Permutation Enumeration and Symmetric Functions

Richard P. Stanley
M.I.T. and U. Miami

January 20, 2022

Topics

Main goal: results on permutation enumeration related to symmetric functions

Topics

Main goal: results on permutation enumeration related to symmetric functions

- class multiplication and characters

Topics

Main goal: results on permutation enumeration related to symmetric functions

- class multiplication and characters
- commutators and characters

Topics

Main goal: results on permutation enumeration related to symmetric functions

- class multiplication and characters
- commutators and characters
- alternating permutations and the Foulkes representation

Topics

Main goal: results on permutation enumeration related to symmetric functions

- class multiplication and characters
- commutators and characters
- alternating permutations and the Foulkes representation
- Lyndon symmetric functions

Topics

Main goal: results on permutation enumeration related to symmetric functions

- class multiplication and characters
- commutators and characters
- alternating permutations and the Foulkes representation
- Lyndon symmetric functions
- generalized descent sets

The class multiplication theorem

G : finite group with conjugacy classes C_{1}, \ldots, C_{t}
Let $\boldsymbol{i}, \boldsymbol{j} \in[t]=\{1, \ldots, t\}$.
$\chi^{1}, \ldots, \chi^{t}$: the irreducible (complex) characters of G
$\boldsymbol{d}_{r}=\operatorname{deg} \chi^{r}$
$\chi_{i}^{r}: \chi^{r}(v)$ for any $v \in C_{i}$

The class multiplication theorem

G : finite group with conjugacy classes C_{1}, \ldots, C_{t}
Let $\boldsymbol{i}, \boldsymbol{j} \in[t]=\{1, \ldots, t\}$.
$\chi^{1}, \ldots, \chi^{t}$: the irreducible (complex) characters of G
$\boldsymbol{d}_{r}=\operatorname{deg} \chi^{r}$
$\chi_{i}^{r}: \chi^{r}(v)$ for any $v \in C_{i}$
Theorem. Let $w \in C_{k}$. Then

$$
\#\left\{(u, v) \in C_{i} \times C_{j}: u v=w\right\}=\frac{\left|C_{i}\right| \cdot\left|C_{j}\right|}{|G|} \sum_{r=1}^{t} \frac{1}{d_{r}} \chi_{i}^{r} \chi_{j}^{r} \bar{\chi}_{k}^{r}
$$

Reformulation for $G=\mathfrak{S}_{n}$

(\boldsymbol{x}) : the variables x_{1}, x_{2}, \ldots, and similarly $(\boldsymbol{y}),(z)$
H_{λ} : product of hook lengths of λ for $\lambda \vdash n$
Theorem.

$$
\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(x) s_{\lambda}(y) s_{\lambda}(z)=\frac{1}{n!} \sum_{\substack{u v w=\mathrm{id} \\ \text { in } \\ \mathfrak{S}_{n}}} p_{\rho(u)}(x) p_{\rho(v)}(y) p_{\rho(w)}(z),
$$

where $\rho(u)$ is the cycle type of u.

Sample application

Theorem.

$$
\sum_{\lambda \vdash n} H_{\lambda}=\frac{1}{n!} \#\left\{(u, v, w) \in \mathfrak{S}_{n}^{3}: u^{2} v^{2} w^{2}=1\right\}
$$

Sample application

Theorem.

$$
\sum_{\lambda \vdash n} H_{\lambda}=\frac{1}{n!} \#\left\{(u, v, w) \in \mathfrak{S}_{n}^{3}: u^{2} v^{2} w^{2}=1\right\} .
$$

Idea of proof. For $w \in \mathfrak{S}_{n}$ let $\operatorname{sq}(w)=\#\left\{u \in \mathfrak{S}_{n}: u^{2}=w\right\}$. Let $\varphi: \Lambda_{\mathbb{Q}} \rightarrow \mathbb{Q}$ be the linear transformation defined by $\varphi\left(s_{\lambda}\right)=1$.

Well-known: $p_{\lambda}=\sum_{\mu} \chi^{\mu}(\lambda) s_{\mu}$, so

$$
\begin{aligned}
\varphi\left(p_{\lambda}\right) & =\sum_{\mu} \chi^{\mu}(\lambda) \\
& =\operatorname{sq}(w)
\end{aligned}
$$

where $\rho(w)=\lambda$.

Proof (concluded)

$$
\varphi\left(s_{\lambda}\right)=1, \quad \varphi\left(p_{\lambda}\right)=\operatorname{sq}(w) \text { where } \rho(w)=\lambda
$$

Proof (concluded)

$$
\varphi\left(s_{\lambda}\right)=1, \quad \varphi\left(p_{\lambda}\right)=\operatorname{sq}(w) \text { where } \rho(w)=\lambda
$$

Apply φ separately to each set of variables in

$$
\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(x) s_{\lambda}(y) s_{\lambda}(z)=\frac{1}{n!} \sum_{\substack{u v w=\mathrm{id} \\ \text { in }}} p_{\rho(u)}(x) p_{\rho(v)}(y) p_{\rho(w)}(z)
$$

Straightforward generalization

Theorem. Let $k \geq 1$. Then

$$
\sum_{\lambda \vdash n} H_{\lambda}^{k-2}=\frac{1}{n!} \#\left\{\left(w_{1}, \ldots, w_{k}\right) \in \mathfrak{S}_{n}^{k}: w_{1}^{2} \cdots w_{k}^{2}=1\right\} .
$$

Commutators

G : finite group of order g
For $w \in G$, define

$$
f(w)=\#\left\{(u, v) \in G \times G: w=u v u^{-1} v^{-1}\right\}
$$

$\operatorname{Irr}(G)$: set of irreducible (complex) characters of G

Commutators

G : finite group of order g
For $w \in G$, define

$$
f(w)=\#\left\{(u, v) \in G \times G: w=u v u^{-1} v^{-1}\right\}
$$

$\operatorname{Irr}(G)$: set of irreducible (complex) characters of G
Theorem. $f=\sum_{\chi \in \operatorname{Irr}(G)} \frac{g}{\chi(1)} \chi$.

Commutators

G : finite group of order g
For $w \in G$, define

$$
f(w)=\#\left\{(u, v) \in G \times G: w=u v u^{-1} v^{-1}\right\}
$$

$\operatorname{Irr}(\boldsymbol{G})$: set of irreducible (complex) characters of G
Theorem. $f=\sum_{\chi \in \operatorname{Irr}(G)} \frac{g}{\chi(1)} \chi$.
Aside: From representation theory, $\frac{g}{\chi(1)} \in \mathbb{P}$. Proof uses algebraic number theory. Is there a direct proof that f is a character of G ?

Reformulation for $G=\mathfrak{S}_{n}$

Theorem. $\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} p_{\rho\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}$
(*)

Reformulation for $G=\mathfrak{S}_{n}$

Theorem. $\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} p_{\rho\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}$
Sample application. For $w \in \mathfrak{S}_{n}$, let $\kappa(w)$ be the number of cycles of w. Then

$$
\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} q^{\kappa\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} \prod_{t \in \lambda}(q+c(t)),
$$

where $c(t)$ denotes the content of the square t.

Reformulation for $G=\mathfrak{S}_{n}$

Theorem. $\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} p_{\rho\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}$
Sample application. For $w \in \mathfrak{S}_{n}$, let $\kappa(w)$ be the number of cycles of w. Then

$$
\frac{1}{n!} \sum_{u, v \in \mathfrak{S}_{n}} q^{\kappa\left(u v u^{-1} v^{-1}\right)}=\sum_{\lambda \vdash n} \prod_{t \in \lambda}(q+c(t))
$$

where $c(t)$ denotes the content of the square t.
Proof. Let $q \in \mathbb{P}$. Set $x_{1}=\cdots=x_{q}=1$, other $x_{i}=0$ in (*).
Note that $p_{\rho(w)}\left(1^{q}\right)=q^{\kappa(w)}\left(\right.$ since $\left.p_{i}\left(1^{q}\right)=q\right)$, etc. \square

Border strips (or ribbons)

$$
S=\left\{b_{1}<b_{2}<\cdots<b_{k}\right\} \subseteq[n-1]:=\{1,2, \ldots, n-1\}
$$

B_{S} : the border strip with row lengths

$$
b_{1}, b_{2}-b_{1}, b_{3}-b_{2}, \ldots, n-b_{k} .
$$

$$
B_{\{3,4,6\}}, n=8
$$

Theorems of Foulkes and Niven-de Bruijn

Theorem (Foulkes). Let $S, T \subseteq[n-1]$. Then

$$
\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S, D\left(w^{-1}\right)=T\right\}
$$

where \boldsymbol{D} denotes descent set.

Theorems of Foulkes and Niven-de Bruijn

Theorem (Foulkes). Let $S, T \subseteq[n-1]$. Then

$$
\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S, D\left(w^{-1}\right)=T\right\}
$$

where D denotes descent set.
$\boldsymbol{\beta}_{\boldsymbol{n}}(S)=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S\right\}$
Theorem (Niven, de Bruijn) Fix n. Then $\beta_{n}(S)$ is maximized by $S=\{1,3,5, \ldots\}$ and $S=\{2,4,6, \ldots\}$.

Gessel's conjecture

Recall

$$
\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S, D\left(w^{-1}\right)=T\right\}
$$

Conjecture. Fix n. Then $\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ is maximized by $S=T=\{1,3,5, \ldots\}$ and $S=T=\{2,4,6, \ldots\}$.

Gessel's conjecture

Recall

$$
\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S, D\left(w^{-1}\right)=T\right\} .
$$

Conjecture. Fix n. Then $\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ is maximized by $S=T=\{1,3,5, \ldots\}$ and $S=T=\{2,4,6, \ldots\}$.

Theorem. The maximum of value of $\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ is achieved by some $S=T$.

Gessel's conjecture

Recall

$$
\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S, D\left(w^{-1}\right)=T\right\} .
$$

Conjecture. Fix n. Then $\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ is maximized by $S=T=\{1,3,5, \ldots\}$ and $S=T=\{2,4,6, \ldots\}$.

Theorem. The maximum of value of $\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ is achieved by some $S=T$.

Proof. $\left\langle s_{B_{S}}-s_{B_{T}}, s_{B_{S}}-s_{B_{T}}\right\rangle \geq 0$

$$
\Rightarrow\left\langle s_{B_{S}}, s_{B_{S}}\right\rangle+\left\langle s_{B_{T}}, s_{B_{T}}\right\rangle \geq 2\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle,
$$

so either $\left\langle s_{B_{S}}, s_{B_{S}}\right\rangle \geq\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$ or $\left\langle s_{B_{T}}, s_{B_{T}}\right\rangle \geq\left\langle s_{B_{S}}, s_{B_{T}}\right\rangle$.

Alternating permutations

$w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ is alternating if

$$
a_{1}>a_{2}<a_{3}>a_{4}<\cdots a_{n}
$$

E_{n} : number of alternating $w \in \mathfrak{S}_{n}$ (Euler number)

Alternating permutations

$w=a_{1} a_{2} \cdots a_{n} \in \mathfrak{S}_{n}$ is alternating if

$$
a_{1}>a_{2}<a_{3}>a_{4}<\cdots a_{n}
$$

E_{n} : number of alternating $w \in \mathfrak{S}_{n}$ (Euler number)
Theorem (D. André, 1879)

$$
\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x
$$

Ribbon staircases

Let R_{n} be the ribbon staircase: the border strip with row lengths $(1,2,2, \ldots, 2,2,1)$ (n even) or ($1,2,2, \ldots, 2,2$) (n odd).

R_{7}
R_{8}

Another theorem of Foulkes

$\chi^{R_{n}}$: the (reducible) character of \mathfrak{S}_{n} corresponding to R_{n}, i.e., $\operatorname{ch}\left(\chi^{R_{n}}\right)=s_{R_{n}}$. Equivalently,

$$
s_{R_{n}}=\sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}
$$

Another theorem of Foulkes

$\chi^{R_{n}}$: the (reducible) character of \mathfrak{S}_{n} corresponding to R_{n}, i.e., $\operatorname{ch}\left(\chi^{R_{n}}\right)=s_{R_{n}}$. Equivalently,

$$
s_{R_{n}}=\sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}
$$

Theorem (Foulkes). Let $\mu \vdash n=2 k+1$. Then

$$
\chi^{R_{n}}(\mu)=\left\{\begin{aligned}
0, & \text { if } \mu \text { has an even part } \\
(-1)^{k+r} E_{2 r+1}, & \text { if } \mu \text { has } 2 r+1 \text { odd parts and } \\
& \text { no even parts. }
\end{aligned}\right.
$$

Similar result for $n=2 k$.

Sample application

$$
\begin{aligned}
& L(\boldsymbol{t})=\frac{1}{2} \log \frac{1+t}{1-t}=t+\frac{t^{3}}{3}+\frac{t^{5}}{5}+\cdots \\
& \boldsymbol{f}(\boldsymbol{n})=\#\left\{w \in \mathfrak{S}_{n}: w \text { and } w^{-1} \text { are alternating }\right\}
\end{aligned}
$$

Sample application

$L(t)=\frac{1}{2} \log \frac{1+t}{1-t}=t+\frac{t^{3}}{3}+\frac{t^{5}}{5}+\cdots$
$\boldsymbol{f}(\boldsymbol{n})=\#\left\{w \in \mathfrak{S}_{n}: w\right.$ and w^{-1} are alternating $\}$
Theorem. $\sum_{k \geq 0} f(2 k+1) t^{2 k+1}=\sum_{r \geq 0} E_{2 r+1}^{2} \frac{L(t)^{2 r+1}}{(2 r+1)!}$.
Similar result for $f(2 k)$.

Idea of proof.

Let $\operatorname{OP}(n)$ be the set of partitions of n with odd parts. Then for $n=2 k+1$,

$$
\begin{aligned}
f(n) & =\left\langle s_{R_{n}}, s_{R_{n}}\right\rangle \\
& =\left\langle\sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}, \sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}\right\rangle \\
& =\sum_{\mu \vdash n} z_{\mu}^{-1}\left(\chi^{R_{n}}(\mu)\right)^{2} .
\end{aligned}
$$

Idea of proof.

Let $\operatorname{OP}(n)$ be the set of partitions of n with odd parts. Then for $n=2 k+1$,

$$
\begin{aligned}
f(n) & =\left\langle s_{R_{n}}, s_{R_{n}}\right\rangle \\
& =\left\langle\sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}, \sum_{\mu \vdash n} z_{\mu}^{-1} \chi^{R_{n}}(\mu) p_{\mu}\right\rangle \\
& =\sum_{\mu \vdash n} z_{\mu}^{-1}\left(\chi^{R_{n}}(\mu)\right)^{2} .
\end{aligned}
$$

Use Foulkes' theorem on value of $\chi^{R_{n}}(\mu)$ to get

$$
f(n)=\sum_{\mu \in \mathrm{OP}(n)} z_{\mu}^{-1} E_{2 r+1}^{2}
$$

Now use elementary generating function manipulatorics.

Lyndon symmetric functions

For $\lambda \vdash n$, let

$$
\boldsymbol{K}_{\lambda}=\left\{w \in \mathfrak{S}_{n}: \rho(w)=\lambda\right\}
$$

a conjugacy class in \mathfrak{S}_{n}.
For $S \subset[n-1]$, define

$$
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j+1} \text { if } j \in S}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

known as (Gessel's) fundamental quasisymmetric function.

Lyndon symmetric functions

For $\lambda \vdash n$, let

$$
\mathcal{K}_{\lambda}=\left\{w \in \mathfrak{S}_{n}: \rho(w)=\lambda\right\}
$$

a conjugacy class in \mathfrak{S}_{n}.
For $S \subset[n-1]$, define

$$
F_{S}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n} \\ i_{j}<i_{j+1} \text { if } \\ j \in S}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

known as (Gessel's) fundamental quasisymmetric function.
Define the Lyndon symmetric function

$$
L_{\lambda}=\sum_{w \in K_{\lambda}} F_{D(w)},
$$

a generating function for the number of permutations of cycle type λ by descent set.

An example

Example. $n=3, \lambda=(2,1)$

$$
\begin{gathered}
\frac{w}{} \begin{array}{c}
D(w) \\
\hline 213 \\
132
\end{array} \\
321 \\
32 \\
L_{(2,1)}=F_{1}+F_{2}+F_{1,2}=s_{2,1}+s_{1,1,1}
\end{gathered}
$$

Gessel-Reutenauer theorem

Theorem. L_{λ} is a symmetric function given by

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \ldots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

Gessel-Reutenauer theorem

Theorem. L_{λ} is a symmetric function given by

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \ldots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

- L_{λ} is Schur positive.

Gessel-Reutenauer theorem

Theorem. L_{λ} is a symmetric function given by

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \ldots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

- L_{λ} is Schur positive.
- $\sum_{\lambda \vdash n} L_{\lambda}=p_{1}^{n}$

Gessel-Reutenauer theorem

Theorem. L_{λ} is a symmetric function given by

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \cdots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

- L_{λ} is Schur positive.
- $\sum_{\lambda \vdash n} L_{\lambda}=p_{1}^{n}$
- Let $d(n)$ be the codimension of the span of the L_{λ} 's, $\lambda \vdash n$, in $\Lambda_{\mathbb{Q}}^{n}$. Open: what is $d(n)$?

n	$1-3$	$4-6$	7	8	$9-11$	12	13	14	15
$d(n)$	0	1	2	3	4	7	10	12	15

A consequence of Gessel-Reutenauer

Theorem (Gessel-Reutenauer). Let $\lambda \vdash n$ and $S \subset[n-1]$. Then

$$
\left\langle L_{\lambda}, s_{B_{s}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: \rho(w)=\lambda, D(w)=S\right\}
$$

Sample application

Theorem (Gessel-Reutenauer) The number of involutions in \mathfrak{S}_{n} with descent set S equals the number of involutions in \mathfrak{S}_{n} with descent set $\bar{S}=[n-1]-S$.

Sample application

Theorem (Gessel-Reutenauer) The number of involutions in \mathfrak{S}_{n} with descent set S equals the number of involutions in \mathfrak{S}_{n} with descent set $\bar{S}=[n-1]-S$.

Proof. The set of involutions in \mathfrak{S}_{n} is a union of conjugacy classes. Now

$$
\sum_{\substack{w \in \mathfrak{G}_{n} \\ w^{2}=1}} F_{\rho(w)}=\prod_{i} \frac{1}{1-x_{i}} \prod_{i<j} \frac{1}{1-x_{i} x_{j}}=\sum_{\lambda} s_{\lambda}
$$

which is invariant under ω. Moreover, $\omega s_{B_{S}}=s_{B_{\bar{s}}}$. The proof follows from

$$
\left\langle\sum_{\lambda} s_{\lambda}, s_{B_{S}}\right\rangle=\left\langle\omega \sum_{\lambda} s_{\lambda}, \omega s_{B_{S}}\right\rangle=\left\langle\sum_{\lambda} s_{\lambda}, s_{B_{\bar{s}}}\right\rangle
$$

A sample result on alternating permutations

$$
\boldsymbol{f}(\boldsymbol{n})=\#\left\{w \in \mathfrak{S}_{2 n}: \rho(w)=(2,2, \ldots, 2), D(w)=\{1,3,5, \cdots\}\right\}
$$

Thus $f(n)=\left\langle L_{\left\langle 2^{n}\right\rangle}, s_{R_{2 n}}\right\rangle$. Using

$$
L_{\left\langle 2^{n}\right\rangle}=h_{n}\left[\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)\right]=\frac{1}{2}\left(p_{1}^{2 n}-p_{2}^{n}\right)
$$

and Foulkes' theorem on $s_{R_{2 n}}$, we obtain (with some manipulatorics):

A sample result on alternating permutations

$$
\boldsymbol{f}(\boldsymbol{n})=\#\left\{w \in \mathfrak{S}_{2 n}: \rho(w)=(2,2, \ldots, 2), D(w)=\{1,3,5, \cdots\}\right\}
$$

Thus $f(n)=\left\langle L_{\left\langle 2^{n}\right\rangle}, s_{R_{2 n}}\right\rangle$. Using

$$
L_{\left\langle 2^{n}\right\rangle}=h_{n}\left[\frac{1}{2}\left(p_{1}^{2}-p_{2}\right)\right]=\frac{1}{2}\left(p_{1}^{2 n}-p_{2}^{n}\right)
$$

and Foulkes' theorem on $s_{R_{2 n}}$, we obtain (with some manipulatorics):

Theorem. Let E be an indeterminate. Let Ω be the linear operator sending E^{k} to the Euler number E_{k}. Then

$$
\sum_{n \geq 0} f(n) t^{n}=\Omega\left(\frac{1+t}{1-t}\right)^{\left(E^{2}+1\right) / 4}
$$

Computation of $\Omega\left(\frac{1+t}{1-t}\right)^{\left(E^{2}+1\right) / 4}$

$$
\begin{aligned}
\Omega\left(\frac{1+t}{1-t}\right)^{\frac{E^{2}+1}{4}} & =\Omega\left(1+\frac{1}{2}\left(E^{2}+1\right) t+\frac{1}{8}\left(E^{4}+2 E^{2}+1\right) t^{2}+\cdots\right) \\
& =1+\frac{1}{2}\left(E_{2}+1\right) t+\frac{1}{8}\left(E_{4}+2 E_{2}+1\right) t^{2}+\cdots \\
& =1+\frac{1}{2}(1+1) t+\frac{1}{8}(5+2 \cdot 1+1) t^{2}+\cdots \\
& =1+t+t^{2}+\cdots
\end{aligned}
$$

Computation of $\Omega\left(\frac{1+t}{1-t}\right)^{\left(E^{2}+1\right) / 4}$

$$
\begin{aligned}
\Omega\left(\frac{1+t}{1-t}\right)^{\frac{E^{2}+1}{4}} & =\Omega\left(1+\frac{1}{2}\left(E^{2}+1\right) t+\frac{1}{8}\left(E^{4}+2 E^{2}+1\right) t^{2}+\cdots\right) \\
& =1+\frac{1}{2}\left(E_{2}+1\right) t+\frac{1}{8}\left(E_{4}+2 E_{2}+1\right) t^{2}+\cdots \\
& =1+\frac{1}{2}(1+1) t+\frac{1}{8}(5+2 \cdot 1+1) t^{2}+\cdots \\
& =1+t+t^{2}+\cdots
\end{aligned}
$$

E.g., the unique $w \in \mathfrak{S}_{4}$ that is alternating and has cycle type $(2,2)$ is 2143 .

Descent set enumeration in the alternating group

\mathfrak{A}_{n} : alternating group of degree n

$$
\gamma_{n}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}
$$

Descent set enumeration in the alternating group

\mathfrak{A}_{n} : alternating group of degree n
$\gamma_{n}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}$
Recall

$$
\left\langle L_{\lambda}, s_{B_{s}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: \rho(w)=\lambda, D(w)=S\right\}
$$

Recall the notation: let $\rho(w)=\lambda$. Then $\varepsilon_{\lambda}=\operatorname{sgn}(w)$. Hence:

Descent set enumeration in the alternating group

\mathfrak{A}_{n} : alternating group of degree n
$\gamma_{n}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}$
Recall

$$
\left\langle L_{\lambda}, s_{B_{s}}\right\rangle=\#\left\{w \in \mathfrak{S}_{n}: \rho(w)=\lambda, D(w)=S\right\}
$$

Recall the notation: let $\rho(w)=\lambda$. Then $\varepsilon_{\lambda}=\operatorname{sgn}(w)$. Hence:
Theorem. $\gamma_{n}(S)=\left\langle\sum_{\substack{\lambda \vdash n \\ \varepsilon_{\lambda}=1}} L_{\lambda}, s_{B_{S}}\right\rangle$

A formula for $\sum_{\substack{\lambda \vdash n \\ \varepsilon_{\lambda}=1}} L_{\lambda}$

Theorem.

$$
\sum_{\substack{\lambda \vdash n \\
\varepsilon_{\lambda}=1}} L_{\lambda}=\left\{\begin{aligned}
\frac{1}{2}\left(p_{1}^{n}+p_{2}^{n / 2}\right), & \text { if } n \text { is even } \\
\frac{1}{2}\left(p_{1}^{n}+p_{1} p_{2}^{(n-1) / 2}\right), & \text { if } n \text { is odd. }
\end{aligned}\right.
$$

A formula for $\sum_{\substack{\lambda \vdash n \\ \varepsilon_{\lambda}=1}} L_{\lambda}$

Theorem.

$$
\sum_{\substack{\lambda \vdash n \\
\varepsilon_{\lambda}=1}} L_{\lambda}=\left\{\begin{aligned}
\frac{1}{2}\left(p_{1}^{n}+p_{2}^{n / 2}\right), & \text { if } n \text { is even } \\
\frac{1}{2}\left(p_{1}^{n}+p_{1} p_{2}^{(n-1) / 2}\right), & \text { if } n \text { is odd. }
\end{aligned}\right.
$$

Proof is a computation based on the Gessel-Reutenauer formula

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \ldots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

A formula for $\sum_{\substack{\lambda \vdash n \\ \varepsilon_{\lambda}=1}} L_{\lambda}$

Theorem.

$$
\sum_{\substack{\lambda \vdash n \\
\varepsilon_{\lambda}=1}} L_{\lambda}=\left\{\begin{aligned}
\frac{1}{2}\left(p_{1}^{n}+p_{2}^{n / 2}\right), & \text { if } n \text { is even } \\
\frac{1}{2}\left(p_{1}^{n}+p_{1} p_{2}^{(n-1) / 2}\right), & \text { if } n \text { is odd. }
\end{aligned}\right.
$$

Proof is a computation based on the Gessel-Reutenauer formula

$$
\begin{aligned}
L_{n} & =\frac{1}{n} \sum_{d \mid n} \mu(d) p_{d}^{n / d} \\
L_{\left\langle n^{k}\right\rangle} & =h_{k}\left[L_{n}\right] \text { (plethysm) } \\
L_{\left\langle 1^{k_{1}} 2^{k_{2}} \ldots\right\rangle} & =L_{\left\langle 1^{k_{1}}\right\rangle} L_{\left\langle 2^{k_{2}}\right\rangle} \cdots .
\end{aligned}
$$

Is there a more conceptual proof?

Half a border strip

Let B_{S} be a border strip of even size $2 m$. Tile it uniquely with m dominos. Shrink each domino to a square to get $B_{S / 2}$.

A formula for $\gamma_{n}(S), n$ even

B_{S} : a border strip of size $n=2 m$
$v\left(B_{S}\right)$: number of vertical dominos in the unique tiling of B_{S} by m dominos

Recall: $\boldsymbol{\beta}_{\boldsymbol{n}}(\boldsymbol{S})=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S\right\}$

$$
\gamma_{\boldsymbol{n}}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}
$$

A formula for $\gamma_{n}(S), n$ even

B_{S} : a border strip of size $n=2 m$
$v\left(B_{S}\right)$: number of vertical dominos in the unique tiling of B_{S} by m dominos

Recall: $\boldsymbol{\beta}_{\boldsymbol{n}}(\boldsymbol{S})=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S\right\}$

$$
\gamma_{\boldsymbol{n}}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}
$$

Theorem. Let $n=2 m$ and $S \subseteq[n-1]$. Then

$$
\gamma_{n}(S)=\frac{1}{2}\left(\beta_{n}(S)+(-1)^{v\left(B_{S}\right)} \beta_{m}(S / 2)\right) .
$$

A formula for $\gamma_{n}(S), n$ even

B_{S} : a border strip of size $n=2 m$
$v\left(B_{S}\right)$: number of vertical dominos in the unique tiling of B_{S} by m dominos

Recall: $\boldsymbol{\beta}_{\boldsymbol{n}}(\boldsymbol{S})=\#\left\{w \in \mathfrak{S}_{n}: D(w)=S\right\}$

$$
\gamma_{\boldsymbol{n}}(S)=\#\left\{w \in \mathfrak{A}_{n}: D(w)=S\right\}
$$

Theorem. Let $n=2 m$ and $S \subseteq[n-1]$. Then

$$
\gamma_{n}(S)=\frac{1}{2}\left(\beta_{n}(S)+(-1)^{v\left(B_{S}\right)} \beta_{m}(S / 2)\right)
$$

More complicated formula when n is odd.

Sketch of proof.

Theorem. Let $n=2 m$ and $S \subseteq[n-1]$. Then

$$
\gamma_{n}(S)=\frac{1}{2}\left(\beta_{n}(S)+(-1)^{v\left(B_{S}\right)} \beta_{m}(S / 2)\right)
$$

Proof (sketch).

$$
\begin{aligned}
\gamma_{n}(S) & =\left\langle s_{B_{S}}, \sum_{\substack{\lambda \vdash n \\
\varepsilon_{\lambda}=1}} L_{\lambda}\right\rangle \\
& =\left\langle s_{B_{S}}, \frac{1}{2}\left(p_{1}^{n}+p_{2}^{m}\right)\right\rangle \\
& =\frac{1}{2}\left(\beta_{n}(S)+\left\langle s_{B_{S}}, p_{2}^{m}\right\rangle\right)
\end{aligned}
$$

Sketch of proof.

Theorem. Let $n=2 m$ and $S \subseteq[n-1]$. Then

$$
\gamma_{n}(S)=\frac{1}{2}\left(\beta_{n}(S)+(-1)^{v\left(B_{S}\right)} \beta_{m}(S / 2)\right)
$$

Proof (sketch).

$$
\begin{aligned}
\gamma_{n}(S) & =\left\langle s_{B_{S}}, \sum_{\substack{\lambda \vdash n \\
\varepsilon_{\lambda}=1}} L_{\lambda}\right\rangle \\
& =\left\langle s_{B_{S}}, \frac{1}{2}\left(p_{1}^{n}+p_{2}^{m}\right)\right\rangle \\
& =\frac{1}{2}\left(\beta_{n}(S)+\left\langle s_{B_{S}}, p_{2}^{m}\right\rangle\right)
\end{aligned}
$$

Evaluate $\left\langle s_{B_{S}}, p_{2}^{m}\right\rangle$ by the Murnaghan-Nakayama rule.

Completion of proof.

$\left\langle s_{B_{S}}, p_{2}^{m}\right\rangle$ is the number of border-strip tableau of type 2^{m}. There is a unique tiling by dominos. A border strip tableaux is an ordering of these dominos so that removing them in that order from the lower right boundary always leaves a skew shape. This corresponds to a (reverse) standard Young tableau of shape $B_{S / 2}$, of which there are $\beta_{m}(S / 2)$. The sign is $(-1)^{v\left(B_{S}\right)}$.

Completion of proof.

$\left\langle s_{B_{S}}, p_{2}^{m}\right\rangle$ is the number of border-strip tableau of type 2^{m}. There is a unique tiling by dominos. A border strip tableaux is an ordering of these dominos so that removing them in that order from the lower right boundary always leaves a skew shape. This corresponds to a (reverse) standard Young tableau of shape $B_{S / 2}$, of which there are $\beta_{m}(S / 2)$. The sign is $(-1)^{v\left(B_{S}\right)}$.

$$
S=\{3,4,5,6,9\} \quad S / 2=\{2,3\}
$$

Generalized descent sets

$$
X \subseteq\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}
$$

Generalized descent sets

$X \subseteq\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
X-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$

Generalized descent sets

$X \subseteq\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
X-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$
\boldsymbol{X}-descent set $\operatorname{XDes}(\boldsymbol{w})$: set of X-descents

Generalized descent sets

$X \subseteq\{(i, j): 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$
X-descent of $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: an index $1 \leq i \leq n-1$ for which $\left(a_{i}, a_{i+1}\right) \in X$
X-descent set $\operatorname{XDes}(w)$: set of X-descents
Example. (a) $X=\{(i, j): n-1 \geq i>j \geq 1\}:$ XDes $=D$
(b) $X=\{(i, j) \in[n] \times[n]: i \neq j\}: \operatorname{XDes}(w)=[n-1]$

A generating function for the XDescent set

$$
U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}
$$

A generating function for the XDescent set

$$
U_{X}=\sum_{w \in \mathfrak{S}_{n}} F_{\mathrm{XDes}(w)}
$$

Example. $X=\{(1,3),(2,1),(3,1),(3,2)\}$

w	$\mathrm{XDes}(w)$
123	\emptyset
132	$\{1,2\}$
213	$\{1,2\}$
231	$\{2\}$
312	$\{1\}$
321	$\{1,2\}$

$$
U_{X}=F_{\emptyset}+F_{1}+F_{2}+3 F_{1,2}=p_{1}^{3}-p_{2} p_{1}+p_{3}=s_{3}+s_{21}+2 s_{111}
$$

Two theorems

Theorem (easy). U_{X} is a p-integral symmetric function.

Two theorems

Theorem (easy). U_{X} is a p-integral symmetric function.
record set $\operatorname{rec}(w)$ for $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$: $\operatorname{rec}(w)=\left\{0 \leq i \leq n-1: a_{i}>a_{j}\right.$ for all $\left.j<i\right\}$. Thus always $0 \in \operatorname{rec}(w)$.
record partition $\operatorname{rp}(w)$: if $\operatorname{rec}(w)=\left\{r_{0}, \ldots, r_{j}\right\}_{<}$, then $\operatorname{rp}(w)$ is the numbers $r_{1}-r_{0}, r_{2}-r_{1}, \ldots, n-r_{j}$ arranged in decreasing order.

Two theorems

Theorem (easy). U_{X} is a p-integral symmetric function.
record set $\operatorname{rec}(w)$ for $w=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$:
$\operatorname{rec}(w)=\left\{0 \leq i \leq n-1: a_{i}>a_{j}\right.$ for all $\left.j<i\right\}$. Thus always $0 \in \operatorname{rec}(w)$.
record partition $\operatorname{rp}(w)$: if $\operatorname{rec}(w)=\left\{r_{0}, \ldots, r_{j}\right\}_{<}$, then $\operatorname{rp}(w)$ is the numbers $r_{1}-r_{0}, r_{2}-r_{1}, \ldots, n-r_{j}$ arranged in decreasing order.

Theorem (conjectured by RS, proved by I. Gessel) Let X have the property that if $(i, j) \in X$ then $i>j$. Then

$$
U_{X}=\sum_{\substack{w \in \mathfrak{S}_{n} \\ \operatorname{XDes}(w)=\emptyset}} p_{\operatorname{rp}(w)} .
$$

In particular, U_{X} is p-positive.

Connection with chromatic symmetric functions

P : partial ordering of $[n]$
$Y_{P}=\left\{(i, j): i>_{P} j\right\}$
$\operatorname{inc}(P)$: incomparability graph of P, i.e., vertex set [n], edges ij if
$i \| j$ in P
X_{G} : chromatic symmetric function of the graph G

Connection with chromatic symmetric functions

P : partial ordering of $[n]$
$Y_{P}=\left\{(i, j): i>_{P} j\right\}$
$\operatorname{inc}(P)$: incomparability graph of P, i.e., vertex set [n], edges ij if
$i \| j$ in P
X_{G} : chromatic symmetric function of the graph G
Theorem. $U_{Y_{P}}=X_{\text {inc }(P)}$

Reverse succession-free permutations

$$
\begin{aligned}
& \text { Let } X=\{(2,1),(3,2), \ldots,(n, n-1)\} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\} \text { (rs-free permutations) }
\end{aligned}
$$

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$
Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
(generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions)

Reverse succession-free permutations

Let $X=\{(2,1),(3,2), \ldots,(n, n-1)\}$.
$\boldsymbol{f}_{\boldsymbol{n}}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=\emptyset\right\}$ (rs-free permutations)
Known result. $\sum_{n \geq 0} f_{n} \frac{x^{n}}{n!}=\frac{e^{-x}}{(1-x)^{2}}$
Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
(generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions)

Example. $n=4: U_{X}=11 s_{4}+3 s_{31}+s_{211}+s_{1111}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.
Left-hand side: $\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$

Sketch of proof

Theorem. $U_{X}=\sum_{i=1}^{n} f_{i} s_{i, 1^{n-i}}$
Proof. For $S \subseteq[n-1]$, take coefficient of F_{S} on both sides.
Left-hand side: $\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$
Right-hand side: Use

$$
s_{i, 1^{n-i}}=\sum_{S \in\binom{[n-1]}{n-i}} F_{S} .
$$

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.
Will define a bijection

$$
\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\} \rightarrow\left\{u \in \mathfrak{S}_{i}: \operatorname{XDes}(u)=\emptyset\right\}
$$

Conclusion of proof

To show: $f_{i}=\#\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\}$ if $\# S=n-i$.
Will define a bijection

$$
\left\{w \in \mathfrak{S}_{n}: \operatorname{XDes}(w)=S\right\} \rightarrow\left\{u \in \mathfrak{S}_{i}: \operatorname{XDes}(u)=\emptyset\right\}
$$

Example. $w=3247651$, so $S=\{1,4,5\}, n=7, i=4$. Factor w :

$$
w=32 \cdot 4 \cdot 765 \cdot 1
$$

Let $1 \rightarrow 1,32 \rightarrow 2,4 \rightarrow 3,765 \rightarrow 4$. get

$$
w \rightarrow 2341=u
$$

A \boldsymbol{q}-analogue for $\boldsymbol{X}=\{(2,1),(3,2), \ldots,(\boldsymbol{n}, \boldsymbol{n}-1)\}$

Let $U_{\boldsymbol{X}}(\boldsymbol{q})=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{des}\left(w^{-1}\right)} F_{\mathrm{XDes}(w)}$, where des denotes the number of (ordinary) descents.
$U_{X}(q)$ is the generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions and by $\operatorname{des}\left(w^{-1}\right)$.

$$
\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{q})=\sum_{\substack{w \in \mathfrak{G}_{n} \\ \text { xDocs }(w)-\curvearrowleft}} q^{\operatorname{des}\left(w^{-1}\right)}
$$

A \boldsymbol{q}-analogue for $\boldsymbol{X}=\{(2,1),(3,2), \ldots,(n, n-1)\}$

Let $U_{\boldsymbol{X}}(\boldsymbol{q})=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{des}\left(w^{-1}\right)} F_{\mathrm{XDes}(w)}$, where des denotes the number of (ordinary) descents.
$U_{X}(q)$ is the generating function for $w \in \mathfrak{S}_{n}$ by positions of reverse successions and by $\operatorname{des}\left(w^{-1}\right)$.

$$
\boldsymbol{f}_{\boldsymbol{n}}(\boldsymbol{q})=\sum_{\substack{w \in \mathfrak{S}_{n}\\}} q^{\operatorname{des}\left(w^{-1}\right)}
$$

Theorem. $U_{X}(q)=\sum_{i=1}^{n} q^{n-i} f_{i}(q) s_{i, 1^{n-i}}$

The final slide

The final slide

Thanks to Ron Adin, Yuval Roichman, and Uzi Vishne and the rest of the organizing committee, and to Francesco Brenti, Roy Meshulam, Rosa Orellana, Dan Romik and the rest of the program committee, for putting together such a successful meeting under difficult covidian circumstances!

The final slide

Thanks to Ron Adin, Yuval Roichman, and Uzi Vishne and the rest of the organizing committee, and to Francesco Brenti, Roy Meshulam, Rosa Orellana, Dan Romik and the rest of the program committee, for putting together such a successful meeting under difficult covidian circumstances!

