combinatorially equivalent.

Note. For the characterization of P for which there is a bijective
linear transformation τ ∶O(P)→ C(P) of determinant 1, see Hibi
and Li, arXiv:1208.4029.



The transfer map

Definition. Define the transfer map φ∶O(P) → C(P) as follows:
if x = (x1, . . . , xp) ∈ O(P) and ti ∈ P , then φ(x) = (y1, . . . , yp),
where

yi = min{xi − xj ∶ ti covers tj in P}.
(If ti is a minimal element of P , then yi = xi .)



An example

.1 .2 .3

.3 .5

.8

.1 .3

0 .2

.3

.2

f



Transfer theorem

Theorem. (a) The transfer map φ is a continuous,
piecewise-linear bijection from O(P) onto C(P).
Note. Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 ∪⋯∪ Xk such that φ restricted to each Xi

is linear.
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Theorem. (a) The transfer map φ is a continuous,
piecewise-linear bijection from O(P) onto C(P).
Note. Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 ∪⋯∪ Xk such that φ restricted to each Xi

is linear.

(b) Let n ∈ P = {1,2, . . . } and x ∈ O(P). Then nx ∈ Zp if and only
if nφ(x) ∈ Zp.



Transfer theorem

Theorem. (a) The transfer map φ is a continuous,
piecewise-linear bijection from O(P) onto C(P).
Note. Piecewise-linear means that we can express O(P) as a
finite union O(P) = X1 ∪⋯∪ Xk such that φ restricted to each Xi

is linear.

(b) Let n ∈ P = {1,2, . . . } and x ∈ O(P). Then nx ∈ Zp if and only
if nφ(x) ∈ Zp.

Corollary. vol(C(P)) = vol(O(P)) = e(P) and
i(C(P),n) = i(O(P),n) = ΩP(n + 1).



Transfer theorem proof.

(a) The transfer map φ is a continuous, piecewise-linear bijection
from O(P) onto C(P).
Proof. Continuity is immediate from the definition. Recall the
decomposition O(P) = ⋃σ∈L(P)O(σ), where σ = (ti1 , . . . , tip) and

O(σ) = {(x1, . . . , xn) ∈ Rp ∶ 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1}.
Clearly φ is linear on each O(σ), so φ is piecewise-linear.



Transfer theorem proof.

(a) The transfer map φ is a continuous, piecewise-linear bijection
from O(P) onto C(P).
Proof. Continuity is immediate from the definition. Recall the
decomposition O(P) = ⋃σ∈L(P)O(σ), where σ = (ti1 , . . . , tip) and

O(σ) = {(x1, . . . , xn) ∈ Rp ∶ 0 ≤ xi1 ≤ xi2 ≤ ⋯ ≤ xip ≤ 1}.
Clearly φ is linear on each O(σ), so φ is piecewise-linear.

Define ψ∶C(P) →O(P) by ψ(y1, . . . , yp) = (x1, . . . , xp), where
xj = max{yi1 + yi2 +⋯+ yik ∶ ti1 < ti2 < ⋯ < tik = tj}.

Easy to check: ψφ(x) = x and φψ(y) = y for all x ∈O(P) and
y ∈ C(P). Hence φ is a bijection with inverse ψ.



An example (redux)

.1 .2 .3

.3 .5

.8

.1 .3

0 .2

.3

.2

f



Conclusion of proof

Remains to show that nx ∈ Zp if and only if nφ(x) ∈ Zp. This is
clear from the formulas for φ(x) and ψ(y).



Conclusion of proof

Remains to show that nx ∈ Zp if and only if nφ(x) ∈ Zp. This is
clear from the formulas for φ(x) and ψ(y).
Alternatively, the restriction of φ to each O(σ) belongs to
SL(p,Z), i.e., the matrix of of φ with respect to the standard basis
of Rp is integral of determinant 1. (In fact, it’s lower triangular
with 1’s on the diagonal.)



Interesting corollary

∆(P): set of chains of P (order complex)

Corollary. ΩP(n) (and hence e(P)) depends only on ∆(P).



Interesting corollary

∆(P): set of chains of P (order complex)

Corollary. ΩP(n) (and hence e(P)) depends only on ∆(P).
Proof. The set A of antichains of P depends only on ∆(P).
Recall

C(P) = conv{χA ∶ A ∈ A}.
Thus C(P) depends only on ∆(P). Since ΩP(n + 1) = i(C(P),n),
the proof follows. ◻



An example where ∆(P) =∆(Q)
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Aside: when does ∆(P) =∆(Q)?

P: finite poset

autonomous subset Q ⊆ P : if t ∈ P −Q, then either:

t > s for all s ∈ Q
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P: finite poset

autonomous subset Q ⊆ P : if t ∈ P −Q, then either:
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t < s for all s ∈ Q

t ∥ s (i.e., s and t are incomparable) for all s ∈ Q.



Aside: when does ∆(P) =∆(Q)?

P: finite poset

autonomous subset Q ⊆ P : if t ∈ P −Q, then either:

t > s for all s ∈ Q

t < s for all s ∈ Q

t ∥ s (i.e., s and t are incomparable) for all s ∈ Q.

flip of an autonomous Q ⊆ P : keep all relations s < t unchanged
unless both s, t ∈ Q. If s < t in Q, then change to s > t, and vice
versa. (We are “dualizing” Q inside P .)



Aside: when does ∆(P) =∆(Q)?

P: finite poset

autonomous subset Q ⊆ P : if t ∈ P −Q, then either:

t > s for all s ∈ Q

t < s for all s ∈ Q

t ∥ s (i.e., s and t are incomparable) for all s ∈ Q.

flip of an autonomous Q ⊆ P : keep all relations s < t unchanged
unless both s, t ∈ Q. If s < t in Q, then change to s > t, and vice
versa. (We are “dualizing” Q inside P .)

Special case: if Q = P , then the flip of Q gives P∗, the dual of P



Flip example
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Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier
work of Gallai and others). Let P and Q be finite posets. Then
∆(P) =∆(Q) if and only if Q can be obtained from P by a
sequence of flips.



Flip theorem

Theorem (Dreesen, Poguntke, Winkler, 1985; implicit in earlier
work of Gallai and others). Let P and Q be finite posets. Then
∆(P) =∆(Q) if and only if Q can be obtained from P by a
sequence of flips.

Easy to see that flips preserve the order polynomial ΩP(n). This
gives another proof that if ∆(P) =∆(Q) then ΩP(n) = ΩQ(n), so
also e(P) = e(Q) (Golumbic, 1980).



Chain polytope analogue of N1(t), . . . ,Np(t).

Recall: for t ∈ P ,

Ni (t) =#{σ ∈ L(P) ∶ σ(t) = i}.
Then Ni(t)2 ≥ Ni−1(t)Ni+1(t), and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes
related to O(P).



Chain polytope analogue of N1(t), . . . ,Np(t).

Recall: for t ∈ P ,

Ni (t) =#{σ ∈ L(P) ∶ σ(t) = i}.
Then Ni(t)2 ≥ Ni−1(t)Ni+1(t), and no internal zeros.

Proof based on Aleksandrov-Fenchel inequalities for polytopes
related to O(P).
Would like to “transfer” this result to C(P). What is the analogue
of Ni(t)?



Mi(t)

Given t ∈ P and σ ∈ L(P) with σ(t) = j , define
spread

σ
(t) = max{i ∶ σ−1(j − 1), σ−1(j − 2), . . . , σ−1(j − i) are

all incomparable with t}.
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Mi(t)

Given t ∈ P and σ ∈ L(P) with σ(t) = j , define
spread

σ
(t) = max{i ∶ σ−1(j − 1), σ−1(j − 2), . . . , σ−1(j − i) are

all incomparable with t}.
Mi (t) =#{σ ∈ L(P) ∶ spreadσ(t) = i}.
Theorem. Mi(t)2 ≥Mi−1(t)Mi+1(t), 1 ≤ i ≤ p − 1

Proof. “Transfer” the proof that Ni(t)2 ≥ Ni−1(t)Ni+1(t) (messy
details omitted).



An example
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σ spread(2)
1 2 3 4 0
1 3 2 4 1
1 3 4 2 2
3 1 2 4 0
3 1 4 2 1
3 4 1 2 0



An example

1

2

3

4

σ spread(2)
1 2 3 4 0
1 3 2 4 1
1 3 4 2 2
3 1 2 4 0
3 1 4 2 1
3 4 1 2 0

⇒ (M0,M1,M2,M3) = (3,2,1,0)



Decreasing property

Theorem. We have M0(t) ≥M1(t) ≥ ⋯ ≥Mp−1(t).



Decreasing property

Theorem. We have M0(t) ≥M1(t) ≥ ⋯ ≥Mp−1(t).
Proof. Let

Mi(t) = {σ ∈ L(P) ∶ spreadt(σ) = i}.
Suffices to give a injection (1-1 correspondence)
Mi(t)→Mi−1(t), 1 ≤ i ≤ p − 1.

Given a linear extension

σ = (tk1 , ..., tkj−1 , tkj = t, tkj+1 , . . . , tkp)
of spread at least 1, map it to

(tk1 , ..., tkj−2 , t, tkj−1 , tj+1, . . . , tkp). ◻



Decreasing property

Theorem. We have M0(t) ≥M1(t) ≥ ⋯ ≥Mp−1(t).
Proof. Let

Mi(t) = {σ ∈ L(P) ∶ spreadt(σ) = i}.
Suffices to give a injection (1-1 correspondence)
Mi(t)→Mi−1(t), 1 ≤ i ≤ p − 1.

Given a linear extension

σ = (tk1 , ..., tkj−1 , tkj = t, tkj+1 , . . . , tkp)
of spread at least 1, map it to

(tk1 , ..., tkj−2 , t, tkj−1 , tj+1, . . . , tkp). ◻
END OF TOPIC 2


