

A Survey of Parking Functions

Richard P. Stanley

M.I.T.

Parking functions

Parking functions

Parking functions

Car C_i prefers space a_i . If a_i is occupied, then C_i takes the next available space. We call (a_1, \ldots, a_n) a **parking function** (of length n) if all cars can park.

A Survey of Parking Functions – p. 2

n = 2: 11 12 21 n = 3: 111 112 121 211 113 131 311 122 212 221 123 132 213 231 312 321

Parking function characterization

- **Easy:** Let $\alpha = (a_1, \ldots, a_n) \in \mathbb{P}^n$. Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be the increasing rearrangement of α . Then α is a parking function if and only $b_i \leq i$.
- **Corollary.** Every permutation of the entries of a parking function is also a parking function.

Enumeration of parking functions

- Theorem (Pyke, 1959; Konheim and Weiss, 1966). Let f(n) be the number of parking functions of length n. Then $f(n) = (n + 1)^{n-1}$.
- **Proof (Pollak**, c. 1974). Add an additional space n + 1, and arrange the spaces in a circle. Allow n + 1 also as a preferred space.

Conclusion of Pollak's proof

Now all cars can park, and there will be one empty space. α is a parking function \Leftrightarrow if the empty space is n + 1. If $\alpha = (a_1, \dots, a_n)$ leads to car C_i parking at space p_i , then $(a_1 + j, \dots, a_n + j)$ (modulo n + 1) will lead to car C_i parking at space $p_i + j$. Hence exactly one of the vectors

$$(a_1 + i, a_2 + i, \dots, a_n + i)$$
 (modulo $n + 1$)

is a parking function, so

$$f(n) = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}.$$

The parking function \mathfrak{S}_n -action

The symmetric group \mathfrak{S}_n acts on the set \mathcal{P}_n of all parking functions of length n by permuting coordinates.

The parking function \mathfrak{S}_n -action

The symmetric group \mathfrak{S}_n acts on the set \mathcal{P}_n of all parking functions of length n by permuting coordinates.

Example. $(1, 2, 3)(4)(5, 6) \cdot 314131 = 431113$

Sample properties

• Multiplicity of trivial representation (number of orbits) = $C_n = \frac{1}{n+1} \binom{2n}{n}$

n = 3: **111 112 122 113 123**

• Number of elements of \mathcal{P}_n fixed by $w \in \mathfrak{S}_n$ (character value at w):

$$\#Fix(w) = (n+1)^{(\# \text{ cycles of } w)-1}$$

Symmetric functions

Let
$$\lambda = (\lambda_1, \lambda_2, \dots) \vdash n$$
, i.e.,
 $\lambda_1 \ge \lambda_2 \ge \dots \ge 0, \quad \sum \lambda_i = n.$

Complete symmetric function:

$$h_{n} = \sum_{i_{1}+i_{2}+\cdots=n} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots (h_{0} = 1)$$
$$h_{\lambda} = \prod_{i} h_{\lambda_{1}} h_{\lambda_{2}} \cdots$$

Symmetric function bases

Example: n=2.

$$h_2 = x_1^2 + x_1 x_2 + x_2^2 + x_1 x_3 + \cdots$$

$$h_1^2 = (x_1 + x_2 + x_3 + \cdots)^2$$

The h_{λ} 's for $\lambda \vdash n$ are a basis (say over \mathbb{Q}) for all homogeneous symmetric formal power series of degree n in x_1, x_2, \ldots .

Symmetric function bases

Example: n=2.

$$h_2 = x_1^2 + x_1 x_2 + x_2^2 + x_1 x_3 + \cdots$$

$$h_1^2 = (x_1 + x_2 + x_3 + \cdots)^2$$

The h_{λ} 's for $\lambda \vdash n$ are a basis (say over \mathbb{Q}) for all homogeneous symmetric formal power series of degree n in x_1, x_2, \ldots .

Other bases: e_{λ} (elementary), m_{λ} (monomial), p_{λ} (power sums), s_{λ} (Schur), f_{λ} (forgotten),

A Survey of Parking Functions – p. 11

Parking function symmetric function

Let
$$\mathbf{PF}_n = \operatorname{ch}(\mathcal{P}_n)$$
.

$$\mathcal{I}_n = \{ \text{increasing PFs of length } n \}$$

$$\mathcal{I}_3 = \{ 111, 112, 113, 122, 123 \}$$

$$\#\mathcal{I}_n = C_n = \frac{1}{n+1} \binom{2n}{n}$$

Parking function symmetric function

Let
$$\mathbf{PF}_n = \operatorname{ch}(\mathcal{P}_n)$$
.

$$\mathcal{I}_n = \{ \text{increasing PFs of length } n \}$$

$$\mathcal{I}_3 = \{ 111, 112, 113, 122, 123 \}$$

$$\#\mathcal{I}_n = C_n = \frac{1}{n+1} \binom{2n}{n}$$

If $\alpha = a_1 \cdots a_n \in \mathcal{I}_n$ define

$$\hat{\boldsymbol{\alpha}}=h_{m_1}h_{m_2}\cdots,$$

where α has m_i i's.

A Survey of Parking Functions – p. 12

Formula for PF_n

Example. $\alpha = 11344446 \Rightarrow \hat{\alpha} = h_1^2 h_2 h_4$

Example. $\alpha = 11344446 \Rightarrow \hat{\alpha} = h_1^2 h_2 h_4$

$$\mathrm{PF}_n = \sum_{\alpha \in \mathcal{I}_n} \hat{\alpha}$$

An example: n = 3

 $\begin{array}{cccc} 111 & h_3 \\ 112 & h_2h_1 \\ 113 & h_2h_1 \\ 122 & h_2h_1 \\ 123 & h_1^3 \end{array}$

 $\Rightarrow \mathrm{PF}_3 = h_3 + 3h_2h_1 + h_1^3$

Some properties

More properties

r, k-parking functions

There are numerous generalizations of parking functions.

(r, k)-parking functions $(r, k \ge 1)$:

 $(a_1, \ldots, a_n) \in \mathbb{P}^n$ whose increasing rearrangement $b_1 \leq \cdots \leq b_n$ satisfies

$$b_i \le (i-1)r + k.$$

Ordinary parking function: r = k = 1.

A Survey of Parking Functions – p. 17

(2,1)-parking functions

Example. n = 3, r = 2, k = 1, so $(b_1, b_2, b_3) \le (1, 3, 5)$. Increasing (2, 1)-parking functions of length 3 (with size of \mathfrak{S}_3 -orbit):

111(1)114(3)123(6)133(3)112(3)115(3)124(6)134(6)113(3)122(3)125(6)135(6)

Thus total number is 49, number of \mathfrak{S}_3 -orbits is 12.

A Survey of Parking Functions – p. 18

Parking algorithm

- rn cars and rn + k 1 spaces
- $\alpha = (a_1, \ldots, a_n)$: cars $C_{r(i-1)+1}, \ldots, C_{ri}$ all prefer a_i .
- Same parking algorithm.

Pollak's proof generalized

- Arrange rn + k spaces on a circle and park as in Pollak's proof.
- α is an $(r,k)\text{-parking function}\Leftrightarrow \text{space } rn+k$ is empty.
- Theorem (Pyke, essentially).

$$\#\mathcal{P}_n^{(r,k)} = k(rn+k)^{n-1}$$

Further properties

with Yinghui Wang

Further properties

with Yinghui Wang (王颖慧)

Further properties

with Yinghui Wang (王颖慧)

Many further properties of (r, k)-parking functions.

A generating function

- For simplicity, assume r = 1.
- Define

$$egin{aligned} m{F(t)} &:= & \sum_{n \geq 0} \mathrm{PF}_n t^n \ &= & 1 + h_1 t + (h_2 + h_1^2) t^2 + \cdots , \end{aligned}$$

A generating function

- For simplicity, assume r = 1.
- Define

$$egin{aligned} m{F(t)} &:= & \sum_{n \geq 0} \mathrm{PF}_n t^n \ &= & 1 + h_1 t + (h_2 + h_1^2) t^2 + \cdots . \end{aligned}$$

Many interesting properties of $F(t)^k$, $k \in \mathbb{Z}$. Here we consider k = -1.

A Survey of Parking Functions – p. 22

Motivation

Let

$$A(t) = \sum_{n \ge 0} a_n t^n$$

$$B(t) = \sum_{n \ge 0} b_n t^n$$

$$= \frac{1}{1 - A(t)} = \sum_{k \ge 0} A(t)^k.$$

Thus a_n counts "prime" objects and b_n all objects.

A Survey of Parking Functions – p. 23

B(t) = F(t)

Note. $B(t) = \frac{1}{1-A(t)} \Leftrightarrow A(t) = 1 - \frac{1}{B(t)}$.

B(t) = F(t)

Note.
$$B(t) = \frac{1}{1-A(t)} \Leftrightarrow A(t) = 1 - \frac{1}{B(t)}$$
.

Suggests: $1 - \frac{1}{F(t)}$ might be connected with "prime" parking functions.

Definition (I. Gessel). A parking function is prime if it remains a parking function when we delete a 1 from it.

Note. A sequence $b_1 \leq b_2 \leq \cdots \leq b_n$ is an increasing parking function if and only if $1 \leq b_1 \leq \cdots \leq b_n$ is an increasing prime parking function.

The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions are 1111, 1112, 1113, 1122, 1123.
The prime parking function sym. fn.

E.g., n = 4: increasing prime parking functions are 1111, 1112, 1113, 1122, 1123.

 $\Rightarrow \mathbf{PPF_4} = h_4 + 2h_3h_1 + h_2^2 + h_2h_1^2.$

1 2 3 4 5 6 7 8 9 10 11 1 1 3 3 4 4 7 8 8 9 10

Parking functions & invariant theory

Background: invariants of \mathfrak{S}_n

The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \dots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$\mathbf{R}^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$

Parking functions & invariant theory

Background: invariants of \mathfrak{S}_n

The group \mathfrak{S}_n acts on $R = \mathbb{C}[x_1, \dots, x_n]$ by permuting variables, i.e., $w \cdot x_i = x_{w(i)}$. Let

$$\mathbf{R}^{\mathfrak{S}_n} = \{ f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_n \}.$$

Well-known:

$$R^{\mathfrak{S}_n} = \mathbb{C}[e_1, \dots, e_n],$$

where $e_k = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$.

A Survey of Parking Functions – p. 28

The coinvariant algebra

Let

$$R_+ = \{f \in R : f(0,...,0) = 0\}$$

 $D := R/(R_+^{\mathfrak{S}_n})$
 $= R/(e_1,...,e_n).$

The coinvariant algebra

Let

$$\mathbf{R}_{+} = \{ f \in R : f(0, ..., 0) = 0 \}$$

$$\mathbf{D} := \frac{R}{(R_{+}^{\mathfrak{S}_{n}})}$$

$$= \frac{R}{(e_{1}, ..., e_{n})}.$$

Then $\dim_{\mathbb{C}} D = n!$, and \mathfrak{S}_n acts on D according to the regular representation.

A Survey of Parking Functions – p. 29

Diagonal action of \mathfrak{S}_n

Now let \mathfrak{S}_n act **diagonally** on

$$R = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n],$$

i.e,

$$w \cdot x_i = x_{w(i)}, \quad w \cdot y_i = y_{w(i)}.$$

As before, let

$$\mathbf{R}^{\mathfrak{S}_{n}} = \{f \in R : w \cdot f = f \text{ for all } w \in \mathfrak{S}_{n}\}$$
$$D = R/(R^{\mathfrak{S}_{n}}_{+}).$$

Theorem (Haiman, 1994, 2001).

$$\dim D = (n+1)^{n-1},$$

and the action of \mathfrak{S}_n on D is isomorphic to the action on \mathcal{P}_n , tensored with the sign representation.

Theorem (Haiman, 1994, 2001).

 $\dim D = (n+1)^{n-1},$

and the action of \mathfrak{S}_n on D is isomorphic to the action on \mathcal{P}_n , tensored with the sign representation.

Connections with Macdonald polynomials, Hilbert scheme of points in the plane, etc.

A Survey of Parking Functions – p. 31

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

 $\mathcal{R} = \text{set of regions of } \mathcal{B}_n$ $\#\mathcal{R} = ??$

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

 $\mathcal{R} = \text{set of regions of } \mathcal{B}_n$ $\#\mathcal{R} = n!$

Braid arrangement \mathcal{B}_n : the set of hyperplanes

$$x_i - x_j = 0, \quad 1 \le i < j \le n,$$

in \mathbb{R}^n .

 $\mathcal{R} = \text{set of regions of } \mathcal{B}_n$ $\#\mathcal{R} = n!$

Let R_0 be the base region

$$R_0: x_1 > x_2 > \cdots > x_n.$$

A Survey of Parking Functions – p. 32

Labeling the regions

Label R_0 with

$$\boldsymbol{\lambda(R_0)} = (1, 1, \dots, 1) \in \mathbb{Z}^n.$$

If *R* is labelled, *R'* is separated from *R* only by $x_i - x_j = 0$ (*i* < *j*), and *R'* is unlabelled, then set

 $\boldsymbol{\lambda(R')} = \lambda(R) + e_i,$

where $e_i = i$ th unit coordinate vector.

A Survey of Parking Functions – p. 33

The labeling rule

Description of labels

Description of labels

Theorem (easy). The labels of \mathcal{B}_n are the sequences $(b_1, \ldots, b_n) \in \mathbb{Z}^n$ such that $1 \leq b_i \leq n - i + 1$.

The Shi arrangement

Shi Jianyi

The Shi arrangement

Shi Jianyi (时俭益)

The Shi arrangement

Shi Jianyi (时俭益)

Shi arrangement S_n : the set of hyperplanes

$$x_i - x_j = 0, 1,$$

 $1 \leq i < j \leq n$, in \mathbb{R}^n .

The case n = 3

Labeling the regions

base region:

 $R_0: x_n + 1 > x_1 > \cdots > x_n$

Labeling the regions

base region:

- $R_0: \quad x_n+1 > x_1 > \cdots > x_n$
- $\lambda(R_0) = (1, 1, \dots, 1) \in \mathbb{Z}^n$

• If *R* is labelled, *R'* is separated from *R* only by $x_i - x_j = 0$ (i < j), and *R'* is unlabelled, then set

$$\lambda(R') = \lambda(R) + e_i.$$

If *R* is labelled, *R'* is separated from *R* only by $x_i - x_j = 1$ (i < j), and *R'* is unlabelled, then set

$$\lambda(R') = \lambda(R) + e_j.$$

A Survey of Parking Functions – p. 39

The labeling rule

The labeling for n = 2

Description of the labels

Theorem (Pak, S.). The labels of S_n are the parking functions of length n (each occurring once).

Description of the labels

- **Theorem (Pak, S.)**. The labels of S_n are the parking functions of length n (each occurring once).
- Corollary (Shi, 1986).

$$r(\mathcal{S}_n) = (n+1)^{n-1}$$

The parking function polytope

Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by: $(y_1, \ldots, y_n) \in P_n$ if $0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$ for $1 \leq i \leq n$.

A Survey of Parking Functions – p. 43

The parking function polytope

- Given $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$, define $P_n = P(x_1, \ldots, x_n) \subset \mathbb{R}^n$ by: $(y_1, \ldots, y_n) \in P_n$ if $0 \leq y_i, \quad y_1 + \cdots + y_i \leq x_1 + \cdots + x_i$
- for $1 \leq i \leq n$.
- (also called Pitman-Stanley polytope)

A Survey of Parking Functions – p. 43

Volume of P

Theorem. Let $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$. Then

$$n! V(P_n) = \sum_{\substack{\text{parking functions}\\(i_1,\dots,i_n)}} x_{i_1} \cdots x_{i_n}.$$

Theorem. Let $x_1, \ldots, x_n \in \mathbb{R}_{\geq 0}$. Then

$$n! V(P_n) = \sum_{\substack{\text{parking functions}\\(i_1,\dots,i_n)}} x_{i_1} \cdots x_{i_n}.$$

NOTE. If each $x_i > 0$, then P_n has the combinatorial type of an *n*-cube.

