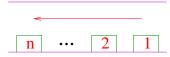
A Survey of Parking Functions

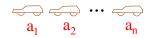
Richard P. Stanley U. Miami & M.I.T.

January 21, 2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

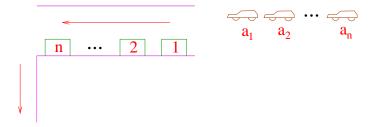
A parking scenario





◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

A parking scenario



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Parking functions

Car C_i prefers space a_i , drives there, and parks if possible. If a_i is occupied, then C_i takes the next available space. We call (a_1, \ldots, a_n) a **parking function** (of length n) if all cars can park.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Parking functions

Car C_i prefers space a_i , drives there, and parks if possible. If a_i is occupied, then C_i takes the next available space. We call (a_1, \ldots, a_n) a **parking function** (of length n) if all cars can park.

First considered by **Ronald Pyke** (implicitly) and **Alan Konheim** and **Benjamin Weiss** (1966).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The case of the capricious wives

Konheim and Weiss:

Let st. be a street with p parking places. A car occupied by a man and his dozing wife enters st. at the left and moves towards the right. The wife awakens at a capricious moment and orders her husband to park immediately! He dutifully parks at his present location, if it is empty, and if not, continues to the right and parks at the next available space. If no space is available he leaves st.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Small examples

n = 2: 11 12 21

n = 3: 111 112 121 211 113 131 311 122 212 221 123 132 213 231 312 321

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

Parking function characterization

Easy: Let $\alpha = (a_1, \ldots, a_n) \in \mathbb{P}^n$. Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be the increasing rearrangement of α . Then α is a parking function if and only $b_i \leq i$.

Corollary. Every permutation of the entries of a parking function is also a parking function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

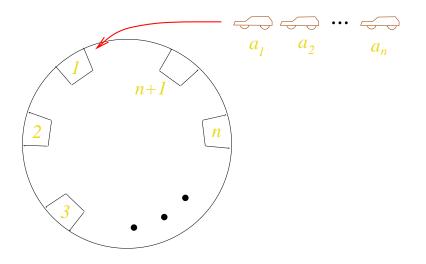
Enumeration of parking functions

Theorem (Pyke, 1959; **Konheim and Weiss**, 1966). Let f(n) be the number of parking functions of length n. Then $f(n) = (n + 1)^{n-1}$.

Proof (**Pollak**, c. 1974). Add an additional space n + 1, and arrange the spaces in a circle. Allow n + 1 also as a preferred space.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pollak's proof



・ロト・日本・日本・日本・日本・日本

Conclusion of Pollak's proof

Now all cars can park, and there will be one empty space. α is a parking function \Leftrightarrow if the empty space is n + 1. If $\alpha = (a_1, \ldots, a_n)$ leads to car C_i parking at space p_i , then $(a_1 + j, \ldots, a_n + j)$ (modulo n + 1) will lead to car C_i parking at space $p_i + j$. Hence exactly one of the vectors

$$(a_1 + i, a_2 + i, \dots, a_n + i) \pmod{n+1}$$

is a parking function, so

$$f(n) = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Prime parking functions

Definition (I. Gessel). A parking function is prime if it remains a parking function when we delete a 1 from it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

ightarrow (1,1), (1,1,2,2), (1), (1,1,2,3)

 \rightarrow (1,1), (1,1,2,2), (1), (1,1,2,3)

p(n): number of prime parking functions of length n

$$\sum_{n\geq 0} (n+1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n\geq 1} p(n) \frac{x^n}{n!}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \rightarrow (1,1), (1,1,2,2), (1), (1,1,2,3)

p(n): number of prime parking functions of length n

$$\sum_{n\geq 0} (n+1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n\geq 1} p(n) \frac{x^n}{n!}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary. $p(n) = (n-1)^{n-1}$

 \rightarrow (1,1), (1,1,2,2), (1), (1,1,2,3)

p(n): number of prime parking functions of length n

$$\sum_{n\geq 0} (n+1)^{n-1} \frac{x^n}{n!} = \frac{1}{1 - \sum_{n\geq 1} p(n) \frac{x^n}{n!}}$$

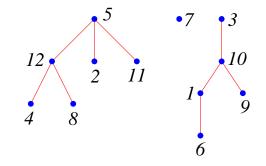
◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Corollary. $p(n) = (n-1)^{n-1}$

Exercise. Find a "parking" proof.

Forests

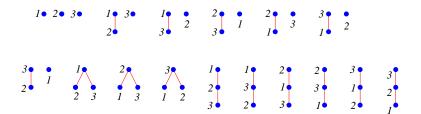
Let *F* be a rooted forest on the vertex set $\{1, \ldots, n\}$.



Theorem (Sylvester-Borchardt-Cayley). The number of such forests is $(n + 1)^{n-1}$.

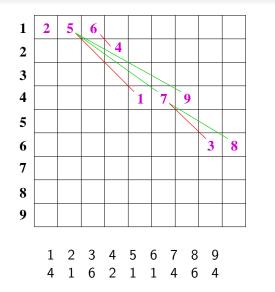
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

The case n = 3



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

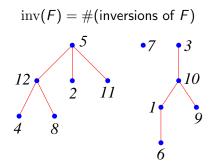
A bijection between forests and parking functions



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inversions

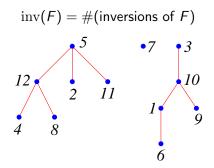
An **inversion** in F is a pair (i, j) so that i > j and i lies on the path from j to the root.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Inversions

An **inversion** in F is a pair (i, j) so that i > j and i lies on the path from j to the root.



Inversions: (5,4), (5,2), (12,4), (12,8), (3,1), (10,1), (10,6), (10,9) inv(F) = 8

The inversion enumerator

Let

$$I_n(q) = \sum_F q^{\mathrm{inv}(F)},$$

summed over all forests F with vertex set $\{1, \ldots, n\}$. E.g.,

$$egin{array}{rll} l_1(q) &=& 1 \ l_2(q) &=& 2+q \ l_3(q) &=& 6+6q+3q^2+q^3 \end{array}$$

The inversion enumerator

Let

$$I_n(q) = \sum_F q^{\mathrm{inv}(F)},$$

summed over all forests F with vertex set $\{1, \ldots, n\}$. E.g.,

$$egin{array}{rll} l_1(q) &=& 1 \ l_2(q) &=& 2+q \ l_3(q) &=& 6+6q+3q^2+q^3 \end{array}$$

Theorem (Mallows-Riordan 1968, Gessel-Wang 1979) We have

$$I_n(1+q)=\sum_G q^{e(G)-n},$$

where G ranges over all connected graphs (without loops or multiple edges) on n + 1 labelled vertices, and where e(G) denotes the number of edges of G.

Generating function

Corollary.

$$\sum_{n\geq 0} I_n(q)(q-1)^n \frac{x^n}{n!} = \frac{\sum_{n\geq 0} q^{\binom{n+1}{2}} \frac{x^n}{n!}}{\sum_{n\geq 0} q^{\binom{n}{2}} \frac{x^n}{n!}}$$

Connection with parking functions

Theorem (Kreweras, 1980) We have

$$q^{\binom{n}{2}} I_n(1/q) = \sum_{(a_1,...,a_n)} q^{a_1+\dots+a_n},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where (a_1, \ldots, a_n) ranges over all parking functions of length n.

Connection with parking functions

Theorem (Kreweras, 1980) We have

$$q^{\binom{n}{2}} I_n(1/q) = \sum_{(a_1,...,a_n)} q^{a_1+\dots+a_n},$$

where (a_1, \ldots, a_n) ranges over all parking functions of length n.

Note. The earlier bijection between forests and parking functions does not send the number of inversions to the sum of the terms. Such a bijection is more complicated.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Shi arrangement: background

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

$$\mathcal{R}$$
 = set of regions of \mathcal{B}_n
\mathcal{R} = ??

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Shi arrangement: background

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

$$\mathcal{R}$$
 = set of regions of \mathcal{B}_n
\mathcal{R} = $n!$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

The Shi arrangement: background

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

$$\mathcal{R}$$
 = set of regions of \mathcal{B}_n
 $\#\mathcal{R}$ = $n!$

To specify a region, we must specify for each i < j whether $x_i < x_j$ or $x_i > x_j$. Hence the number of regions is the number of ways to linearly order x_1, \ldots, x_n .

Labeling the regions

Let R_0 be the base region

 $R_0: x_1 > x_2 > \cdots > x_n.$

Labeling the regions

Let R_0 be the base region

$$R_0: x_1 > x_2 > \cdots > x_n.$$

Label R₀ with

$$\lambda(R_0) = (1, 1, \dots, 1) \in \mathbb{Z}^n.$$

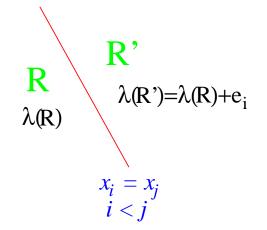
If R is labelled, R' is separated from R only by $x_i - x_j = 0$ (i < j), and R' is unlabelled, then set

$$\lambda(R') = \lambda(R) + e_i,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

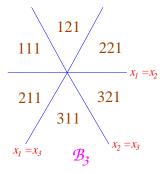
where $e_i = i$ th unit coordinate vector.

The labeling rule



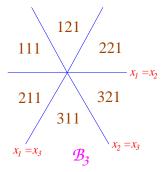
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Description of labels



◆ロ → ◆御 → ◆臣 → ◆臣 → ○ ● ● ● ● ●

Description of labels



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theorem (easy). The labels of \mathcal{B}_n are the sequences $(b_1, \ldots, b_n) \in \mathbb{Z}^n$ such that $1 \leq b_i \leq n - i + 1$.

The Shi arrangement

Shi Jianyi

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

The Shi arrangement

Shi Jianyi (时俭益)

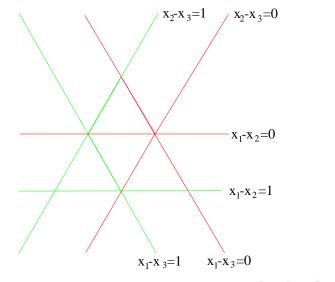
The Shi arrangement

Shi arrangement S_n : the set of hyperplanes

$$x_i-x_j=0,1,$$

 $1 \leq i < j \leq n$, in \mathbb{R}^n .

The case n = 3



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Labeling the regions

base region:

$$R_0: \quad x_n+1 > x_1 > \cdots > x_n$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Labeling the regions

base region:

$$R_0: \quad x_n+1 > x_1 > \cdots > x_n$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$\lambda(R_0) = (1, 1, \dots, 1) \in \mathbb{Z}^n$$

The labeling rule

• If R is labelled, R' is separated from R only by $x_i - x_j = 0$ (i < j), and R' is unlabelled, then set

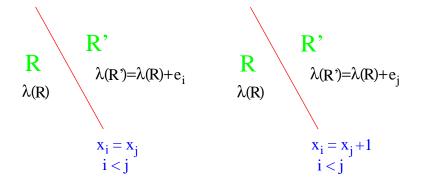
$$\lambda(R')=\lambda(R)+e_i.$$

• If R is labelled, R' is separated from R only by $x_i - x_j = 1$ (i < j), and R' is unlabelled, then set

$$\lambda(R') = \lambda(R) + e_j.$$

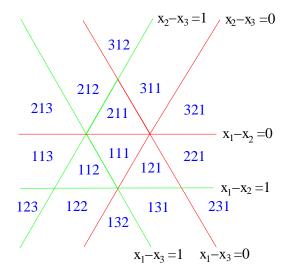
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The labeling rule illustrated



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

The labeling for n = 3



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Description of the labels

Theorem (Pak, S.). The labels of S_n are the parking functions of length *n* (each occurring once).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Description of the labels

Theorem (Pak, S.). The labels of S_n are the parking functions of length n (each occurring once).

Corollary (Shi, 1986).

 $r(\mathcal{S}_n) = (n+1)^{n-1}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The parking function polytope

Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by: $(y_1, \ldots, y_n) \in P_n$ if $0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$ for $1 \leq i \leq n$.

(日)

The parking function polytope

Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by: $(y_1, \ldots, y_n) \in P_n$ if $0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$ for $1 \leq i \leq n$.

(日)

(also called **Pitman-Stanley polytope**)

Volume of *P*

Theorem. Let
$$x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$$
. Then

$$n! V(P_n) = \sum_{\substack{\text{parking functions} \\ (i_1, \dots, i_n)}} x_{i_1} \cdots x_{i_n}.$$

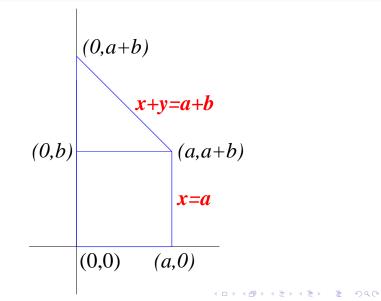
Volume of *P*

Theorem. Let
$$x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$$
. Then

$$n! V(P_n) = \sum_{\substack{\text{parking functions} \\ (i_1, \ldots, i_n)}} x_{i_1} \cdots x_{i_n}.$$

Note. If each $x_i > 0$, then P_n has the combinatorial type of an *n*-cube.

The case n = 2



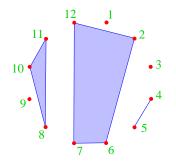
Noncrossing partitions

A noncrossing partition of $\{1, 2, ..., n\}$ is a partition $\{B_1, ..., B_k\}$ of $\{1, ..., n\}$ such that $a < b < c < d, a, c \in B_i, b, d \in B_i \Rightarrow i = j.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

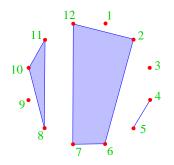
 $(B_i \neq \emptyset, B_i \cap B_j = \emptyset \text{ if } i \neq j, \bigcup B_i = \{1, \ldots, n\})$

Number of noncrossing partitions



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Number of noncrossing partitions



Theorem (H. W. Becker, 1948–49). The number of noncrossing partitions of $\{1, ..., n\}$ is the **Catalan number**

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

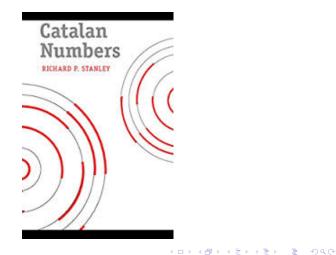
・ロット (雪) (日) (日) (日)

Catalan numbers

214 combinatorial interpretations:

Catalan numbers

214 combinatorial interpretations:



Maximal chains of noncrossing partitions

A maximal chain $\mathfrak m$ of noncrossing partitions of $\{1,\ldots,n+1\}$ is a sequence

$$\pi_0, \pi_1, \pi_2, \ldots, \pi_n$$

of noncrossing partitions of $\{1, \ldots, n+1\}$ such that π_i is obtained from π_{i-1} by merging two blocks into one. (Hence π_i has exactly n+1-i blocks.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Maximal chains of noncrossing partitions

A maximal chain \mathfrak{m} of noncrossing partitions of $\{1, \ldots, n+1\}$ is a sequence

$$\pi_0, \pi_1, \pi_2, \ldots, \pi_n$$

of noncrossing partitions of $\{1, \ldots, n+1\}$ such that π_i is obtained from π_{i-1} by merging two blocks into one. (Hence π_i has exactly n+1-i blocks.)

> 1–2–3–4–5 1–25–3–4 1–25–34 125–34 12345

> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・
> > ・

A maximal chain labeling

Define:

 $\min \mathbf{B} = \text{least element of } B$

 $\mathbf{j} < \mathbf{B} : \mathbf{j} < \mathbf{k} \ \forall \mathbf{k} \in \mathbf{B}.$

Suppose π_i is obtained from π_{i-1} by merging together blocks B and B', with min $B < \min B'$. Define

$$\begin{aligned} \mathbf{\Lambda}_{\mathbf{i}}(\mathfrak{m}) &= \max\{j \in B : j < B'\} \\ \mathbf{\Lambda}(\mathfrak{m}) &= (\mathbf{\Lambda}_{1}(\mathfrak{m}), \dots, \mathbf{\Lambda}_{n}(\mathfrak{m})). \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A maximal chain labeling

Define:

 $\min \mathbf{B} = \text{least element of } B$

 $\mathbf{j} < \mathbf{B} : \ j < k \ \forall k \in B.$

Suppose π_i is obtained from π_{i-1} by merging together blocks B and B', with min $B < \min B'$. Define

$$\begin{aligned} \mathbf{\Lambda}_{\mathbf{i}}(\mathfrak{m}) &= \max\{j \in B : j < B'\} \\ \mathbf{\Lambda}(\mathfrak{m}) &= (\mathbf{\Lambda}_{1}(\mathfrak{m}), \dots, \mathbf{\Lambda}_{n}(\mathfrak{m})). \end{aligned}$$

For above example:

1–2–3–4–5 1–25–3–4 1–25–34 125–34 12345

we have

$$\Lambda(\mathfrak{m})=(2,3,1,2).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of noncrossing partitions of $\{1, \ldots, n+1\}$ and parking functions of length n.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Labelings and parking functions

Theorem. Λ is a bijection between the maximal chains of noncrossing partitions of $\{1, \ldots, n+1\}$ and parking functions of length n.

Corollary (Kreweras, 1972) The number of maximal chains of noncrossing partitions of $\{1, ..., n+1\}$ is

 $(n+1)^{n-1}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The parking function \mathfrak{S}_n -module

The symmetric group \mathfrak{S}_n acts on the set \mathcal{P}_n of all parking functions of length *n* by permuting coordinates.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sample properties

• Multiplicity of trivial representation (number of orbits) = $C_n = \frac{1}{n+1} {2n \choose n}$

n = 3: 111 211 221 311 321

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sample properties

• Multiplicity of trivial representation (number of orbits) = $C_n = \frac{1}{n+1} {2n \choose n}$

n = 3: 111 211 221 311 321

Number of elements of *P_n* fixed by *w* ∈ 𝔅_n (character value at *w*):

$$\#\mathsf{Fix}(w) = (n+1)^{(\# \text{ cycles of } w)-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sample properties

• Multiplicity of trivial representation (number of orbits) = $C_n = \frac{1}{n+1} {2n \choose n}$

n = 3: 111 211 221 311 321

Number of elements of *P_n* fixed by *w* ∈ 𝔅_n (character value at *w*):

$$\#\mathsf{Fix}(w) = (n+1)^{(\# \text{ cycles of } w)-1}$$

• Multiplicity of the irreducible representation indexed by $\lambda \vdash n$: $\frac{1}{n+1}s_{\lambda}(1^{n+1})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connection with power series inversion

• Let $\mathbf{PF}_n = \mathrm{PF}_n(x_1, x_2, \dots)$ denote the Frobenius characteristic symmetric function of the action of \mathfrak{S}_n on parking functions of length *n*. Define

$$F(t) = \sum_{n \ge 1} \operatorname{PF}_{n} t^{n}$$

$$G(t) = \sum_{n \ge 1} (-1)^{n-1} e_{n-1} t^{n}$$

$$= t(1-x_{1}t)(1-x_{2}t) \cdots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Connection with power series inversion

• Let $\mathbf{PF}_n = \mathrm{PF}_n(x_1, x_2, \dots)$ denote the Frobenius characteristic symmetric function of the action of \mathfrak{S}_n on parking functions of length *n*. Define

$$F(t) = \sum_{n \ge 1} PF_n t^n$$

$$G(t) = \sum_{n \ge 1} (-1)^{n-1} e_{n-1} t^n$$

$$= t(1 - x_1 t)(1 - x_2 t) \cdots$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Then F(G(t)) = G(F(t) = t.

Connection with power series inversion

• Let $\mathbf{PF}_n = \mathrm{PF}_n(x_1, x_2, \dots)$ denote the Frobenius characteristic symmetric function of the action of \mathfrak{S}_n on parking functions of length *n*. Define

$$F(t) = \sum_{n \ge 1} \operatorname{PF}_{n} t^{n}$$

$$G(t) = \sum_{n \ge 1} (-1)^{n-1} e_{n-1} t^{n}$$

$$= t(1 - x_{1}t)(1 - x_{2}t) \cdots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then F(G(t)) = G(F(t) = t.

Connections with Lagrange inversion, etc.

Background: invariants of \mathfrak{S}_n

The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \dots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$\mathbf{R}^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Background: invariants of \mathfrak{S}_n

The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \dots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$\mathbf{R}^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$

Well-known:

$$R^{\mathfrak{S}_n} = \mathbb{C}[e_1,\ldots,e_n],$$

where

$$\boldsymbol{e_k} = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

The coinvariant algebra

$$R_{+}^{\mathfrak{S}_n}$$
 : symmetric functions with 0 constant term
(irrelevant ideal of $R^{\mathfrak{S}_n}$)

$$\mathbf{D} := R/\left(R_+^{\mathfrak{S}_n}\right) = R/(e_1,\ldots,e_n).$$

Then dim D = n!, and \mathfrak{S}_n acts on D according to the **regular** representation.

Diagonal action of \mathfrak{S}_n

Now let \mathfrak{S}_n act **diagonally** on

$$R = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n],$$

i.e,

$$w \cdot x_i = x_{w(i)}, \quad w \cdot y_i = y_{w(i)}.$$

As before, let

$$\begin{aligned} &\mathcal{R}^{\mathfrak{S}_n} &= \{f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n\} \\ &D &= R/\left(R_+^{\mathfrak{S}_n}\right). \end{aligned}$$

Haiman's theorem

Theorem (Haiman, 1994, 2001). dim $D = (n + 1)^{n-1}$, and the action of \mathfrak{S}_n on D is isomorphic to the action on \mathcal{P}_n , tensored with the sign representation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Haiman's theorem

Theorem (Haiman, 1994, 2001). dim $D = (n + 1)^{n-1}$, and the action of \mathfrak{S}_n on D is isomorphic to the action on \mathcal{P}_n , tensored with the sign representation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Connections with Macdonald polynomials, Hilbert scheme of points in the plane, etc.

Probabilistic aspects

Diaconis-Hicks, 2016: what does a random parking function (a_1, \ldots, a_n) look like?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Probabilistic aspects

Diaconis-Hicks, 2016: what does a random parking function (a_1,\ldots,a_n) look like?

Theorem. As $n \to \infty$ and fixed *j*, $\begin{aligned} \operatorname{Prob}(a_1 = j) &\sim \quad \frac{1 + Q(j)}{n} \\ \operatorname{Prob}(a_1 = n - j) &\sim \quad \frac{1 - Q(j + 2)}{n}, \end{aligned}$

where

$$Q(j) = \sum_{k \ge j} \frac{e^{-k} k^{k-1}}{k!}$$

(tail of Borel distribution on j = 1, 2, ...). Moreover,

$$\mathbb{E}(a_1) = \frac{n}{2} - \frac{\sqrt{2\pi}}{4} n^{1/2} + o(n^{1/2}).$$

Extremes

$$\operatorname{Prob}(a_1 = 1) \sim \frac{2}{n}$$

 $\operatorname{Prob}(a_1 = n) \sim \frac{1}{en}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Extremes

$$\operatorname{Prob}(a_1 = 1) \sim \frac{2}{n}$$

 $\operatorname{Prob}(a_1 = n) \sim \frac{1}{en}.$

Note. Since $Q(j) \rightarrow 0$ we have for instance

$$Prob(a_1 = \lfloor cn \rfloor) \sim \frac{1}{n}$$

for any 0 < c < 1.

Extremes

$$\operatorname{Prob}(a_1 = 1) \sim \frac{2}{n}$$

 $\operatorname{Prob}(a_1 = n) \sim \frac{1}{en}.$

Note. Since $Q(j) \rightarrow 0$ we have for instance

$$\mathsf{Prob}(\mathsf{a}_1 = \lfloor \mathsf{cn}
floor) \sim rac{1}{n}$$

for any 0 < c < 1.

Error term?

A last sample result

Let α be a parking function. In the original parking scenario with n cars, let $L(\alpha)$ be the number of cars (lucky cars) which park in their preferred space. Then

$$\operatorname{Prob}\left(\frac{L(\alpha)-\frac{n}{2}}{\sqrt{n/6}}\right) \sim \int_{-\infty}^{x} \frac{e^{-t^{2}/2}}{\sqrt{2\pi}} dt.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

The last slide

The last slide

