Plethysm and Kronecker Products

Richard P. Stanley

University of Miami and M.I.T.

Intended audience

Talk aimed at those with a general knowledge of symmetric functions but no specialized knowledge of plethysm and Kronecker product.

Introduction

- plethysm and Kronecker product: the two most important operations in the theory of symmetric functions that are not understood combinatorially
- Plethysm due to D. E. Littlewood
- Internal product of symmetric functions: the symmetric function operation corresponding to Kronecker product, due to J. H. Redfield and D. E. Littlewood
- We will give a survey of their history and basic properties.

Dudley Ernest Littlewood

- 7 September 1903 - 6 October 1979
- tutor at Trinity College: J. E. Littlewood (no relation)
- 1948-1970: chair of mathematics at University College of North Wales, Bangor

Plethysm

- introduced by D. E. Littlewood in 1936
- name suggested by M. L. Clark in 1944
- after Greek plethysmos ($\pi \lambda \eta \theta v \sigma \mu o ́ s)$ for "multiplication"

Polynomial representations

$\boldsymbol{V}, \boldsymbol{W}$: finite-dimensional vector spaces/ \mathbb{C}

polynomial representation

$$
\begin{aligned}
\boldsymbol{\varphi}: \mathrm{GL}(V) & \rightarrow \mathrm{GL}(W) \text { (example) }: \\
\varphi\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & =\left[\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & a d+b c & b d \\
c^{2} & 2 c d & d^{2}
\end{array}\right]
\end{aligned}
$$

Definition of plethysm

$\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{X}:$ vector spaces/C of dimensions m, n, p $\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$: polynomial representation with character $\boldsymbol{f} \in \Lambda_{n}$, so $\operatorname{tr} \varphi(A)=f\left(x_{1}, \ldots, x_{m}\right)$ if A has eigenvalues x_{1}, \ldots, x_{m}
$\boldsymbol{\psi}: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X)$: polynomial representation with character $\boldsymbol{g} \in \Lambda_{m}$

Definition of plethysm

$\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{X}:$ vector spaces/C of dimensions m, n, p
$\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$: polynomial representation with character $\boldsymbol{f} \in \Lambda_{n}$, so $\operatorname{tr} \varphi(A)=f\left(x_{1}, \ldots, x_{m}\right)$ if A has eigenvalues x_{1}, \ldots, x_{m}
$\boldsymbol{\psi}: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X)$: polynomial representation with character $\boldsymbol{g} \in \Lambda_{m}$
$\Rightarrow \psi \varphi: \mathrm{GL}(V) \rightarrow \mathrm{GL}(X)$ is a polynomial representation. Let $\boldsymbol{g}[\boldsymbol{f}]$ (or $\boldsymbol{g} \circ \boldsymbol{f}$) denote its character, the plethysm of f and g.

Definition of plethysm

$\boldsymbol{V}, \boldsymbol{W}, \boldsymbol{X}:$ vector spaces/ \mathbb{C} of dimensions m, n, p
$\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W):$ polynomial representation with character $\boldsymbol{f} \in \Lambda_{n}$, so $\operatorname{tr} \varphi(A)=f\left(x_{1}, \ldots, x_{m}\right)$ if A has eigenvalues x_{1}, \ldots, x_{m}
$\psi: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X):$ polynomial representation with character $\boldsymbol{g} \in \Lambda_{m}$
$\Rightarrow \psi \varphi: \mathrm{GL}(V) \rightarrow \mathrm{GL}(X)$ is a polynomial representation. Let $g[f]$ (or $g \circ f$) denote its character, the plethysm of f and g.
\Rightarrow if $f=\sum_{u \in I} u$ ($\boldsymbol{I}=$ set of monomials) then

$$
g[f]=g(u: u \in I) .
$$

Extension of defintions

Can extend definition of $g[f]$ to any symmetric functions f, g using

$$
\begin{aligned}
f\left[p_{n}\right]=p_{n}[f] & =f\left(x_{1}^{n}, x_{2}^{n}, \ldots\right) \\
(a f+b g)[h] & =a f[h]+b g[h], a, b \in \mathbb{Q} \\
(f g)[h] & =f[h] \cdot g[h],
\end{aligned}
$$

where $\boldsymbol{p}_{n}=x_{1}^{n}+x_{2}^{n}+\cdots$.

Examples

Note. Can let $m, n \rightarrow \infty$ and define $g[f]$ in infinitely many variables x_{1}, x_{2}, \ldots (stabilization).

$$
h_{2}=\sum_{i \leq j} x_{i} x_{j} \text {, so } f\left[h_{2}\right]=f\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots\right) .
$$

Examples

Note. Can let $m, n \rightarrow \infty$ and define $g[f]$ in infinitely many variables x_{1}, x_{2}, \ldots (stabilization).
$h_{2}=\sum_{i \leq j} x_{i} x_{j}$, so $f\left[h_{2}\right]=f\left(x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots\right)$.
By RSK, $\prod_{i \leq j}\left(1-x_{i} x_{j}\right)^{-1}=\sum_{\lambda} s_{2 \lambda}$. Since
$\prod\left(1-x_{i}\right)^{-1}=1+h_{1}+h_{2}+\cdots$, we get

$$
h_{n}\left[h_{2}\right]=\sum_{\lambda \vdash n} s_{2 \lambda},
$$

i.e., the character of $S^{n}\left(S^{2} V\right)$.

Schur positivity

$\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$: polynomial representation with character $f \in \Lambda_{n}$
$\psi: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X):$ polynomial representation with character $g \in \Lambda_{m}$
$\boldsymbol{g}[\boldsymbol{f}]$: character of $\psi \circ \varphi$

Schur positivity

$\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$: polynomial representation with character $f \in \Lambda_{n}$
$\psi: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X):$ polynomial representation with character $g \in \Lambda_{m}$
$\boldsymbol{g}[\boldsymbol{f}]$: character of $\psi \circ \varphi$
Theorem. If f, g are any Schur-positive symmetric functions, then $g[f]$ is Schur-positive.

Schur positivity

$\boldsymbol{\varphi}: \mathrm{GL}(V) \rightarrow \mathrm{GL}(W)$: polynomial representation with character $f \in \Lambda_{n}$
$\psi: \mathrm{GL}(W) \rightarrow \mathrm{GL}(X):$ polynomial representation with character $g \in \Lambda_{m}$
$\boldsymbol{g}[\boldsymbol{f}]$: character of $\psi \circ \varphi$
Theorem. If f, g are any Schur-positive symmetric functions, then $g[f]$ is Schur-positive.

No combinatorial proof known, even for $f=h_{m}$, $g=h_{n}$.

Schur-Weyl duality for plethysm

$\boldsymbol{N}\left(\mathfrak{S}_{k}^{m}\right)$: normalizer of \mathfrak{S}_{k}^{m} in $\mathfrak{S}_{k m}$, the wreath product $\mathfrak{S}_{k} \imath \mathfrak{S}_{m}$, or order $k!^{m} \cdot m!$
$\operatorname{ch}(\psi)$: the Frobenius characteristic of the class function ψ of \mathfrak{S}_{n}, i.e.,

$$
\operatorname{ch}(\psi)=\sum_{\lambda \vdash n}\left\langle\psi, \chi^{\lambda}\right\rangle s_{\lambda} .
$$

Schur-Weyl duality for plethysm

$\boldsymbol{N}\left(\mathfrak{S}_{k}^{m}\right)$: normalizer of \mathfrak{S}_{k}^{m} in $\mathfrak{S}_{k m}$, the wreath product $\mathfrak{S}_{k} \downarrow \mathfrak{S}_{m}$, or order $k!^{m} \cdot m$!
$\operatorname{ch}(\psi)$: the Frobenius characteristic of the class function ψ of \mathfrak{S}_{n}, i.e.,

$$
\operatorname{ch}(\psi)=\sum_{\lambda \vdash n}\left\langle\psi, \chi^{\lambda}\right\rangle s_{\lambda} .
$$

Theorem (Specht). Special case:

$$
\operatorname{ch}\left(1_{N\left(\mathfrak{G}_{k}^{m}\right)}^{\left.\mathfrak{S}_{k}\right)}\right)=h_{m}\left[h_{k}\right]
$$

Main open problem

Find a combinatorial interpretation of $\left\langle s_{\lambda}\left[s_{\mu}\right], s_{\nu}\right\rangle$, especially the case $\left\langle h_{m}\left[h_{n}\right], s_{\nu}\right\rangle$.

$$
\text { E.g., } h_{2}\left[h_{n}\right]=\sum_{k=0}^{\lfloor n / 2\rfloor} s_{2(n-k), 2 k}
$$

$h_{3}\left[h_{n}\right]$ known, but quickly gets more complicated.

Plethystic inverses

Note $p_{1}=s_{1}=\sum x_{i}$ and $g\left[s_{1}\right]=s_{1}[g]=g$. We say that f and g are plethystic inverses, denoted $f=\boldsymbol{g}^{[-1]}$, if

$$
f[g]=g[f]=s_{1} .
$$

Note. $f[g]=s_{1} \Leftrightarrow g[f]=s_{1}$.

Lyndon symmetric function L_{n}

C_{n} : cyclic subgroup of \mathfrak{S}_{n} generated by
$(1,2, \ldots, n)$
ζ : character of C_{n} defined by
$\zeta(1,2, \ldots, n)=e^{2 \pi i / n}$
Lyndon symmetric function:

$$
\begin{aligned}
\boldsymbol{L}_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
& =\operatorname{ch~ind}_{C_{n}}^{\mathcal{E}_{n}} e^{2 \pi i / n}
\end{aligned}
$$

Cadogan's theorem

$$
\begin{aligned}
& \boldsymbol{f}=e_{1}-e_{2}+e_{3}-e_{4}+\cdots \\
& \boldsymbol{g}=L_{1}+L_{2}+L_{3}+\cdots
\end{aligned}
$$

$$
\text { Theorem (Cadogan, 1971). } g=f^{[-1]}
$$

Lyndon basis

Extend L_{n} to a basis $\left\{L_{\lambda}\right\}$ for the ring Λ of symmetric functions:

Let $\boldsymbol{m}, \boldsymbol{k} \geq 1$, and $\left\langle\boldsymbol{k}^{m}\right\rangle=(k, k, \ldots, k)$ (m times).
Define

$$
\begin{aligned}
\boldsymbol{L}_{\left\langle\boldsymbol{k}^{m}\right\rangle} & =h_{m}\left[L_{k}\right] \\
\boldsymbol{L}_{\left\langle 1^{m_{1}}, 2^{m_{2}}, \ldots\right\rangle} & =L_{\left\langle 1^{m_{1}}\right\rangle} L_{\left\langle 2^{m_{2}}\right\rangle} \cdots .
\end{aligned}
$$

Equivalently, for fixed m,

$$
\sum_{k \geq 0} L_{\left\langle k^{m}\right\rangle} t^{k}=\exp \sum_{n \geq 1} \frac{1}{n} L_{n}\left(p_{i} \rightarrow p_{m i}\right) t^{i}
$$

Cycle type

Fix $n \geq 1$. Let $\boldsymbol{S} \subseteq[n-1]$.
F_{S} : Gessel fundamental quasisymmetric function
Example. $n=6, S=\{1,3,4\}$:

$$
F_{S}=\sum_{1 \leq i_{1}<i_{2} \leq i_{3}<i_{4}<i_{5} \leq i_{6}} x_{i_{1}} \cdots x_{i_{6}} .
$$

Theorem (Gessel-Reutenauer, 1993). We have

$$
\sum_{\substack{w \in \mathfrak{S}_{n} \\ \operatorname{type}(w)=\lambda}} F_{D(w)}=L_{\lambda}
$$

An example

Example. $\lambda=(2,2)$:

w	$D(w)$
2143	1,3
3412	2
4321	$1,2,3$

An example

Example. $\lambda=(2,2)$:

w	$D(w)$
2143	1,3
3412	2
4321	$1,2,3$

$$
L_{(2,2)}=s_{(2,2)}+s_{(1,1,1,1)}=\left(F_{1,3}+F_{2}\right)+F_{1,2,3}
$$

Free Lie algebras

\boldsymbol{A} : the alphabet x_{1}, \ldots, x_{n}
$\mathbb{C}\langle\boldsymbol{A}\rangle$: free associative algebra over \mathbb{C} generated by A
$\mathcal{L}[A]$: smallest subalgebra of $\mathbb{C}\langle A\rangle$ containing x_{1}, \ldots, x_{n} and closed under the Lie bracket $[u, v]=u v-v u$ (free Lie algebra)

Lie_{n}

Lie $_{n}$: multilinear subspace of $\mathbb{C}\langle A\rangle$ (degree one in each x_{i})
basis: $\left[x_{1},\left[x_{w(2)},\left[x_{w(3)},[\cdots] \cdots\right]\right], w \in \mathfrak{S}_{[2, n]}\right.$
$\Rightarrow \operatorname{dim} \operatorname{Lie}_{n}=(n-1)!$

Lie_{n}

Lie $_{n}$: multilinear subspace of $\mathbb{C}\langle A\rangle$ (degree one in each x_{i})
basis: $\left[x_{1},\left[x_{w(2)},\left[x_{w(3)},[\cdots]\right]\right]\right], w \in \mathfrak{S}_{[2, n]}$
$\Rightarrow \operatorname{dim} \operatorname{Lie}_{n}=(n-1)!$
Theorem (Brandt, 1944). Action of \mathfrak{S}_{n} on Lie_{n} has Frobenius characteristic L_{n}.

Lie_{n}

Lie $_{n}$: multilinear subspace of $\mathbb{C}\langle A\rangle$ (degree one in each x_{i})
basis: $\left[x_{1},\left[x_{w(2)},\left[x_{w(3)},[\cdots]\right]\right]\right], w \in \mathfrak{S}_{[2, n]}$
$\Rightarrow \operatorname{dim} \operatorname{Lie}_{n}=(n-1)!$
Theorem (Brandt, 1944). Action of \mathfrak{S}_{n} on Lie_{n} has Frobenius characteristic L_{n}.

Note. Can be extended to L_{λ} (decomposition of $\mathbb{C}\langle A\rangle)$

Partition lattices

Π_{n} : poset (lattice) of partitions of $\{1, \ldots, n\}$, ordered by refinement
$\widetilde{\Pi}_{n}: \Pi_{n}-\{\hat{0}, \hat{1}\}$
$\boldsymbol{\Delta}\left(\Pi_{n}\right)$: set of chains of $\widetilde{\Pi_{n}}$ (a simplicial complex)
$\widetilde{\boldsymbol{H}}_{i}\left(\Pi_{n}\right)$: ith reduced homology group of $\Delta\left(\Pi_{n}\right)$, say over \mathbb{C}

Homology and \mathfrak{S}_{n}-action

Theorem. (a) $\tilde{H}_{i}\left(\Pi_{n}\right)=0$ unless $i=n-3$, and $\operatorname{dim} \tilde{H}_{n-3}\left(\Pi_{n}\right)=(n-1)!$.
(b) Action of \mathfrak{S}_{n} on $\widetilde{H}_{n-3}\left(\Pi_{n}\right)$ has Frobenius characteristic ωL_{n}.

Lower truncations of Π_{n}

$\widetilde{\Pi}_{n}(r)$: top r levels of $\widetilde{\Pi}_{n}$

Lower truncations of Π_{n}

$\widetilde{\Pi}_{n}(r)$: top r levels of $\widetilde{\Pi}_{n}$

123
124
$\begin{array}{ccccc}12-34 & 13-24 & 14-23 & 134 & 234\end{array}$

\mathfrak{S}_{n}-action on lower truncations

Theorem (Sundaram, 1994) The Frobenius characteristic of the action of \mathfrak{S}_{n} on the top homology of $\widetilde{\Pi}_{n}(r)$ is the degree n term in the plethysm

$$
\left(\omega\left(L_{r+1}-L_{r}+\cdots+(-1)^{r} L_{1}\right)\right)\left[h_{1}+\cdots+h_{n}\right] .
$$

Tensor product of characters

$\chi, \psi:$ characters (or any class functions) of \mathfrak{S}_{n}
$\chi \otimes \psi($ or $\chi \psi):$ tensor (or Kronecker) product of χ and ψ, i.e.,

$$
(\chi \otimes \psi)(w)=\chi(w) \psi(w)
$$

Tensor product of characters

$\chi, \psi:$ characters (or any class functions) of \mathfrak{S}_{n}
$\chi \otimes \psi($ or $\chi \psi):$ tensor (or Kronecker) product of χ and ψ, i.e.,

$$
(\chi \otimes \psi)(w)=\chi(w) \psi(w)
$$

$\boldsymbol{f}: \mathfrak{S}_{n} \rightarrow \mathrm{GL}(V)$: representation with character χ $\boldsymbol{g}: \mathfrak{S}_{n} \rightarrow \mathrm{GL}(W):$ representation with character ψ $\Rightarrow \chi \otimes \psi$ is the character of the representation $f \otimes g: \mathfrak{S}_{n} \rightarrow \mathrm{GL}(V \otimes W)$ given by

$$
(f \otimes g)(w)=f(w) \otimes g(w)
$$

Kronecker coefficients

Let $\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\nu} \vdash n$.

$$
\begin{aligned}
\boldsymbol{g}_{\boldsymbol{\lambda} \mu \boldsymbol{\nu}} & =\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)
\end{aligned}
$$

Kronecker coefficients

Let $\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\nu} \vdash n$.

$$
\begin{aligned}
\boldsymbol{g}_{\lambda \mu \nu} & =\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle \\
& =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \chi^{\lambda}(w) \chi^{\mu}(w) \chi^{\nu}(w)
\end{aligned}
$$

Consequences:

- $g_{\lambda \mu \nu} \in \mathbb{N}=\{0,1, \ldots\}$
- $g_{\lambda \mu \nu}$ is symmetric in λ, μ, ν.

Internal product

Recall for $\lambda, \mu, \nu \vdash n$,

$$
g_{\lambda \mu \nu}=\left\langle\chi^{\lambda} \chi^{\mu}, \chi^{\nu}\right\rangle
$$

Define the internal product $s_{\lambda} * s_{\mu}$ by

$$
\left\langle s_{\lambda} * s_{\mu}, s_{\nu}\right\rangle=g_{\lambda \mu \nu} .
$$

Extend to any symmetric functions by bilinearity.

Tidbits

$$
\text { (a) } s_{\lambda} * s_{n}=s_{\lambda}, \quad s_{\lambda} * s_{\left\langle 1^{n}\right\rangle}=\omega s_{\lambda}
$$

Tidbits

(a) $s_{\lambda} * s_{n}=s_{\lambda}, \quad s_{\lambda} * s_{\left\langle 1^{n}\right\rangle}=\omega s_{\lambda}$
(b) Conjecture (Sax, 2012). Let
$\delta_{n}=(n-1, n-2, \ldots, 1)$ and $\lambda \vdash\binom{n}{2}$. Then
$\left\langle s_{\delta_{n}} * s_{\delta_{n}}, s_{\lambda}\right\rangle>0$.

Tidbits

(a) $s_{\lambda} * s_{n}=s_{\lambda}, s_{\lambda} * s_{\left\langle 1^{n}\right\rangle}=\omega s_{\lambda}$
(b) Conjecture (SaxI, 2012). Let
$\delta_{n}=(n-1, n-2, \ldots, 1)$ and $\lambda \vdash\binom{n}{2}$. Then
$\left\langle s_{\delta_{n}} * s_{\delta_{n}}, s_{\lambda}\right\rangle>0$.
(d) $\sum_{\lambda, \mu, \nu \vdash n} g_{\lambda \mu \nu}^{2}=\sum_{\mu \vdash n} z_{\mu}$. Hence

$$
\max _{\lambda, \mu, \nu \vdash n} \log g_{\lambda \mu \nu} \sim \frac{n}{2} \log n
$$

What λ, μ, ν achieve the maximum?

Generating function

Theorem (Schur).

$$
\prod_{i, j, k}\left(1-x_{i} y_{j} z_{k}\right)^{-1}=\sum_{\lambda, \mu, \nu} g_{\lambda \mu \nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z)
$$

Generating function

Theorem (Schur).

$\prod_{i, j, k}\left(1-x_{i} y_{j} z_{k}\right)^{-1}=\sum_{\lambda, \mu, \nu} g_{\lambda \mu \nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z)$.
Equivalent formulation:
Write $\boldsymbol{x} \boldsymbol{y}$ for the alphabet $\left\{x_{i} y_{j}\right\}_{i, j \geq 1}$. Thus
$f(x y)=f\left[s_{1}(x) s_{1}(y)\right]$. Then

$$
\langle f, g * h\rangle=\langle f(x y), g(x) h(y)\rangle .
$$

Generating function

Theorem (Schur).

$\prod_{i, j, k}\left(1-x_{i} y_{j} z_{k}\right)^{-1}=\sum_{\lambda, \mu, \nu} g_{\lambda \mu \nu} s_{\lambda}(x) s_{\mu}(y) s_{\nu}(z)$.
Equivalent formulation:
Write $\boldsymbol{x} \boldsymbol{y}$ for the alphabet $\left\{x_{i} y_{j}\right\}_{i, j \geq 1}$. Thus $f(x y)=f\left[s_{1}(x) s_{1}(y)\right]$. Then

$$
\langle f, g * h\rangle=\langle f(x y), g(x) h(y)\rangle .
$$

What if we replace s_{1} by s_{n}, for instance?

Vanishing

Vanishing of $g_{\lambda \mu \nu}$ not well-understood. Sample result:

Theorem (Dvir, 1993). Fix $\mu, \nu \vdash n$. Then

$$
\max \left\{\ell(\lambda): g_{\lambda \mu \nu} \neq 0\right\}=\left|\mu \cap \nu^{\prime}\right|
$$

(intersection of diagrams).

Example of Dvir's theorem

$s_{41} * s_{32}=s_{41}+s_{32}+s_{311}+s_{\mathbf{2 2 1}}$. Intersection of $(4,1)$ and $(3,2)^{\prime}=(2,2,1)$:

Combinatorial interpretation

A central open problem: find a combinatorial interpretation of $g_{\lambda \mu \nu}$.

Combinatorial interpretation

A central open problem: find a combinatorial interpretation of $g_{\lambda \mu \nu}$.

Example. Let $\lambda \vdash n$. Then $\left\langle s_{j, 1^{n-j}} * s_{k, 1^{n-k}}, s_{\lambda}\right\rangle$ is the number of $(u, v, w) \in \mathfrak{S}_{n}^{3}$ such that $u v w=1$, $D(u)=\{j\}, D(v)=\{k\}$, and if w is inserted into λ from right to left and from bottom to top, then a standard Young tableau results.

Conjugation action

\mathfrak{S}_{n} acts on itself by conjugation, i.e., $w \cdot u=w^{-1} u w$. The Frobenius characteristic of this action is

$$
K_{n}:=\sum_{\lambda \vdash n}\left(s_{\lambda} * s_{\lambda}\right)=\sum_{\mu \vdash n} p_{\mu}
$$

Conjugation action

\mathfrak{S}_{n} acts on itself by conjugation, i.e.,
$w \cdot u=w^{-1} u w$. The Frobenius characteristic of this action is

$$
K_{n}:=\sum_{\lambda \vdash n}\left(s_{\lambda} * s_{\lambda}\right)=\sum_{\mu \vdash n} p_{\mu} .
$$

Combinatorial interpretation of $\left\langle K_{n}, s_{\nu}\right\rangle$ not known. All known proofs that K_{n} is Schur-positive use representation theory.

Stability

Example. For $n \geq 8$,

$$
\begin{gathered}
s_{n-2,2} * s_{n-2,2}=s_{n}+s_{n-3,1,1,1}+2 s_{n-2,2}+s_{n-1,1}+s_{n-2,1,1} \\
+2 s_{n-3,2,1}+s_{n-4,2,2}+s_{n-3,3}+s_{n-4,3,1}+s_{n-4,4}
\end{gathered}
$$

Stability

Example. For $n \geq 8$,

$$
\begin{aligned}
& s_{n-2,2} * s_{n-2,2}=s_{n}+s_{n-3,1,1,1}+2 s_{n-2,2}+s_{n-1,1}+s_{n-2,1,1} \\
& \quad+2 s_{n-3,2,1}+s_{n-4,2,2}+s_{n-3,3}+s_{n-4,3,1}+s_{n-4,4} .
\end{aligned}
$$

$\boldsymbol{\lambda}[\boldsymbol{n}]:=\left(n-|\lambda|, \lambda_{1}, \lambda_{2}, \ldots\right)$
Theorem (Murnaghan, 1937). For any partitions α, β, γ, the Kronecker coefficient $g_{\alpha[n], \beta[n], \gamma[n]}$ stabilizes.

Vast generalization proved by Steven Sam and Andrew Snowden, 2016.

Reduced Kronecker coefficient

$\bar{g}_{\alpha \beta \gamma}$: the stable value
$\bar{g}_{\alpha \beta \gamma}$ is called a reduced Kronecker coefficient.
Combinatorial interpretation is not known.

Reduced Kronecker coefficient

$\bar{g}_{\alpha \beta \gamma}$: the stable value
$\bar{g}_{\alpha \beta \gamma}$ is called a reduced Kronecker coefficient.
Combinatorial interpretation is not known.
Example. Recall that for $n \geq 8$,

$$
\begin{aligned}
& s_{n-2,2} * s_{n-2,2}=s_{n}+s_{n-3,1,1,1}+2 s_{n-2,2}+s_{n-1,1}+s_{n-2,1,1} \\
& \quad+2 s_{n-3,2,1}+s_{n-4,2,2}+s_{n-3,3}+s_{n-4,3,1}+s_{n-4,4}
\end{aligned}
$$

Hence $\bar{g}_{2,2, \emptyset}=1, \bar{g}_{2,2,111}=1, \bar{g}_{2,2,2}=2$, etc.
$V P_{w s}=V N P ?$

Algebraic complexity

Flagship problem: $V \boldsymbol{P}_{w s} \neq V N P$.
Determinantal complexity of $\boldsymbol{f} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$: smallest $n \in \mathbb{N}$ such that f is the determinant of an $n \times n$ matrix whose entries are affine linear forms in the x_{i}.

Theorem (Valiant 1979, Toda 1992). TFAE:

- Determinantal complexity of an $n \times n$ permanant is superpolynomial in n.
- $V P_{w s} \neq V N P$

Mulmuley and Sohoni 2001

$\Omega_{n}:$ closure of the orbit of $\mathrm{GL}_{n^{2}} \cdot \operatorname{det}_{n}$ in $\operatorname{Sym}^{n} \mathbb{C}^{n^{2}}$.
padded permanent: x_{11}^{n-m} per $_{m} \in \operatorname{Sym}^{n} \mathbb{C}^{n^{2}}$.
Conjecture. For all $c>0$ and infinitely many m, there exists a partition λ (i.e., an irreducible polynomial representation of $\mathrm{GL}_{n^{2}}$) occurring in the coordinate ring $\mathbb{C}\left[Z_{m^{c}, m}\right]$ but not in $\mathbb{C}\left[\Omega_{m^{c}}\right]$.

Bürgisser, Ikenmeyer, and Panova

Theorem (BIP 2016) The conjecture of Mulmuley and Sohoni is false.

Bürgisser, Ikenmeyer, and Panova

Theorem (BIP 2016) The conjecture of Mulmuley and Sohoni is false.

Proof involves Kronecker product coefficients $g_{\lambda \mu \nu}$ in an essential way.

The last slide

