
Permutation Enumeration and Symmetric Functions

Richard P. Stanley
M.I.T. and U. Miami

January 20, 2022



Topics

Main goal: results on permutation enumeration related to
symmetric functions



Topics

Main goal: results on permutation enumeration related to
symmetric functions

◮ class multiplication and characters



Topics

Main goal: results on permutation enumeration related to
symmetric functions

◮ class multiplication and characters

◮ commutators and characters



Topics

Main goal: results on permutation enumeration related to
symmetric functions

◮ class multiplication and characters

◮ commutators and characters

◮ alternating permutations and the Foulkes representation



Topics

Main goal: results on permutation enumeration related to
symmetric functions

◮ class multiplication and characters

◮ commutators and characters

◮ alternating permutations and the Foulkes representation

◮ Lyndon symmetric functions



Topics

Main goal: results on permutation enumeration related to
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◮ alternating permutations and the Foulkes representation

◮ Lyndon symmetric functions
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The class multiplication theorem

G : finite group with conjugacy classes C1, . . . ,Ct

Let i , j ∈ [t] = {1, . . . , t}.

χ1, . . . ,χt : the irreducible (complex) characters of G

dr = degχr

χr

i
: χr (v) for any v ∈ Ci



The class multiplication theorem

G : finite group with conjugacy classes C1, . . . ,Ct

Let i , j ∈ [t] = {1, . . . , t}.

χ1, . . . ,χt : the irreducible (complex) characters of G

dr = degχr

χr

i
: χr (v) for any v ∈ Ci

Theorem. Let w ∈ Ck . Then

#{(u, v) ∈ Ci × Cj : uv = w} =
|Ci | · |Cj |

|G |

t
∑

r=1

1

dr
χr
i χ

r
j χ̄

r
k



Reformulation for G = Sn

(x): the variables x1, x2, . . . , and similarly (y), (z)

Hλ: product of hook lengths of λ for λ ⊢ n

Theorem.

∑

λ⊢n

Hλ sλ(x)sλ(y)sλ(z) =
1

n!

∑

uvw=id
in Sn

pρ(u)(x)pρ(v)(y)pρ(w)(z),

where ρ(u) is the cycle type of u.



Sample application

Theorem.

∑

λ⊢n

Hλ =
1

n!
#{(u, v ,w) ∈ S

3
n : u2v2w2 = 1}.



Sample application

Theorem.

∑

λ⊢n

Hλ =
1

n!
#{(u, v ,w) ∈ S

3
n : u2v2w2 = 1}.

Idea of proof. For w ∈ Sn let sq(w) = #{u ∈ Sn : u2 = w}.
Let ϕ : ΛQ → Q be the linear transformation defined by ϕ(sλ) = 1.

Well-known: pλ =
∑

µ χ
µ(λ)sµ, so

ϕ(pλ) =
∑

µ

χµ(λ)

= sq(w),

where ρ(w) = λ.



Proof (concluded)

ϕ(sλ) = 1, ϕ(pλ) = sq(w) where ρ(w) = λ



Proof (concluded)

ϕ(sλ) = 1, ϕ(pλ) = sq(w) where ρ(w) = λ

Apply ϕ separately to each set of variables in

∑

λ⊢n

Hλ sλ(x)sλ(y)sλ(z) =
1

n!

∑

uvw=id
in Sn

pρ(u)(x)pρ(v)(y)pρ(w)(z). �



Straightforward generalization

Theorem. Let k ≥ 1. Then

∑

λ⊢n

Hk−2
λ =

1

n!
#{(w1, . . . ,wk) ∈ S

k
n : w2

1 · · ·w
2
k = 1}.



Commutators

G : finite group of order g

For w ∈ G , define

f (w) = #{(u, v) ∈ G × G : w = uvu−1v−1}.

Irr(G ): set of irreducible (complex) characters of G
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Commutators

G : finite group of order g

For w ∈ G , define

f (w) = #{(u, v) ∈ G × G : w = uvu−1v−1}.

Irr(G ): set of irreducible (complex) characters of G

Theorem. f =
∑

χ∈Irr(G)

g

χ(1)
χ.

Aside: From representation theory, g
χ(1) ∈ P. Proof uses algebraic

number theory. Is there a direct proof that f is a character of G?
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Reformulation for G = Sn

Theorem.
1

n!

∑

u,v∈Sn

pρ(uvu−1v−1) =
∑

λ⊢n

Hλsλ (∗)

Sample application. For w ∈ Sn, let κ(w) be the number of
cycles of w . Then

1

n!

∑

u,v∈Sn

qκ(uvu
−1v−1) =

∑

λ⊢n

∏

t∈λ

(q + c(t)),

where c(t) denotes the content of the square t.



Reformulation for G = Sn

Theorem.
1

n!

∑

u,v∈Sn

pρ(uvu−1v−1) =
∑

λ⊢n

Hλsλ (∗)

Sample application. For w ∈ Sn, let κ(w) be the number of
cycles of w . Then

1

n!

∑

u,v∈Sn

qκ(uvu
−1v−1) =

∑

λ⊢n

∏

t∈λ

(q + c(t)),

where c(t) denotes the content of the square t.

Proof. Let q ∈ P. Set x1 = · · · = xq = 1, other xi = 0 in (*).
Note that pρ(w)(1

q) = qκ(w) (since pi(1
q) = q), etc. �



Border strips (or ribbons)

S = {b1 < b2 < · · · < bk} ⊆ [n − 1] := {1, 2, . . . , n − 1}

BS : the border strip with row lengths
b1, b2 − b1, b3 − b2, . . . , n − bk .

B{3,4,6}, n=8



Theorems of Foulkes and Niven-de Bruijn

Theorem (Foulkes). Let S ,T ⊆ [n − 1]. Then

〈sBS
, sBT

〉 = #{w ∈ Sn : D(w) = S ,D(w−1) = T},

where D denotes descent set.



Theorems of Foulkes and Niven-de Bruijn

Theorem (Foulkes). Let S ,T ⊆ [n − 1]. Then

〈sBS
, sBT

〉 = #{w ∈ Sn : D(w) = S ,D(w−1) = T},

where D denotes descent set.

βn(S) = #{w ∈ Sn : D(w) = S}

Theorem (Niven, de Bruijn) Fix n. Then βn(S) is maximized by

S = {1, 3, 5, . . . } and S = {2, 4, 6, . . . }.



Gessel’s conjecture

Recall

〈sBS
, sBT

〉 = #{w ∈ Sn : D(w) = S ,D(w−1) = T}.

Conjecture. Fix n. Then 〈sBS
, sBT

〉 is maximized by
S = T = {1, 3, 5, . . . } and S = T = {2, 4, 6, . . . }.
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Gessel’s conjecture

Recall

〈sBS
, sBT

〉 = #{w ∈ Sn : D(w) = S ,D(w−1) = T}.

Conjecture. Fix n. Then 〈sBS
, sBT

〉 is maximized by
S = T = {1, 3, 5, . . . } and S = T = {2, 4, 6, . . . }.

Theorem. The maximum of value of 〈sBS
, sBT

〉 is achieved by

some S = T.

Proof. 〈sBS
− sBT

, sBS
− sBT

〉 ≥ 0

⇒ 〈sBS
, sBS

〉+ 〈sBT
, sBT

〉 ≥ 2〈sBS
, sBT

〉,

so either 〈sBS
, sBS

〉 ≥ 〈sBS
, sBT

〉 or 〈sBT
, sBT

〉 ≥ 〈sBS
, sBT

〉. �



Alternating permutations

w = a1a2 · · · an ∈ Sn is alternating if

a1 > a2 < a3 > a4 < · · · an.

En: number of alternating w ∈ Sn (Euler number)



Alternating permutations

w = a1a2 · · · an ∈ Sn is alternating if

a1 > a2 < a3 > a4 < · · · an.

En: number of alternating w ∈ Sn (Euler number)

Theorem (D.André, 1879)

∑

n≥0

En
xn

n!
= sec x + tan x



Ribbon staircases

Let Rn be the ribbon staircase: the border strip with row lengths
(1, 2, 2, . . . , 2, 2, 1) (n even) or (1, 2, 2, . . . , 2, 2) (n odd).

R R7 8



Another theorem of Foulkes

χRn : the (reducible) character of Sn corresponding to Rn, i.e.,
ch(χRn) = sRn

. Equivalently,

sRn
=

∑

µ⊢n

z−1
µ χRn(µ)pµ.



Another theorem of Foulkes

χRn : the (reducible) character of Sn corresponding to Rn, i.e.,
ch(χRn) = sRn

. Equivalently,

sRn
=

∑

µ⊢n

z−1
µ χRn(µ)pµ.

Theorem (Foulkes). Let µ ⊢ n = 2k + 1. Then

χRn(µ) =











0, if µ has an even part

(−1)k+rE2r+1, if µ has 2r + 1 odd parts and

no even parts.

Similar result for n = 2k .



Sample application

L(t) =
1

2
log

1 + t

1− t
= t +

t3

3
+

t5

5
+ · · ·

f (n) = #{w ∈ Sn : w and w−1 are alternating}



Sample application

L(t) =
1

2
log

1 + t

1− t
= t +

t3

3
+

t5

5
+ · · ·

f (n) = #{w ∈ Sn : w and w−1 are alternating}

Theorem.
∑

k≥0

f (2k + 1)t2k+1 =
∑

r≥0

E 2
2r+1

L(t)2r+1

(2r + 1)!
.

Similar result for f (2k).



Idea of proof.

Let OP(n) be the set of partitions of n with odd parts. Then for
n = 2k + 1,

f (n) = 〈sRn
, sRn

〉

=

〈

∑

µ⊢n

z−1
µ χRn(µ)pµ,

∑

µ⊢n

z−1
µ χRn(µ)pµ

〉

=
∑

µ⊢n

z−1
µ

(

χRn(µ)
)2

.



Idea of proof.

Let OP(n) be the set of partitions of n with odd parts. Then for
n = 2k + 1,

f (n) = 〈sRn
, sRn

〉

=

〈

∑

µ⊢n

z−1
µ χRn(µ)pµ,

∑

µ⊢n

z−1
µ χRn(µ)pµ

〉

=
∑

µ⊢n

z−1
µ

(

χRn(µ)
)2

.

Use Foulkes’ theorem on value of χRn(µ) to get

f (n) =
∑

µ∈OP(n)

z−1
µ E 2

2r+1.

Now use elementary generating function manipulatorics. �



Lyndon symmetric functions

For λ ⊢ n, let
Kλ = {w ∈ Sn : ρ(w) = λ},

a conjugacy class in Sn.

For S ⊂ [n − 1], define

FS =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · · xin ,

known as (Gessel’s) fundamental quasisymmetric function.



Lyndon symmetric functions

For λ ⊢ n, let
Kλ = {w ∈ Sn : ρ(w) = λ},

a conjugacy class in Sn.

For S ⊂ [n − 1], define

FS =
∑

1≤i1≤i2≤···≤in
ij<ij+1 if j∈S

xi1xi2 · · · xin ,

known as (Gessel’s) fundamental quasisymmetric function.

Define the Lyndon symmetric function

Lλ =
∑

w∈Kλ

FD(w),

a generating function for the number of permutations of cycle type
λ by descent set.



An example

Example. n = 3, λ = (2, 1)

w D(w)

213 1
132 2
321 1,2

L(2,1) = F1 + F2 + F1,2 = s2,1 + s1,1,1



Gessel-Reutenauer theorem

Theorem. Lλ is a symmetric function given by

Ln =
1

n

∑

d|n

µ(d)p
n/d
d

L〈nk 〉 = hk [Ln] (plethysm)

L〈1k1 2k2 ··· 〉 = L〈1k1 〉L〈2k2 〉 · · · .
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Gessel-Reutenauer theorem

Theorem. Lλ is a symmetric function given by

Ln =
1

n

∑

d|n

µ(d)p
n/d
d

L〈nk 〉 = hk [Ln] (plethysm)

L〈1k1 2k2 ··· 〉 = L〈1k1 〉L〈2k2 〉 · · · .

◮ Lλ is Schur positive.

◮
∑

λ⊢n Lλ = pn1
◮ Let d(n) be the codimension of the span of the Lλ’s, λ ⊢ n, in

Λn
Q. Open: what is d(n)?

n 1–3 4–6 7 8 9–11 12 13 14 15

d(n) 0 1 2 3 4 7 10 12 15



A consequence of Gessel-Reutenauer

Theorem (Gessel-Reutenauer). Let λ ⊢ n and S ⊂ [n− 1]. Then

〈Lλ, sBS
〉 = #{w ∈ Sn : ρ(w) = λ, D(w) = S}.



Sample application

Theorem (Gessel-Reutenauer) The number of involutions in Sn

with descent set S equals the number of involutions in Sn with

descent set S̄ = [n − 1]− S.



Sample application

Theorem (Gessel-Reutenauer) The number of involutions in Sn

with descent set S equals the number of involutions in Sn with

descent set S̄ = [n − 1]− S.

Proof. The set of involutions in Sn is a union of conjugacy
classes. Now

∑

w∈Sn

w2=1

Fρ(w) =
∏

i

1

1− xi

∏

i<j

1

1− xixj
=

∑

λ

sλ,

which is invariant under ω. Moreover, ωsBS
= sBS̄

. The proof
follows from

〈

∑

λ

sλ, sBS

〉

=

〈

ω
∑

λ

sλ, ωsBS

〉

=

〈

∑

λ

sλ, sBS̄

〉

.



A sample result on alternating permutations

f (n) = #{w ∈ S2n : ρ(w) = (2, 2, . . . , 2), D(w) = {1, 3, 5, · · · }}

Thus f (n) =
〈

L〈2n〉, sR2n

〉

. Using

L〈2n〉 = hn

[

1

2
(p21 − p2)

]

=
1

2

(

p2n1 − pn2
)

and Foulkes’ theorem on sR2n
, we obtain (with some

manipulatorics):



A sample result on alternating permutations

f (n) = #{w ∈ S2n : ρ(w) = (2, 2, . . . , 2), D(w) = {1, 3, 5, · · · }}

Thus f (n) =
〈

L〈2n〉, sR2n

〉

. Using

L〈2n〉 = hn

[

1

2
(p21 − p2)

]

=
1

2

(

p2n1 − pn2
)

and Foulkes’ theorem on sR2n
, we obtain (with some

manipulatorics):

Theorem. Let E be an indeterminate. Let Ω be the linear

operator sending E k to the Euler number Ek . Then

∑

n≥0

f (n)tn = Ω

(

1 + t

1− t

)(E2+1)/4

.



Computation of Ω
(

1+t
1−t

)(E 2+1)/4

Ω

(

1 + t

1− t

)
E2+1

4

= Ω

(

1 +
1

2
(E 2 + 1)t +

1

8
(E 4 + 2E 2 + 1)t2 + · · ·

)

= 1 +
1

2
(E2 + 1)t +

1

8
(E4 + 2E2 + 1)t2 + · · ·

= 1 +
1

2
(1 + 1)t +

1

8
(5 + 2 · 1 + 1)t2 + · · ·

= 1 + t + t2 + · · ·



Computation of Ω
(

1+t
1−t

)(E 2+1)/4

Ω

(

1 + t

1− t

)
E2+1

4

= Ω

(

1 +
1

2
(E 2 + 1)t +

1

8
(E 4 + 2E 2 + 1)t2 + · · ·

)

= 1 +
1

2
(E2 + 1)t +

1

8
(E4 + 2E2 + 1)t2 + · · ·

= 1 +
1

2
(1 + 1)t +

1

8
(5 + 2 · 1 + 1)t2 + · · ·

= 1 + t + t2 + · · ·

E.g., the unique w ∈ S4 that is alternating and has cycle type
(2, 2) is 2143.



Descent set enumeration in the alternating group

An: alternating group of degree n

γn(S) = #{w ∈ An : D(w) = S}
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Recall the notation: let ρ(w) = λ. Then ελ = sgn(w). Hence:



Descent set enumeration in the alternating group

An: alternating group of degree n

γn(S) = #{w ∈ An : D(w) = S}

Recall

〈Lλ, sBS
〉 = #{w ∈ Sn : ρ(w) = λ, D(w) = S}.

Recall the notation: let ρ(w) = λ. Then ελ = sgn(w). Hence:

Theorem. γn(S) =

〈

∑

λ⊢n
ελ=1

Lλ, sBS

〉



A formula for
∑

λ⊢n
ελ=1

Lλ

Theorem.

∑

λ⊢n
ελ=1

Lλ =







1
2

(

pn1 + p
n/2
2

)

, if n is even

1
2

(

pn1 + p1p
(n−1)/2
2

)

, if n is odd.



A formula for
∑

λ⊢n
ελ=1

Lλ

Theorem.

∑

λ⊢n
ελ=1

Lλ =







1
2

(

pn1 + p
n/2
2

)

, if n is even

1
2

(

pn1 + p1p
(n−1)/2
2

)

, if n is odd.

Proof is a computation based on the Gessel-Reutenauer formula

Ln =
1

n

∑

d|n

µ(d)p
n/d
d

L〈nk 〉 = hk [Ln] (plethysm)

L〈1k1 2k2 ··· 〉 = L〈1k1 〉L〈2k2 〉 · · · .



A formula for
∑

λ⊢n
ελ=1

Lλ

Theorem.

∑

λ⊢n
ελ=1

Lλ =







1
2

(

pn1 + p
n/2
2

)

, if n is even

1
2

(

pn1 + p1p
(n−1)/2
2

)

, if n is odd.

Proof is a computation based on the Gessel-Reutenauer formula

Ln =
1

n

∑

d|n

µ(d)p
n/d
d

L〈nk 〉 = hk [Ln] (plethysm)

L〈1k1 2k2 ··· 〉 = L〈1k1 〉L〈2k2 〉 · · · .

Is there a more conceptual proof?



Half a border strip

Let BS be a border strip of even size 2m. Tile it uniquely with m

dominos. Shrink each domino to a square to get BS/2.

S={3,4,5,6,9} S/2={2,3}



A formula for γn(S), n even

BS : a border strip of size n = 2m

v(BS ): number of vertical dominos in the unique tiling of BS by m

dominos

Recall: βn(S) = #{w ∈ Sn : D(w) = S}

γn(S) = #{w ∈ An : D(w) = S}



A formula for γn(S), n even

BS : a border strip of size n = 2m

v(BS ): number of vertical dominos in the unique tiling of BS by m

dominos

Recall: βn(S) = #{w ∈ Sn : D(w) = S}

γn(S) = #{w ∈ An : D(w) = S}

Theorem. Let n = 2m and S ⊆ [n − 1]. Then

γn(S) =
1

2

(

βn(S) + (−1)v(BS )βm(S/2)
)

.



A formula for γn(S), n even

BS : a border strip of size n = 2m

v(BS ): number of vertical dominos in the unique tiling of BS by m

dominos

Recall: βn(S) = #{w ∈ Sn : D(w) = S}

γn(S) = #{w ∈ An : D(w) = S}

Theorem. Let n = 2m and S ⊆ [n − 1]. Then

γn(S) =
1

2

(

βn(S) + (−1)v(BS )βm(S/2)
)

.

More complicated formula when n is odd.



Sketch of proof.

Theorem. Let n = 2m and S ⊆ [n − 1]. Then

γn(S) =
1

2

(

βn(S) + (−1)v(BS )βm(S/2)
)

.

Proof (sketch).

γn(S) =

〈

sBS
,
∑

λ⊢n
ελ=1

Lλ

〉

=

〈

sBS
,
1

2
(pn1 + pm2 )

〉

=
1

2
(βn(S) + 〈sBS

, pm2 〉) .



Sketch of proof.

Theorem. Let n = 2m and S ⊆ [n − 1]. Then

γn(S) =
1

2

(

βn(S) + (−1)v(BS )βm(S/2)
)

.

Proof (sketch).

γn(S) =

〈

sBS
,
∑

λ⊢n
ελ=1

Lλ

〉

=

〈

sBS
,
1

2
(pn1 + pm2 )

〉

=
1

2
(βn(S) + 〈sBS

, pm2 〉) .

Evaluate 〈sBS
, pm2 〉 by the Murnaghan-Nakayama rule.



Completion of proof.

〈sBS
, pm2 〉 is the number of border-strip tableau of type 2m. There

is a unique tiling by dominos. A border strip tableaux is an
ordering of these dominos so that removing them in that order
from the lower right boundary always leaves a skew shape. This
corresponds to a (reverse) standard Young tableau of shape BS/2,

of which there are βm(S/2). The sign is (−1)v(BS ). �



Completion of proof.

〈sBS
, pm2 〉 is the number of border-strip tableau of type 2m. There

is a unique tiling by dominos. A border strip tableaux is an
ordering of these dominos so that removing them in that order
from the lower right boundary always leaves a skew shape. This
corresponds to a (reverse) standard Young tableau of shape BS/2,

of which there are βm(S/2). The sign is (−1)v(BS ). �

S={3,4,5,6,9} S/2={2,3}

1

2

3

4

5

1

2

3

4

5



Generalized descent sets

X ⊆ {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}



Generalized descent sets

X ⊆ {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

X -descent of w = a1 · · · an ∈ Sn: an index 1 ≤ i ≤ n − 1 for
which (ai , ai+1) ∈ X



Generalized descent sets

X ⊆ {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

X -descent of w = a1 · · · an ∈ Sn: an index 1 ≤ i ≤ n − 1 for
which (ai , ai+1) ∈ X

X -descent set XDes(w): set of X -descents



Generalized descent sets

X ⊆ {(i , j) : 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

X -descent of w = a1 · · · an ∈ Sn: an index 1 ≤ i ≤ n − 1 for
which (ai , ai+1) ∈ X

X -descent set XDes(w): set of X -descents

Example. (a) X = {(i , j) : n − 1 ≥ i > j ≥ 1}: XDes = D

(b) X = {(i , j) ∈ [n]× [n] : i 6= j}: XDes(w) = [n − 1]
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A generating function for the XDescent set

UX =
∑

w∈Sn

FXDes(w)

Example. X = {(1, 3), (2, 1), (3, 1), (3, 2)}

w XDes(w)

123 ∅
132 {1, 2}
213 {1, 2}
231 {2}
312 {1}
321 {1, 2}

UX = F∅ + F1 + F2 + 3F1,2 = p31 − p2p1 + p3 = s3 + s21 + 2s111
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Theorem (easy). UX is a p-integral symmetric function.

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.



Two theorems

Theorem (easy). UX is a p-integral symmetric function.

record set rec(w) for w = a1 · · · an ∈ Sn:
rec(w) = {0 ≤ i ≤ n − 1 : ai > aj for all j < i}. Thus always
0 ∈ rec(w).

record partition rp(w): if rec(w) = {r0, . . . , rj}<, then rp(w) is
the numbers r1 − r0, r2 − r1, . . . , n− rj arranged in decreasing order.

Theorem (conjectured by RS, proved by I. Gessel) Let X have

the property that if (i , j) ∈ X then i > j . Then

UX =
∑

w∈Sn

XDes(w)=∅

prp(w).

In particular, UX is p-positive.



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G



Connection with chromatic symmetric functions

P: partial ordering of [n]

YP = {(i , j) : i >P j}

inc(P): incomparability graph of P , i.e., vertex set [n], edges ij if
i ‖ j in P

XG : chromatic symmetric function of the graph G

Theorem. UYP
= Xinc(P)
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Reverse succession-free permutations

Let X = {(2, 1), (3, 2), . . . , (n, n − 1)}.

fn = #{w ∈ Sn : XDes(w) = ∅} (rs-free permutations)

Known result.
∑

n≥0

fn
xn

n!
=

e−x

(1− x)2

Theorem. UX =

n
∑

i=1

fi si ,1n−i

(generating function for w ∈ Sn by positions of reverse
successions)

Example. n = 4: UX = 11s4 + 3s31 + s211 + s1111
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Sketch of proof

Theorem. UX =
n

∑

i=1

fi si ,1n−i

Proof. For S ⊆ [n − 1], take coefficient of FS on both sides.

Left-hand side: #{w ∈ Sn : XDes(w) = S}

Right-hand side: Use

si ,1n−i =
∑

S∈([n−1]
n−i )

FS .

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .
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Conclusion of proof

To show: fi = #{w ∈ Sn : XDes(w) = S} if #S = n − i .

Will define a bijection

{w ∈ Sn : XDes(w) = S} → {u ∈ Si : XDes(u) = ∅}.

Example. w = 3247651, so S = {1, 4, 5}, n = 7, i = 4. Factor w :

w = 32 · 4 · 765 · 1.

Let 1 → 1, 32 → 2, 4 → 3, 765 → 4. get

w → 2341 = u. �



A q-analogue for X = {(2, 1), (3, 2), . . . , (n, n − 1)}

Let UX (q) =
∑

w∈Sn

qdes(w
−1)FXDes(w), where des denotes the

number of (ordinary) descents.

UX (q) is the generating function for w ∈ Sn by positions of
reverse successions and by des(w−1).
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A q-analogue for X = {(2, 1), (3, 2), . . . , (n, n − 1)}

Let UX (q) =
∑

w∈Sn

qdes(w
−1)FXDes(w), where des denotes the

number of (ordinary) descents.

UX (q) is the generating function for w ∈ Sn by positions of
reverse successions and by des(w−1).

fn(q) =
∑

w∈Sn

XDes(w)=∅

qdes(w
−1)

Theorem. UX (q) =
n

∑

i=1

qn−i fi (q)si ,1n−i
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